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Abstract—In this era of tremendous technological capabili-
ties and increased focus on improving clinical outcomes,
decreasing costs, and increasing precision, there is a need for
a more quantitative approach to the field of surgery.
Multiscale computational modeling has the potential to
bridge the gap to the emerging paradigms of Precision
Medicine and Translational Systems Biology, in which
quantitative metrics and data guide patient care through
improved stratification, diagnosis, and therapy. Achieve-
ments by multiple groups have demonstrated the potential
for (1) multiscale computational modeling, at a biological
level, of diseases treated with surgery and the surgical
procedure process at the level of the individual and the
population; along with (2) patient-specific, computationally-
enabled surgical planning, delivery, and guidance and robot-
ically-augmented manipulation. In this perspective article, we
discuss these concepts, and cite emerging examples from the
fields of trauma, wound healing, and cardiac surgery.
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ABBREVIATIONS

ABM Agent-based models
CABG Coronary artery bypass grafting
CT Computed tomography
DAMP Damage-associated molecular pattern
ECM Extracellular matrix
ED End-diastole
EDV End-diastolic volume
ESV End-systolic volume
LV Left ventricular
ODE Ordinary differential equation
PDE Partial differential equation
PDGF Platelet-derived group factor
pCT Preoperative CT
pMR Preoperative magnetic resonance imaging

[MRI]
PUABM Pressure ulcer ABM
SVR Surgical ventricular restoration
TGF-b1 Transforming growth factor-b1

THE TRANSLATIONAL DILEMMA AND

MODEL-GUIDED PRECISION MEDICINE

A central challenge in healthcare is to provide per-
sonalized, pre-emptive and predictive medicine120

while containing costs. The attempt to meet this chal-
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lenge has led to the introduction of the concept of
Precision Medicine.81 In an era of catchwords, the use
of the term ‘‘Precision Medicine’’ must first be clari-
fied. Of course, throughout history medical care has
been tailored to individual patients and their specific
circumstances, performed within a framework of
diagnosis and therapy predicated upon the placement
of an individual into defined classifications that are
necessarily reflective of groups of patients. The ‘‘pre-
cision’’ of the resulting care plans is subject to the
current state of medical art and technology as exe-
cuted, given the expertise of the practitioner. As tech-
nology has advanced, so too has the expectation that
the resolution of specific classification of an individual
patient will become more granular and ‘‘precise,’’ and
that there will be a shift from the more subjective ‘‘art’’
of medicine to a quantitative and ostensibly objective
intersection between patient state and efficacious
therapy. Adding to the potential semantic confusion, if
the intent of Precision Medicine was based on the
dictionary definition of the words used, it would entail
developing the means of engineering specific therapies
for a given individual, involving precisely targeting a
particular disease state at a specific time. In reality, the
goal of ‘‘Precision Medicine’’ as it is currently envi-
sioned is much more modest: it aims to identify some
particular set of existing therapies tailored to a patient
subset defined by their ‘‘omic’’/biomarker profile,
along with some prior statistical determination of the
efficacy of said therapies based on those profiles. Even
with this more modest goal, the ‘‘Precision Medicine’’
paradigm offers increased hope for a rational, quan-
titative description of the dynamic patient state.
However, precision Medicine suffers from the often
reductionist and non-integrative status quo, as well as
paradoxically from the potential data deluge that has
affected both basic research and clinical medicine. The
former problem has resulted in the Translational Di-
lemma, namely the lack of effective translation of basic
research to the clinic.7,111 The latter has resulted in the
nearly synonymous and unanimous association of Big
Data with Precision Medicine (as noted by the reduced
goals noted above). Indeed, the context in which
computational modeling has been proposed as a key
technology by which to actualize Precision Medicine is
generally that of bioinformatics and other data-driven
modeling techniques.10,46,85,105

What is fundamentally missing from this picture,
however, is the recognition that human disease initia-
tion and progression are part of a dynamic process
driven by fundamentally similar basic mechanisms.
The importance of dynamics in determining more
‘‘precisely’’ the state and trajectory of an individual
mandates that any computational approach purport-
ing to accomplish precise medical care must account

for those generative mechanisms and their resulting
dynamic behavior. It is towards this end that we assert
the necessity of the role of dynamic, multiscale mod-
eling as a cornerstone for ‘‘Precision Medicine.’’

Throughout the history of medicine, surgical inter-
vention has served as perhaps the most dramatic and
acute of medical treatments, performed under special-
ized conditions, with specific equipment and within a
defined timeframe. In many ways the performance of a
surgical procedure represents a microcosm of the
overall medical process of diagnosis and therapy,
occurring at the intersection of appropriate decision-
making, ongoing situational awareness and technical
facility. It is not therefore surprising that surgery has
traditionally been heavily impacted by technological
advances, and so too is it impacted by the current goals
of ‘‘Precision Medicine.’’

This review will focus on the role of multi-scale
dynamic modeling on Precision Medicine by poten-
tially augmenting the three key aspects of surgical
disease: (1) pre-operative surgical planning, (2) en-
hanced situational awareness during an operation
specifically related to any alterations in the pre-oper-
ative plan, and (3) dealing with the biology of the
inevitable recovery from the surgical insult (Fig. 1).
While there is an extensive and important role of
technology aimed at enhancing the connectivity and
information flow of the operating room itself, and the
impact of those technologies on surgical education,
those fields are outside the focus of this review. Rather,
herein we focus on the use of modeling and simulation
to characterize the target tissues based on their known
physical properties and dynamics (using the well-
established modeling and simulation methods drawn
from the physical sciences and engineering). We give
examples of computational modeling aimed at opti-
mizing surgical plans as well as devices for a planned
procedure; the integration of dynamic tissue imaging

FIGURE 1. A synthetic view of Computational Surgery. Mul-
tiscale modeling is envisioned as a binding framework by
which to synthesize the currently disparate fields associated
with Computational Surgery, leading ultimately to a Precision
Medicine framework based on multiscale computational
modeling.
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and real-time visualization to aid the ‘‘eyes’’ of the
operating surgeon during the case; and at character-
izing, predicting, and ultimately reprogramming the
important role of surgery-induced inflammation. This
latter process is complex and non-linear, and is central
to many diseases that require surgical management as
well as to the injury and wound healing responses eli-
cited by the surgical intervention itself. We focus
especially on how inflammation has been characterized
via Translational Systems Biology,5,7,75,111,113 a ra-
tional, engineering-oriented approach to guide poten-
tial patient-specific modulation of acute inflammation
in the peri-operative period.

Before embarking on this discussion, however, it is
useful to list some broad categories of modeling
approaches. Computational modeling can be broadly
categorized as either data-driven or mechanistic. Sta-
tistical models and Big Data algorithms are based on
associations and correlations and fall within the realm
of data-driven models. In contrast, mechanistic models
are based on some level of abstraction of the system
being modeled, and thus rely on prior knowledge and
assumptions. Within the range of modeling approaches
that can be classified as mechanistic (or, more pre-
cisely, dynamic and mechanistic) lie ordinary differ-
ential equation (ODE) models; partial differential
equation models (PDE), which include finite element
(FE) models; and agent-based models (ABM). Mul-
tiscale models are a class of mechanistic models that
span across scales of organization (e.g., from the
molecular to the whole organism or population), and
usually also span time scales.9,11,26,36,50,82,86,93,94,114,122

These modeling approaches have been reviewed
extensively elsewhere (e.g., Refs. 22,91,109,111).

BEFORE THE CASE: PATIENT-SPECIFIC,

COMPUTATIONALLY-ENABLED SURGICAL

PLANNING AND ENHANCED DEVICE DESIGN

Surgical planning is key to optimize patient care and
outcomes in the surgical setting.18,27,44,48,84 The
emerging consensus is that patient-specific, computer-
based surgical planning, delivery, and guidance is the
premise of Precision Medicine and is positioned to
dramatically advance therapy.18,27 Computer simula-
tions have revolutionized the fields of engineering
(aerospace, automotive industry, civil engineering,
etc.). For example, some automotive and aerospace
companies now progress directly from simulation to
production. We hypothesize that this class of models
can be leveraged similarly to drive a quantum
improvement in surgery.

Here, we review three examples of patient-specific
computational FE models of failing or infarct-injured

left ventricles used for surgical planning and thera-
peutic delivery. Heart failure, a worldwide epidemic
that contributes considerably to the overall cost of
health care in developed nations, is increasing at an
alarming pace—a trend likely to continue as the pop-
ulation ages and life span increases.47 Adverse left
ventricular (LV) remodeling after myocardial infarc-
tion is responsible for nearly 70% of heart failure
cases.40

Surgical ventricular restoration (SVR) is a proce-
dure designed to treat heart failure by surgically
excluding infarcted tissues from the dilated failing LV.
To elucidate and predict the effects of geometrical
changes from SVR on cardiac function, Lee et al.63

created patient-specific FE LV models before and after
surgery using magnetic resonance images. Their results
predict that the postsurgical improvement in systolic
function was compromised by a decrease in diastolic
distensibility in patients. These two conflicting effects
typically manifested as a depressed function (stroke
volume vs. end-diastolic pressure relation) after sur-
gery. By simulating a restoration of the LV back to its
measured baseline sphericity, they showed that both
diastolic and systolic function improved. This result
confirms that the increase in LV sphericity commonly
observed after SVR (endoventricular circular patch
plasty) has a negative impact and contributes partly to
the depressed function (Fig. 2a). On the other hand,
peak myofiber stress was reduced substantially (by
50%) after SVR, and the resultant LV myofiber stress
distribution became more uniform. This significant
reduction in myofiber stress after SVR may help reduce
adverse remodeling of the LV. These results are con-
sistent with the speculation proposed in the landmark
study Surgical Treatment for Ischemic Heart Failure
trial funded by U.S. National Institutes of Health.56

The conclusion of the study was a neutral outcome,
where it was noted that ‘‘the lack of benefit seen with
surgical ventricular reconstruction is that benefits
anticipated from surgical reduction of LV volume
(reduced wall stress and improvement in systolic
function) are counter-balanced by a reduction in
diastolic distensibility.’’ Hence, computer simulations
provided the explanation for the observed neutral ef-
fect of a cardiac surgical procedure in a large clinical
trial.

Algisyl-LVRTM (LoneStar Heart, Inc. Laguna Hills,
CA) is a medical device under clinical development
intended to prevent or reverse progression of heart
failure in patients who have a dilated LV. This device
consists of a proprietary biopolymer gel that is injected
into strategic (i.e., computer predicted/optimized)
areas of the heart muscle, where it remains as a per-
manent implant. The design of the injection patterns as
a ‘‘belt’’ in the equator of the heart was determined
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through computer simulations of cardiac mechanics.116

Lee et al.62 sought to quantify the effects of Algisyl-
LVRTM in combination with coronary artery bypass
grafting (Algisyl-LVRTM + CABG) on both LV
function and wall stress in heart failure patients.
Magnetic resonance images obtained before treatment
(n = 3), and at 3 months (n = 3) and 6 months (n = 2)
afterwards were used to reconstruct the LV geometry
(Fig. 2b). Cardiac function was quantified using end-
diastolic volume (EDV), end-systolic volume (ESV),
regional wall thickness, sphericity index, and regional
myofiber stress computed using validated mathemati-
cal (finite element) modeling. The LV became more
ellipsoidal after treatment, and both EDV and ESV
decreased substantially 3 months after treatment in all
patients; EDV decreased by 55% and ESV decreased
by 47%. Ejection fraction increased 47% during that
period. Volumetric-averaged wall thickness increased
in all patients by 23% in the 3 month period. These
changes were accompanied by an approximately 35%
decrease in myofiber stress at end-of-diastole and at
end-of-systole (Fig. 2b). Post-treatment myofiber
stress became more uniform in the LV. These initial
results support the concept that computer-aided design
of the Algisyl-LVRTM + CABG treatment leads to

decreased myofiber stress, restores LV geometry, and
improves function.

The Parachute(�) (Cardiokinetix, Inc., Menlo Park,
CA) is a catheter-based device intended to reverse LV
remodeling after antero-apical myocardial infarction.
When deployed, the device partitions the LV into up-
per and lower chambers. To simulate its mechanical
effects, Lee et al.64 created a FE LV model based on
computed tomography (CT) images from a patient
before and 6 months after Parachute(�) implantation.
Acute mechanical effects were determined by in silico
device implantation (VIRTUAL-Parachute). Chronic
effects of the device were determined by adjusting the
diastolic and systolic material parameters to better
match the 6-month post-implantation CT data and LV
pressure data at end-diastole (ED) (POST-OP). Re-
gional myofiber stress and pump function were calcu-
lated in each case (Fig. 2c). The principal finding is
that VIRTUAL-Parachute was associated with a
61.2% reduction in the lower chamber myofiber stress
at ED. The POST-OP model was associated with a
decrease in LV diastolic stiffness and a larger reduction
in myofiber stress at the upper (27.1%) and lower
chamber (78.4%) at ED. Myofiber stress at end-systole
and stroke volume was modestly changed in the

FIGURE 2. Computational modeling of (a): Surgical Ventricular Restoration, (b): Algisyl-LVR injection therapy (c): Cardiokinetix
Parachute Device. EDP, P1 and OP represent end diastolic pressure, patient 1 and operation, respectively.

KASSAB et al.



POST-OP case. The simulation results suggest that the
primary mechanism of Parachute(�) is a reduction in
ED myofiber stress, which may reverse eccentric post-
infarct LV hypertrophy which is currently under
investigation.

Mathematical modeling of the cardiovascular sys-
tem using FE has become both more powerful and
easier to use. FE models of the heart now incorporate
constitutive laws based on myocardial architecture that
mimic the passive anisotropic non-linear nature of the
myocardium that can simulate active contraction. In-
verse solutions of patient-specific models now allow
the calculation of myocardial material properties and
stress. Computational surgical planning is thus clearly
positioned to play an increasing role in the under-
standing of patient specific (through conventional
medical imaging) cardiovascular pathology and in the
design of therapies for cardiac surgery.

DURING THE CASE: MULTISCALE PATIENT-

SPECIFIC MODELING FOR INTRA-OPERATIVE

GUIDANCE AND THERAPY DELIVERY

Image-guidance in surgery is essential to establish
and maintain an accurate patient registration between
the image and physical spaces of the anatomy of
interest. Computational models play an important role
in facilitating patient registration. At the organ level, a
geometrical model of the anatomy of interest is often
generated from preoperative CT (pCT) or MRI
(pMR). For hard tissues such as the spine where ver-
tebrae remain rigid during surgery, a geometrical shape
model is often generated to automate the detection and
segmentation of the vertebral bodies. These include
spinal curve extraction using prior knowledge of shape,
gradient, and appearance information models59;
training bone-structure edge detection with a coarse-
to-fine two-stage registration of a deformable surface
model70; fully automatic methods based on deformable
fences57; and the use of multi-vertebrae anatomic
shape and pose models.87 Similarly, vertebral shapes
can be extracted from tracked intraoperative images
such as ultrasound and stereovision. Image-to-physical
space registration is then achieved when the vertebrae
are registered between intra- and pre-operative images,
using either feature-52,53,79 or intensity-based39,61

techniques. A biomechanical model can also be used to
constrain the registration.39

For soft tissues such as the brain, non-rigid defor-
mation or brain shift must be considered to maintain
an accurate image-to-patient registration.54,77 A
biomechanical model based on the geometry derived
from pMR and driven by intraoperative data is an
effective means for brain shift compensation. An array

of models with differing sophistication, material
properties, and choice of validation strategies exist.77

They incorporate displacement data often sparsely
observed from various intraoperative images either
through a direct boundary condition assignment
(‘‘forward’’) or a data-guided ‘‘inversion’’ scheme.55 A
model-updated MR can be established by transform-
ing pMR data using the computed whole-brain
deformation, which effectively compensates for brain
shift and maintains the patient registration accuracy
for subsequent guidance.54 A pre-computed deforma-
tion atlas can also be established before surgery that
parametrically samples the deformation driving con-
ditions. This allows efficient model computation
intraoperatively, thereby enabling an updated guid-
ance in the operating room.14,30,104

Although the developments above that integrate
computational modeling and image guidance are
important steps forward, what is equally exciting is
that the framework has begun to translate to infor-
mation-driven surgeries in other soft tissue organs as
well as towards therapeutics. For example, with the
former, a considerable body of work is beginning to
emerge with respect to extending these approaches to
open and laparoscopic liver resection. As these new
surgical goals are realized, the paradigms of traditional
image guidance are becoming re-realized to accom-
modate new challenges. For example, in the case of
open liver surgery, the organ is presented for surgery in
a configuration that is quite different than its preop-
eratively imaged counterpart. At the procedural time
when observation and measurement of the organ can
usually be achieved, the liver has been separated from
its surrounding ligaments and packed for surgical
presentation, and in the process has experienced con-
siderable deformation and gross shape change. As a
result, reference targets attached to the physical patient
as in traditional image-guided neurosurgery are not
relevant. Deformation is volumetrically present at the
earliest stages of presentation; consequently, it is nec-
essary for guidance environments to be capable of
dynamic continuous organ-based image-to-physical
registration, e.g., Ref. 19 Equally necessary, preoper-
ative segmentation and planning capabilities,96 com-
puter vision-based measurement techniques,72 and
computational modeling to account for non-rigid
deformations90 are becoming essential components to
these novel integrated systems, as illustrated in Fig. 3.
Briefly, Figs. 3a, 3d and 3f displays a liver volume
facilitated by a commercial software, Scout Liver
(Pathfinder Technologies Inc. Nashville, TN), which
uses state-of-the-art liver segmentation techniques.
From segmented volumes, three-dimensional surfaces
can be extracted by standard image processing meth-
ods. A custom tetrahedral mesh generator is then used
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to generate a finite element grid. Lastly, using sparse
intraoperative data such as the intraoperatively swab-
bed points shown in Fig. 3a, a custom, nonrigid image-
to-physical registration process can be used to correct
for deformation, as shown when comparing the
alignment of the segment III portal pedicle shown in
Figs. 3e, and 3g. Going further, we should note that
similar to the variation in surgical approaches to dif-
ferent organ systems, the translation of the type of
alignment approaches shown here also requires equal
specificity in order to include the adaptation to less
invasive environments such as in laparoscopic proce-
dures.45 Nevertheless, and while more work is still
needed, it is encouraging to see investigators translat-
ing new directions in the field of model-driven com-
putational surgery; e.g., areas such as prostate,3

kidney,2 lung,12 and breast21 to name several.
Lastly, in addition to the work in other soft-tissue

organs as described above, advances to simulate ther-
apeutic interactions with diseased or dysfunctional
tissue are rapidly being realized. The potential for
using multiscale models to provide information

regarding therapy delivery would represent an exciting
barrier to breech for surgical intervention. For exam-
ple, one of the areas that has had considerable devel-
opment is in the area of thermal ablation, with
computational modeling examples in the literature
simulating radio frequency,15 microwave,16 and cryo-
ablation.58 As an example,15 investigators have crossed
length scales to bring together tissue-scale power
deposition and thermal transport models with a cell-
scale damage integral index, all cast within an opti-
mization framework for determining the best delivery
of ablation therapy. The proposed example advances a
multiscale modeling effort to link delivery and mech-
anism across length scales for the optimization of
treatment. As modeling efforts in other therapies
continue to emerge such as irreversible electropora-
tion,38 convection-enhanced drug delivery,100 inter-
ventional therapies such as chemo-123 and radio-
therapy,51 and work in neuromodulation,13 it is excit-
ing to speculate what new capabilities computational
multi-scale modeling will provide in real-time to the
surgical and interventional suites of the future.

FIGURE 3. Using methods from Rucker et al.,90 (a) preoperative liver model and registered swabbed point cloud acquired from
intraoperative liver surface are shown with ultrasound image of segment III portal pedicle in (b), and (c) showing manual seg-
mentation of structure. In (d) we see the planned model cloud with ultrasound slice (white arrow) showing alignment of pedicle
based on rigid registration, and (e) is the close-up. Notice how inferior vessel region does not align with corresponding vascular
structure. In (f), a deformation correction driven by the closest point mismatch in data shown in (a) has been performed, and (g)
shows the new location of the structure as well as modified shapes to vasculature. It should be noted that in this example
ultrasound data was used for validation only, i.e., no localized ultrasound structures were used within the alignment algorithm,
only data shown in (a) was used. We should further note that the alignment error of this feature after rigid registration was
estimated at 5.5 6 2.6 mm (10.9 mm maximum error). The error was reduced to 2.4 6 1.5 mm (5.4 mm maximum error) after model-
based deformation correction.
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AFTER THE CASE: DEALING WITH THE

AFTERMATH VIA MULTISCALE MODELING

OF SURGICAL WOUND HEALING

Surgical interventions invariably involve manage-
ment of wounds, either as the reason for an operation,
or as a consequence of the surgical procedure. Wound-
related complications are a major source of post-oper-
ative morbidity, and have a significant impact on
healthcare costs.20,106 Therefore, a greater understand-
ing of the mechanistic processes involved in wound
healing and how those processes can become impaired
could play an important role in developing Precision
Medicine interventions to improve surgical care. Given
that wound healing is an inherentlymultiscale process in
which various cellular responses are coordinated over
multiple length and time scales to close the wound and
repair the tissue, wound healing is a natural target for
the application of multiscale modeling.

Wound healing is generally subdivided into the
three overlapping and mechanistically-interrelated
phases of inflammation, proliferation, and remodeling
that proceed after hemostasis is achieved.34,121 Imme-
diately following tissue injury, platelets adhere to the
exposed extracellular matrix (ECM), degranulate, and
release damage-associated molecular pattern (DAMP)
molecules, chemokines, cytokines, and other bio-
chemical mediators that initiate hemostasis through
platelet aggregation and the formation of a provisional
fibrin matrix. Next, inflammatory cells emigrate into
the damaged tissue over a time-scale of days, and begin
the process of removing infectious agents, cellular
debris, and damaged ECM proteins. During the pro-
liferation phase, which occurs on the scale of weeks,
fibroblasts migrate into the wound and rapidly increase
in number in response to the release of growth factors
and chemoattractants released by the inflammatory
cells. The fibroblasts contract the matrix in an effort to
draw the wound margins closer, and then begin the
process of synthesizing ECM proteins.73 Simultane-
ously, a vascularized bed of granulation tissue forms,
and keratinocytes re-epithelialize the wound. During
the remodeling phase, which can continue over a per-
iod months to years, the tissue remodeling is completed
and scar tissue is formed. The presence of microbes can
affect and interfere with this process at multiple stages,
ranging from overt and dramatic wound and tissue
infection to more subtle signaling events and intrinsic
ecological dynamics present in any cohabitating
microbial communities.78,80,124

The wound healing process is well-studied in animal
systems, but species-specific differences with humans
also exist, providing another reason for the Transla-
tional Dilemma.29,69,102 To overcome these differences,
new experimental methodologies, particularly with re-

gard to imaging, are emerging that may allow the time
courses of wound healing to be studied more rigor-
ously in humans.69 Nevertheless, the collection of a
time course of primary samples in humans suffering
from chronic wound healing diseases remains a sig-
nificant hurdle due to the possibility of compromising
the healing wound. Even in the event that such mea-
surements can be made, the cell–cell and cell–matrix
processes involved are inherently complex, multiscale,
and produce emergent behaviors that cannot be easily
understood using reductionist approaches. As such,
clinically-realistic and mechanistic computational
models that can incorporate data and observations
from a host of different experiments executed at
varying temporal and spatial scales into a unified pic-
ture should provide new insights into improving and
accelerating patient wound healing. Once validated
experimentally or clinically, these multiscale models
could be used to predict the healing (or non-healing)
trajectories that might be associated with a given sur-
gical procedure (e.g., SVR and patient-specific surgical
plans) and with the ‘‘omic’’/biomarker profile of the
patient. In turn, these models could be connected to
models based on imaging of the tissues to be manip-
ulated surgically in order to better predict the likely
outcome of a given surgical procedure (as noted above
in the section on patient specific guidance and therapy
planning).

A number of modeling strategies have been explored
for their utility in accurately simulating and explaining
the wound healing process. Models employing differ-
ential equations and balance laws are the most stan-
dard, classical method utilized in modeling biological
processes, including inflammation and wound heal-
ing.5,110,112 Continuum-based models have been used
to explore all phases of wound healing, from inflam-
mation,117,118 to wound closure,8,119 to tissue remod-
eling.74 This modeling framework, while extremely
useful from a basic, mechanistic point of view, cannot
be used readily to create tissue-realistic simulations
that involve stochastic biological effects.

Nonetheless, the compendium of continuum-based
models has resulted in important insights into the
wound healing response, including illuminating rela-
tionships amongst various cell populations, inflam-
matory mediators, and other chemicals,117,118 the role
of physical constraints in guiding re-epithelializa-
tion,8,119 and parameters of the healing wound that
control the pattern of collagen deposition.74 Using
these techniques, computational models have been
used to suggest and simulate therapies to modulate
wound healing.74,118

More recently, agent-based models (ABM) have
been applied to wound healing prob-
lems6,28,65,76,88,95,97,103,125 because they offer several
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advantages in terms of temporal and spatial flexibility,
and for integrating and synthesizing cellular and
molecular-level data. ABM represent discrete processes
and provide a useful translational tool for examining
stochastic and spatial aspects of inflammation and
wound healing.6 These models often predict complex
patterns, structures, behaviors, and self-organizing
principles that ‘‘emerge’’ from a set of simple rules that
govern the agent’s behaviors and its interactions with
other agents and the environment.71 The ability of
ABM to represent spatial relationships and tissue pat-
terning effects makes them an appealing approach for
modeling wound healing biology. Most of these ABM,
however, have been focused on delineating intracellular
detail as an adjunct to basic research.17,98,114,115 We
propose that ABM are also well-suited to a translational
role to bridge basic science knowledge and the rational
development of clinically applicable strategies.4,5,37,113

We have developed a series of ABM with this specific
goal in mind in order to model diabetic wound heal-
ing,76 host-pathogen interactions in surgical wound
healing,41,99 patient-specific inflammation following
phonotrauma injury to the vocal folds,66,68 surgical in-
jury in rats,67 and chronic, non-healing pressure ulcers
in human spinal cord injury patients.97,125

The mechanical properties and functionality of the
healing tissue are derived, in part, from multiscale
mechanical interactions that balance the distribution
of macroscale tissue loads and cell traction forces with
microstructural deformations in the ECM and global
tissue reorganization. In addition, these multiscale
mechanical interactions supply important mechanical
signals that help regulate various cellular processes in
the healing wound, particularly with respect to driving
fibroblast remodeling and scar formation.31,35,49 As
such, many models of wound healing incorporate
mechanical features into the modeling framework,
including some of the continuum-based models and
ABM already cited.8,74

In an early model by Tranquillo and Murray, the
role of fibroblast traction forces in wound closure was
explored by tracking fibroblast concentration, ECM
concentration, and ECM displacements.107 Here, the
cell traction forces, which propel the migrating
fibroblasts into the wound from the surrounding der-
mis, also induced local ECM reorganization and
deformation. The summed cellular-level local defor-
mations resulted in a successful prediction of tissue-
level macroscopic closure of the wound. Dallon and
colleagues also investigated the role of multiscale
mechanical interactions between cells, diffusible mo-
lecules, and ECM in directing the remodeling phase of
wound healing.22,23,74 These hybrid models indicate
that the initial organization of fibrin in the wound
controls the final organization of collagen in the scar.

Discrete cell–matrix mechanical interactions have
also been simulated using ABM.88,89 These models
provide a more detailed view of how cell traction forces
on individual fibers crosslinked into fiber networks can
induce dramatic local structural remodeling and facil-
itate long-distance mechanical communication with
other cells. These local changes in ECM structure are
also directed in part by simultaneous global restruc-
turing via multiscale mechanical interactions. This
behavior has been predicted by an image-based mul-
tiscale FE model that couples centimeter-scale tissue
properties to micrometer-scale ECM restructur-
ing.1,92,101 These models have been benchmarked
against in vitro time-lapse imaging experiments on
fibroblast remodeled fibrin gels and demonstrate that
the multiscale interplay between macroscopic domain
geometry, boundary conditions, and cell traction for-
ces drives short-term remodeling and the development
of fibrin fiber alignment, which could be deterministic
of the extent of scarring.24,25 An attractive feature of
these models is that deterministic and stochastic fiber-
based rules can be inserted into the modeling frame-
work so that concepts such as strain stabilized enzy-
matic matrix remodeling43 and gross tissue-level
failure42 can be explored as multiscale phenomena,
which may have relevance for understanding fibrosis
and wound strength, respectively.

An ABM representation of cells and their interac-
tions with the ECM may also be added to such models.
For example, in one study ABM was used to produce a
tissue-realistic model of a set of liver lobules. It
incorporated inflammation, fibrosis, and the impact of
these mechanisms of tissue stiffness as a macroscopic,
scale-spanning property of the liver.32 Coupling this
model with a more detailed view of multiscale
mechanical interactions can further illuminate the role
mechanics plays in tissue fibrosis, for example in the
case of liver resection described above. The healing
tissue’s mechanical properties and functionality are
directly dependent on the organization and alignment
of the tissue microstructure that proceeds from these
interactions. Thus, insights on how environmental
parameters of the wound site can be manipulated to
shift tissue remodeling from producing the collagen
alignment observed in fibrotic tissue towards the
organization observe in healthy tissue would be of
tremendous value.

Similar ideas on the role of multiscale mechanic
have been explored in the context of a thrombus for-
mation and fibrinolysis (see Xu et al. for a review122)
and angiogenesis and neovessel growth.33,108 Each of
these mechanisms play important roles in determine
the fate of the healing wound, and thus will require the
development of hybrid modeling strategies that incor-
porate both continuum and discrete representations of
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the salient temporal and spatial scales using physics to
predict the healing outcome. Finally, it should be no-
ted that several other mechanical models of wounds
have been developed that focus on larger scales, such
as pressure ulcers,97,125 and that there are many
opportunities to address these types of problems from
a multiscale perspective.

An understanding of the means by which cells
control and modify their behavior in response to their
physical environment is of critical importance in the
eventual engineering of precision interventions, since
the vast majority (if not all) of those interventions will
involve molecular factors intended to modulate the
signaling and regulatory pathways that govern cellular
behaviors. The multiscale modeling transformation
required at this point involves moving from the physics
of wound healing to the biology of wound healing. It is
here that the principle of multiscale abstraction takes
precedence, for while the underlying physical milieu of
the wound provides the environmental inputs and
outputs for the cellular actors that govern biology, the
accessibility of those physical measurements become
untenable in the clinical arena. Therefore, knowledge
about the physical–mechanical drivers of wound biol-
ogy developed and tested in experimental systems can
now be abstracted into input/output variables for the
cellular populations that actually heal the wound
within clinically relevant multiscale models. As noted
above, ABM are particularly well-suited for repre-
senting the aggregate behavior of cellular populations,
and their ability to encapsulate mechanistic knowledge
within their rules allows the instantiation of imputed
biological control structures. More importantly, the
multiscale, spatially explicit nature of ABM permits
the generation of clinically relevant and accessible
metrics related to cell population features and tissue-
level inflammatory mediator dynamics,41,66–68,76 as
well as macroscopic visual features of the healing
wound itself.97,125 These types of metrics are poten-
tially retrievable from human clinical wounds, includ-
ing sequentially without fundamentally disturbing the
wound, thereby allowing the personalized calibration
of such dynamic computational models. The promise
of this strategy can be seen in the ABM of pressure
ulcer generation and healing (the Pressure Ulcer ABM
[PUABM]).125 In this work, the spatial representation
of the developing decubitus ulcer in the ABM can be
matched to digital photographs of existing wounds,
and be used to predict the trajectory of such a wound’s
development and potential for healing (Fig. 4). The
development of an iterative process of tuning the
PUABM to known inflammatory responsiveness for a
particular patient, the generation of multiple simula-
tion trajectories, and repeated recalibration to visual
images and re-simulation for subsequent trajectories,

would help achieve the goals of predictive, personal-
ized multiscale dynamic modeling of the healing sur-
gical wound (Fig. 4).

PUTTING IT ALL TOGETHER:

TECHNOLOGICALLY ENHANCED PRECISION

AND PERSONALIZED SURGICAL CARE

We have described a series of currently disparate
multiscale modeling efforts in the arenas of surgical
planning, surgical imaging, and wound healing. These
studies share two main aspects: they are focused on
clinically relevant and related problems, and they share
a common general methodology. Without a doubt,
these efforts will continue on separate tracks, and may
lead to novel insights and therapies individually. As we
move forward, workflow, and instrumentation in to-
day’s operating theatres will be critical considerations
in the realization and translation of multiscale model-
enhanced therapies, similar to the many benchtop
discoveries which face considerable translational
obstacles. The workflow within operating rooms is
quite complex and represents a concert of events that
has competing goals. For example, the requirement of
aseptic technique alone requires fundamental com-
promises to what is typically considered efficient engi-
neering design. Going further, the ability to measure
patient-specific variables during surgery to control
multiscale model-enhanced therapies is considerable,
and the localization and accuracy of those measure-
ments is equally challenging. Only relatively recently
have investigators begun to look at the full concert of
activities within the operating room theatre and at-
tempted to quantify procedural medicine.60,83 Finally,
we must also realize that post-procedural biological
process and care are important considerations to
complete this picture. Wound healing models must
interrelate inflammation, cell migration, adhesion,
force generation and wound contraction, matrix syn-
thesis, angiogenesis, and tissue remodeling, and how
these processes are controlled/influenced by the me-
chano-chemical environment and coordinated across
multiple length and time scales in the healing wound.

It has long been recognized that surgical interven-
tions represent a paradox to Hippocrates’ charge to
‘‘do no harm;’’ surgery is exactly the infliction of tissue
damage (‘‘harm’’) with the promise that such harm
provides a shorter path towards the restoration of
patient health. As such, surgeons have long incorpo-
rated the cost-benefit analysis necessary for surgical
decision making into their training and practice.
However, the exponential increase in our understand-
ing of the multiple factors that can potentially affect
the consequences of a particular surgical intervention
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for a particular patient challenges the ability of sur-
geons to decide on an optimal course. We assert that a
rational response to this challenge requires the sys-
tematic integration of these recognized, inherently
multi-scale factors in the context of the surgical
workflow, including planning, technical factors and
biological response, to allow surgeons to evaluate and
compare multiple scenarios and trajectories. We rec-
ognize the asymmetric nature of our knowledge and
understanding of the mechanistic underpinnings of the
various scales involved in surgery (i.e., we will have
more confidence in our understanding of one level than
another). Indeed, the modular, multi-scale approach
we have proposed is intended to account for a persis-
tence of epistemological uncertainty. Our goal is to aid
in the recognition of how technological advances in
multi-scale modeling and simulation impacts the
delivery and consequences of surgical care, and rec-
ognize that the implementation of such a program

must intrinsically incorporate a process of iterative
refinement that integrates the future promise of greater
capability with the need to provide the best possible
care for our patients today.
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