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Abstract

Although there are considerable data on the use of mathemat-
ical modeling to describe tumor growth and response to therapy,
previous approaches are often not of the form that can be easily
applied to clinical data to generate testable predictions in indi-
vidual patients. Thus, there is a clear need to develop and apply
clinically relevant oncologic models that are amenable to avail-
able patient data and yet retain the most salient features of
response prediction. In this study we show how a biomechanical
model of tumor growth can be initialized and constrained by
serial patient-specific magnetic resonance imaging data, obtained
at two time points early in the course of therapy (before initiation
and following one cycle of therapy), to predict the response for
individual patients with breast cancer undergoing neoadjuvant
therapy.Usingourmechanics coupledmodeling approach,we are

able topredict, after thefirst cycle of therapy, breast cancer patients
that would eventually achieve a complete pathologic response
and those who would not, with receiver operating characteristic
area under the curve (AUC) of 0.87, sensitivity of 92%, and
specificity of 84%. Our approach significantly outperformed the
AUCs achieved by standard (i.e., not mechanically coupled)
reaction–diffusion predictive modeling (0.75), simple analysis
of the tumor cellularity estimated from imaging data (0.73), and
theResponse EvaluationCriteria in Solid Tumors (0.71). Thus,we
show the potential formathematicalmodel prediction for use as a
prognostic indicator of response to therapy. The work indicates
the considerable promise of image-driven biophysical modeling
for predictive frameworks within therapeutic applications. Cancer
Res; 75(22); 4697–707. �2015 AACR.

Introduction
Neoadjuvant therapy is often administered to patients with

locally advanced breast cancer in order to reduce the tumor
burden prior to surgery (10). Patients exhibiting pathologic
complete response (pCR; defined as no residual viable tumor on
histologic analysis in breast or nodes at the completion of ther-
apy) demonstrate significantly enhanced disease-free progres-
sion/survival; thus, this metric has emerged as the gold standard
for evaluating response to neoadjuvant therapy (11, 12). With
numerous neoadjuvant therapy regimens available, and many
more treatments emerging, reliable prediction of patients thatwill
go on to achieve pCR is highly significant. If accurate predictions
that the regimen is not effective can be made early in a patient's
treatment, the treatment could be changed to another, potentially
more effective approach, thereby avoidingunnecessary treatment-
related toxicities and providing a greater chance of achieving
pCR (13).

Assessing early treatment response with the goal of predicting
pCR remains a challenging clinical problem with no current
uniform approach. Because of their quantitative and noninvasive
nature, imaging-based biomarkers are attractive surrogate metrics
for response assessment. Several imaging-basedmetrics have been
investigated as biomarkers for predicting response in the neoad-
juvant setting (14–22), withmany efforts focusing onmonitoring
changes in morphologic characteristics. However, morphology-
based characteristics are downstream from the underlying treat-
ment-induced biologic response, and are, therefore, indicative
only of late stage response. More recent efforts have focused on
using functional parameters available fromquantitativemagnetic
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Major Findings
Using amathematical model based on basic tissuemechan-

ical properties and constrained by patient-specific imaging
data can provide predictions of outcome that outperform
conventional RECIST-based approaches.
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Quick Guide to Model Equations and Assumptions
Ourmodeling approachuses serial diffusionweightedmagnetic resonance imaging (DW-MRI) data of tumor cellularity obtained

before and after the first cycle of neoadjuvant therapy to generate spatial estimates of tumor cell proliferation/death in response to
therapy. Because of the timing of data acquisition, the estimated spatial proliferation term is based on measured changes in cell
density with treatment and therefore represents the net difference between cell growth and death. To separately estimate cell growth
and death rates independently, additional data would be required. We assume a constant antitumor effect in time during therapy,
and use our estimates of proliferation/death to run themodel forward in time to predict the residual tumor burden at the conclusion
of therapy. DW-MRI data sets are fit to Eq. A to return apparent diffusion coefficient (ADC) values on a voxel-by-voxel basis:

ADC ¼
P

i¼x;y;z ln S0=Sið Þ=bi
3

; ðAÞ

where i is the direction of diffusion weighting, bi is the amount of diffusion weighting imparted to the sample, S0 denotes the signal
intensity in the absence of diffusion gradients, and Si is the signal intensity in thepresence of thediffusion-sensitizing gradient.Using
Eq. B, the ADC data for voxels satisfying the dynamic contrast enhancedmagnetic resonance imaging (DCE-MRI) threshold criteria
of 80% enhancement (1) were transformed to an estimate of tumor cell number, N(�x, t):

N �x; tð Þ ¼ �
ADCw � ADC �x; tð Þ
ADCw � ADCmin

� �
; ðBÞ

where u is the carrying capacity (i.e., the total number of tumor cells that fit within a voxel), ADCw is the ADCof free water at 37�C (3
� 10�3 mm2/s), ADC(�x, t) is the ADC value at position (x,y) in image space, and ADCmin is the minimum ADC value measured
within the tumor for each patient, which corresponds to the voxel with the largest number of cells. The carrying capacity, u, was
calculated as the ratio of the imaging voxel volume to the assumed tumor cell volume, assuming spherical tumor cells with packing
density of 0.7405 (2) and a nominal tumor cell radius of 10 mm (tumor cell volume of 4189 mm3). Details of this approach are
provided in refs. 3 and 4.

The set of coupled, partial differential equations governing the tumor growth model is shown in Eqs. C–E:

qN �x; tð Þ
qt

¼ r � DrN �x; tð Þð Þþk �xð ÞN �x; tð Þ 1�N �x; tð Þ
�

� �
; ðCÞ

D ¼ Doe
�gsvm �x;tð Þ ; ðDÞ

r � Gru*þr G
1� 2n

r � u*ð Þ�lrN �x; tð Þ ¼ 0: ðEÞ

Equation C models the spatiotemporal rate of change of tumor cell number as the sum of random cell diffusion and logistic
growth. The apparent cell diffusion term,D, is linked to surrounding tissuemechanics via Eq.D,wheresvm is the vonMises stress, g is
an empirically derived coupling constant, and D0 is the diffusion of tumor cells in the absence of external stress (5). Eq. E defines
linear elastic, isotropic mechanical equilibrium subject to an external expansive force determined by changes in tumor cell number,
N(�x, t), and a coupling constant l. This equation governs the response of the displacement vector, u, to tumor cell growth.
G represents shear modulus, an intrinsic mechanical property of breast and tumor tissue.

In this model, a growing tumor imparts an external force on the surrounding tissue, which induces tissue deformation. This
"mass effect" is the phenomenon by which a growing tumor displaces surrounding tissue. The overall deformation serves to
increase the total mechanical distortion energy of the tissue, which depends on the local tissue mechanical properties of the
immediately surrounding tissue (breast fibroglandular tissue is typically reported to be twice as stiff as adipose tissue; ref. 6). As
tumors have been shown to be sensitive to their mechanical microenvironment, exhibiting reduced outward growth/expansion
in areas of high stress (7, 8), accumulated distortion energy serves to inhibit tumor invasiveness in our model through a
mechano-inhibitory reduction in the apparent tumor cell diffusion coefficient, D. More details of the model implementation
are provided in ref. 9.

We acquire DW-MRI data at two time points, prior to initiating therapy and after one cycle of therapy, and use Eq. A to calculate
ADC values. These serial ADC maps are then transformed to estimate the tumor cell density distribution at each time point using
Eq. B.We then fit these data to amodel of tumor growth/response, Eqs. C–E, to yield estimates of tumor cell proliferation/death and
diffusion. The estimatedparameters are thenused in conjunctionwith themodel topredict, byprojecting themodel forward in time,
the residual tumor burden at the conclusion of neoadjuvant therapy.

Major assumptions in our modeling approach include a reduction in dimensionality to two-dimensional analysis of central-
slice MR data, constant proliferation/diffusion values throughout neoadjuvant therapy following initial parameter estimation,
and the nature of the mechanoinhibitory effect on tumor cell diffusivity. We return to these important assumptions in the
Discussion.
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resonance imaging (MRI) techniques. For example, in the recent
multisite American College of Radiology Imaging Network
(ACRIN) 6657/Investigation of Serial Studies to Predict Your
Therapeutic Response with Imaging And moLecular Analysis
(I-SPY TRIAL) (22), Hylton and colleagues examined traditional
clinical assessment combined with imaging morphologic mea-
surements and contrast enhanced signal enhancement ratio
(SER). A four-predictor multivariate statistical model (clinical
size, longest diameter, volume, and SER) was shown to have
receiver operator characteristic (ROC) area under the curve (AUC)
of 0.73 for prediction of pCR at an early imaging time point, prior
to the second cycle of neoadjuvant therapy. A preliminary exten-
sion of this approach to combine quantitative region of interest
(ROI) and voxel-level analysis metrics from both dynamic con-
trast-enhanced (DCE) and diffusion-weighted (DW) MRI, efflux
rate transfer constant (kep), and apparent diffusion coefficient
(ADC), respectively, in a multivariate regression statistical anal-
ysis showed promise for achieving a higher predictive ability, with
AUC for pCR prediction of 0.87 at an early imaging time point,
after the first cycle of neoadjuvant therapy (17). These studies
extract a single parameter or sets of parameters from quantitative
imaging data analysis and perform a statistical correlation to
clinical outcomes. However, the physiologic interpretation of
statistical combinations of extracted parameters as they pertain
to pCR or reduction in tumor burden is often largely unknown.

One promising way to maximize the impact of quantitative
noninvasive imaging data is to use mathematical models of tumor
growth driven by early time point imaging data in order to
determine and predict therapeutic response. Major advances in
mathematical modeling of tumor growth have occurred, where
sophisticated simulations can be generated that recapitulate many
cellular and bulk-level aspects of tumor growth and treatment
response (23–25). Unfortunately, many such models are funda-
mentally limited in that they cannot readily incorporate clinical
data and require knowledge ofmany different parameters of tumor
growth/status that are either impractical or impossible to measure
clinically (e.g., immune response, extracellularmatrix status, genet-
ic mutations, etc.). As complex, multiparametric models often
require an extensive array of model parameters either obtained
from literature values or empirically derived, they cannot be
practically applied to individual patients. Thus, the field of math-
ematical oncology has been limited to more fundamental inves-
tigations and patient-specific predictive modeling has only seen
limited clinical application. There is a clear need to develop
clinically relevant oncological models that are amenable to avail-
ablepatient data and yet retain themost salient features of response
prediction (13).

We and others (4, 26–31) have recently suggested using quan-
titative in vivo imaging data todrivemathematicalmodels of tumor
growth for predicting response. Following parameterization, these
models can then be projected forward in space and time to predict
eventual tumor distribution outcomes on a patient-specific basis.
Rather than taking a classical reductionist approach where each
appropriate physiologic constituent tumor-associated process is
described mathematically and coupled into a comprehensive, yet
increasingly complex representation,wehave chosen to beginwith
amore traditional spatiotemporal growthmodel that capturesfirst-
order effects. In this approach, we use patient-specific quantitative
imaging data in two ways: (i) to fit the model-associated para-
meters and (ii) to guide decisionswhether to add complexity to the
model based not purely on the existence of more sophisticated

tumor-dynamic processes but rather how well incorporation can
match patient outcome as determined at the time of surgery. We
posit that systematically incorporating (additional) appropriate
complexity to maximize clinical prediction, rather than construct-
ing from the myriad of reduced fundamental interactions, has
considerable merit for the ultimate realization of practical math-
ematical oncology in the clinical setting.

Recently, we have developed and shown preliminary results for
a biomechanical modeling framework where tumor response is
parameterized using data fromboth before and after the first cycle
of neoadjuvant therapy and themodel is driven forward in time to
predict tumor burden at the time of surgery (9). The model is
based on the standard reaction–diffusion equation of tumor
growth/response, with terms to describe tumor cell diffusion and
proliferation; in our formulation, the model is initialized and
constrained using the serial imaging data. We extend this basic
macroscopic tumor model to incorporate a mechano-inhibitory
effect of surrounding tissue stroma on tumor cell diffusivity/
motility. In this study, we build upon the previous efforts and
apply patient-specific predictive modeling, constrained by quan-
titative imaging data, to a group of patients exhibiting a varying
degree of response to therapy. We adopt a patient-scale spatio-
temporal tumor growth model framework and allow readily
available clinical imaging data to guide the determination of
model parameters in a best-fit sense. The goal of this study is to
determine if a patient-specific mechanically coupled reaction–
diffusion model of tumor response to therapy can be used as a
predictive indicator of pCR.

Materials and Methods
Subject description

An existing database of patients with breast cancer receiving
quantitative MRI before (t1), after one cycle (t2), and at the
conclusion (t3) of neoadjuvant therapy from a previous study
(17)was utilized for this retrospective analysis. Briefly, 33patients
with stage II/III breast cancer who underwent neoadjuvant ther-
apy as a component of their clinical care were selected for this
study. Inclusion criteria were as follows: no prior systemic ther-
apies for breast cancer and histologically documented invasive
carcinoma of the breast with a sufficient risk of recurrence, based
on pretreatment clinical parameters of size, grade, age, and nodal
status, to warrant the use of neoadjuvant therapy. Neoadjuvant
therapy was administered at the discretion of the treating medical
oncologist based on pretreatment clinical parameters.

Tumor typewas classifiedbasedonexpressionstatus for estrogen
receptor (ER), progesterone receptor (PR), and human epidermal
growth factor 2 (HER2) and categorized as ER and/or PR positive,
HER2 positive, or triple-negative (ER, PR, and HER2 negative);
see Table 1. Most patients with HER2 positive tumors received
paclitaxel, carboplatin, and trastuzumab every 3 weeks for six
cycles. Most patients with ER and/or PR positive tumors received
doxorubicin and cyclophosphamide every 2 weeks for four cycles
followed by 12 weekly cycles of paclitaxel. Most patients with
triple-negative tumors participated in an ongoing clinical trial and
receivedweekly cisplatin andpaclitaxelwithorwithout everolimus
for 12weeks. Response statuswas determined at the timeof surgery
by a pathologist as either pCR, which is defined as no residual
viable tumor on histologic analysis of the breast or nodes at the
completion of neoadjuvant therapy, or non-pCR,which designates
any residual invasive tumor on histologic analysis in breast or
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nodes at the completion of neoadjuvant therapy. Participating
patients provided informed written consent to an Institutional
ReviewBoardapproved study. Formore informationon thepatient
population, the reader is referred to Li and colleagues (17).

Data acquisition
MRI was performed using a Philips 3T Achieva MR scanner

(Philips Healthcare). A four-channel receive double-breast coil
was used for 20 patients (Invivo), and a 16-channel double-breast
coil was used for 13 patients. THRIVE (T1 high-resolution isotro-
pic volume examination) anatomical datawere acquired via a 400
� 400� 129 acquisition matrix over a 20 cm� 20 cm� 12.9 cm
transversefield of view (FOV)with one signal acquisition, andTR/
TE/a ¼ 6.43 ms/3.4 ms/10�. Dynamic contrast enhanced MRI
(DCE-MRI) utilized an acquisitionmatrix of 192� 192� 20 (full
breast) over a sagittal square FOV (22 cm � 22 cm) with slice
thickness of 5mm,one signal acquisition, and a SENSE factor of 2.
Dynamic scans used a flip angle of 20�. Each dynamic set was
collected in 16 s at 25 time points. A catheter placed within an
antecubital vein delivered 0.1 mmol/kg (9–15mL, depending on
patient weight) of gadopentetate dimeglumine, Gd-DTPA (Mag-
nevist) at 2 mL/s, followed by a saline flush, via a power injector
(Medrad) after the acquisition of three baseline dynamic scans.
DW-MRI was acquired with a single-shot spin echo (SE) echo
planar imaging sequence in three orthogonal diffusion encoding
directions, with b-values of 0 and 500 or 600 s/mm2, FOV of 19.2
cm� 19.2 cm, and an acquisitionmatrix of 96� 96 reconstructed
to 144 � 144. SENSE parallel imaging (acceleration factor ¼ 2)

and spectrally selective adiabatic inversion recovery fat saturation
were implemented to reduce image artifacts. Subjects were breath-
ing freely with no gating applied. The DW-MRIs consisted of
12 sagittal slices with slice thickness of 5 mm (no slice gap),
TR¼ 3080 ms, TE¼ "shortest" (41 or 60 ms), D¼ 19.8 or 29 ms,
and d¼ 10.7 or 21ms, NSA¼ 10. The total scan time for THRIVE,
DCE-MRI, and DW-MRI data was approximately 2.7, 6.7, and 4.7
minutes, respectively.

Data analysis
A mechanically coupled reaction diffusion model of tumor

response to therapy that used theMRI data obtained at time points
t1 and t2 was used to predict tumor burden at the conclusion of
neoadjuvant therapy. Although a brief description follows, the
interested reader is referred toWeis and colleagues for details of the
modeling methodology (9). Briefly, THRIVE, DCE-MRI, and DW-
MRI data were longitudinally coregistered (32) across all time
points. Central-slice images through the midpoint of the tumor
were extracted from MRI volumes for further analysis. DCE-MRI
data were used to define a tumor region-of-interest for voxels
satisfying 80% signal enhancement threshold (9) between the
precontrast images (i.e., the average signal intensity from DCE-
MRI time points 1–3) and the postcontrast images (i.e., the average
signal intensity from DCE-MRI time points 4–25). Voxels that
showed a signal intensity increase more than the 80% threshold
between the pre- and postcontrast data were defined as tumor (1).
ADC maps were calculated from DW-MRI datasets using Eq. A

Table 1. Patient and tumor characteristics of the study population

Patient no.
Age

(years) Tumor type
Tumor
grade

Pathologic
response

Days between
t1 and t2 Therapeutic regimen

1 50 ERþ and/or PRþ 3 Non-pCR 14 AC!Taxol
2 52 HER2þ 3 Non-pCR 18 Taxotere
3 60 HER2þ 1 Non-pCR 13 AC!Taxol þ concurent trastuzumab
4 36 Triple negative 2 Non-pCR 7 Taxol þ cisplatin � everolimus
5 48 ERþ and/or PRþ 1 Non-pCR 14 Dose-dense AC!Taxol
6 43 ERþ and/or PRþ 2 Non-pCR 14 Dose-dense AC!Taxol
7 59 ERþ and/or PRþ 2 Non-pCR 28 Dose-dense AC!Taxol
8 53 Triple negative 2 Non-pCR 9 Taxol þ cisplatin � everolimus
9 35 HER2þ 3 Non-pCR 25 Trastuzumab þ carboplatin þ ixabepilone
10 28 Triple negative 3 Non-pCR 9 Taxol þ cisplatin � everolimus
11 33 ERþ and/or PRþ 3 Non-pCR 9 AC!Taxol
12 39 ERþ and/or PRþ 1 Non-pCR 13 AC!Taxol
13 57 Triple negative 3 Non-pCR 13 AC!Taxol
14 67 HER2þ 3 Non-pCR 11 Dose-dense AC!Taxol
15 45 Triple negative 3 Non-pCR 17 Taxol þ cisplatin � everolimus
16 46 HER2þ 3 Non-pCR 19 Taxotere þ carboplatin þ Herceptin
17 47 ERþ and/or PRþ 1 Non-pCR 17 Taxotere!AC
18 36 HER2þ 2 Non-pCR 15 AC!Taxol
19 43 HER2þ 3 Non-pCR 7 Cisplatin þ Taxol � everolimus
20 55 ERþ and/or PRþ 2 Non-pCR 24 AC!Taxol
21 58 ERþ and/or PRþ 2 Non-pCR 7 Cisplatin þ Taxol � everolimus
22 53 HER2þ 3 pCR 21 AC!concurent Taxol þ trastuzumab
23 46 ERþ and/or PRþ 3 pCR 13 Taxotere!AC
24 46 HER2þ 2 pCR 24 AC!concurent Taxol þ trastuzumab
25 33 Triple negative 3 pCR 15 AC!weekly Taxol
26 39 HER2þ 2 pCR 14 Trastuzumab þ Lapatinib
27 46 ERþ and/or PRþ 3 pCR 13 AC!Taxol
28 42 Triple negative 3 pCR 15 Taxol þ cisplatin � everolimus
29 34 Triple negative 3 pCR 16 Taxotere!AC
30 44 HER2þ 3 pCR 7 Trastuzumab þ Lapatinib
31 37 Triple negative 3 pCR 7 Taxol þ cisplatin � everolimus
32 39 Triple negative 3 pCR 14 AC!Taxol
33 48 HER2þ 3 pCR 29 Taxotere þ carboplatin þ Herceptin
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and transformed to estimates of tumor cell number using Eq. B
(3, 4). A two-dimensional, mechanically coupled reaction diffu-
sion tumor model, Eqs. C–E, was used to describe tumor cell
logistic growth/decay anddiffusionbasedon the central slice of the
MR data. This model incorporates a tumor growth "mass effect"
where accumulatedmechanical distortion energy has an inhibitory
effect on tumor cell invasiveness (5). Tumor cellularity at baseline
(t1) and after one cycle of neoadjuvant therapy (t2) was used to
estimate the spatially varyingproliferation rates and a global tumor
cell diffusion parameter by a conjugate-gradient nonlinear opti-
mization. Following parameter fitting, the model was projected
forward in time (using the estimated proliferation and tumor
cell diffusion parameters) to the final time point at the conclusion
of neoadjuvant therapy (t3), and the tumor cellularity was calcu-
lated as a model prediction. A schematic of the model parameter
estimation and prediction framework is shown in Fig. 1. In
addition, the cellularity maps for each patient at each time point
for both the experimentally observed (t1 and t2) and model
predicted (t3) cellularity data were summed to yield an estimate
of the total tumor cellularity. To eliminate volumetric bias, these
numbers are expressed as a percent change relative to a reference
time point; for example, a percent change in cellularity from t1 to t2
is defined as 100(t2 � t1)/t1.

Statistical analysis
Statistical analysis between non-pCR and pCR patient groups

for percent changes in each analysis metric was performed using
the Wilcoxon test. Statistical significance was set at P < 0.05.

Receiver operating characteristic (ROC) curves were generated
for prediction of pCR for both the mechanically coupled model
and a standard reaction–diffusion model. ROC curves were ana-
lyzed and area under the curve (AUC) and 95% confidence
intervals (CI) were generated for each model. The optimal cutoff
was selected utilizing the Youden index, which maximizes the
difference between the true positive rate and the false positive rate
(33). Data were analyzed using GraphPad Prism (GraphPad
Software).

Results
Clinical patient data

Thirty-three patients (median age, 46; range, 28–67) completed
scanning at t1 and at t2. Themedian time between t1 and t2 was 14
days (range, 7–29 days). Table 1 summarizes the salient features
of the patient data set, including their tumor type and pathologic
response. After neoadjuvant therapy, 12 of 33 patients (36%)
were defined as having achieved pCR.

Representative imaging and modeling data
Imaging data and model predictions for tumors from two

representative patients are shown in Figs. 2 and 3. Fig. 2 displays
data from a patient that achieved pCR at the conclusion of
neoadjuvant therapy that was scanned before, after the first cycle,
and at the conclusion of neoadjuvant therapy in the form of
anatomical images (Fig. 2A–C), ADC (from DW-MRI) values
superimposed on the averaged postcontrast images (Fig. 2D–

F), and the estimated cellularity (using Eq. B) as a fraction of the
carrying capacity (Fig. 2G–I). Themechanically coupled reaction–
diffusion model is used to reconstruct parameter estimates of
global diffusion and spatial proliferation rate (Fig. 2J) based on
observed cellularity data from the baseline and post-one cycle

timepoints. Themodel is then evaluated forward in timebasedon
the estimated parameters and observed cellularity data in order to
predict cellularity at the conclusion of neoadjuvant therapy
(Fig. 2K).Model prediction strongly agreeswith data observations
from imaging and pathology of complete response to therapy.
Qualitatively, the estimated cellularity map is shown to exhibit a
significant trend of decrease between t1 and t2. The prediction of
the mechanically coupled reaction–diffusion model is seen to
continue the trend of decreasing cellularity at t3, with a prediction
of near complete response. Figure 3 displays similar data for a
representative patient with residual disease at the time of surgery

Figure 1.
Schema of patient-specific mathematical modeling response predication
framework. ADCmaps at baseline and after one cycle of neoadjuvant therapy
are converted to tumor cellularity. The mathematical model is then used to
reconstruct parameter estimates of cellular proliferation and diffusion
between these two time points. The model is then evaluated forward in time
to predict the pathologic response at the time of surgery.
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(i.e., a non-pCR). The estimated cellularity map for this patient
exhibits an opposite trend from that of the pCR patient, with
increasing estimated cellularity observations from t1 to t2. The
mechanically coupled reaction–diffusion model prediction is
then shown to predict a lack of response to therapy with an
increase in cellularity at t3. Compared to observed cellularity data,
the model overpredicts cellularity at the final time point. Com-
bined, representative images and associated estimated parameter

maps of proliferation rates depict overall prediction of regression
of disease for a responding patient and significant progression of
disease for a nonresponding patient.

Predictive performance of analysis metrics
Table 2 reports theoverall performance for predictingpCR from

a group of 33 patients exhibiting a varying degree of responsive-
ness to neoadjuvant therapy for analysis metrics based on RECIST

Figure 2.
The model prediction for one
representative patient achieving pCR.
Anatomical THRIVE images (A–C) and
baselineDCEwith ADCoverlays (D–F)
are shown for baseline (left column),
after one cycle (middle column), and
at the conclusion of neoadjuvant
therapy (right column). Tumor
cellularity is estimated (G–I) and used
in conjunction with the mechanics
coupled reaction–diffusion model to
estimate key model parameters of
tumor cell diffusion and proliferation
(J) between the baseline and early
imaging time points. Parameter
estimates are then used in the model
to predict tumor cellularity at the time
of surgery (K) and compared to
observation (I). The mechanics
coupled reaction–diffusion model
predicts a significant, near complete,
response to neoadjuvant therapy,
reflected by a significant decrease in
tumor burden, in agreement of
pathological determination of pCR at
the time of surgery.
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(i.e., measurement of tumor longest dimension), observed cellu-
larity (based on ADC values from DW-MRI), reaction–diffusion
model prediction, and mechanics coupled reaction–diffusion
model prediction. Area under the receiver operating characteristic
curve, sensitivity, and specificity are reported for each metric,
along with 95% confidence intervals. Figure 4 depicts the average
value, 95% confidence interval as indicated by error bars, and P

value for comparisons between non-pCR and pCR tumors for
each analysis metric, along with ROC curves.

Simple analysis of differences in tumor morphologic and
cellularity observations before and after the first cycle of neoad-
juvant therapy exhibit amodest ability to predict pCR status at the
conclusion of therapy. The change in tumor longest dimension
between imaging time points t1 and t2, based on RECIST criteria,

Figure 3.
The model prediction for one
representative patient not achieving
pCR. Anatomical THRIVE images
(A–C) and baseline DCE with ADC
overlays (D–F) are shown for baseline
(left column), after one cycle (middle
column), and at the conclusion of
neoadjuvant therapy (right column).
Tumor cellularity is estimated (G–I)
and used in conjunction with the
mechanics coupled reaction–diffusion
model to estimate key model
parameters of tumor cell diffusion and
proliferation (J) between the baseline
and early imaging time points.
Parameter estimates are then used in
the model to predict tumor cellularity
at the time of surgery (K) and
compared to observation (I). The
mechanics coupled reaction–diffusion
model predicts a lack of response to
neoadjuvant therapy, reflected by a
significant increase in tumor burden,
in agreement of pathologic
determination of non-pCR at the time
of surgery.
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reflect an AUC and sensitivity of 0.71% and 92%, respectively;
however, RECIST exhibits a poor specificity of 53% in this study.
Similarly, the estimated tumor cellularity based on ADC values
from DW-MRI is shown to have modest predictive performance,
with ROC AUC and sensitivity of 0.73% and 100%, respectively,
and poor specificity of 47%.

Using image-based mathematical modeling in order to predict
tumor response to therapy is seen to improve pCR predictive
performance. Reaction–diffusion model predictions of tumor
cellularity at the conclusion of neoadjuvant therapy, expressed
as a percent change from cellularity after one cycle of neoadjuvant
therapy, exhibit an AUC, sensitivity, and specificity of 0.75%,
100%, and 55%, respectively. Here, model predictions are
expressed as a percent change to eliminate volumetric bias from
prediction results. Incorporating mechanical coupling into the
reaction–diffusion model significantly improves pCR predictive
performance, achieving an ROC AUC, sensitivity, and specificity
of 0.87%, 92%, and 84%, respectively.

Discussion
We previously introduced a novel mathematical framework

for predictive modeling that is centered on integrating quantita-
tive in vivo imaging data with biomechanical models of tumor
growth (9). This approach represents a significant departure from
existing paradigms in mathematical oncology modeling by using
patient-specific data to parameterize a model that can then be
used to make a prediction at a future time point that can then be
checked directly against patient response. In this work, we retro-
spectively apply this framework to a database of patients exhibit-
ing varying degrees of responsiveness to neoadjuvant therapy. We
compared model predictions of responsiveness to pathologic
response assessment at the time of surgery. Our results demon-
strate a significant predictive ability of our mechanics coupled
modeling approach in identifying patients that would go on to
achieve pCR, as indicated by a strong AUCof 0.87.Ourmechanics
coupled reaction–diffusion modeling approach significantly out-
performed other, commonly used metrics, including analysis of
tumor longest dimension (i.e., RECIST), early-cycle changes in
DW-MRI (used as empirical input data to the models), and
standard reaction–diffusion predictivemodeling. Comparedwith
the standard reaction–diffusionmodel, themechanically coupled
model exhibits significantly improved prediction specificity,
reflected by improved prediction of true non-pCR patients
(55% vs. 84%, respectively). Further analysis of the patients for
which mechanically coupled modeling improved predictability
over standard modeling (data not shown), failed to reveal corre-
lations with any other known factor (including breast density,
patient age, and breast cancer subtype, among others).

Our results also confirm previous reports of the use of early
cycle DW-MRI ADC data alone in predicting neoadjuvant therapy
response (34–39). Trends of decreasing/increasing cellularity are

clearly visible between theobserved cellularity before andafter the
first cycle of therapy, as shown in Figs. 2 and 3, with predictive
AUC of 0.73. However, analysis of these data is seen to exhibit
limited specificity, as has been previously demonstrated (35, 40).

The results from this study are promising, but we recognize that
there are several limitations in our current approach. First, we
estimate the key model parameters (i.e., proliferation and tumor
cell diffusion) fromdata obtained before and after thefirst cycle of
neoadjuvant therapy; this is an admittedly (temporally) sparse set
of measurements for attempting to capture the dynamics through
a model fitting procedure. In addition, we have assumed that
reconstructed model parameters do not vary in time; this is
essentially equivalent to assuming a constant antitumor effect
during neoadjuvant therapy treatment and this is clearly a sim-
plification of the response of tumor cells to neoadjuvant therapy.
True response undoubtedly exhibits strong nonlinear temporal
response to therapy; indeed, the evolution of a resistant pheno-
type in the presence of continued chemotherapeutic administra-
tion speaks directly to a nonlinear effect that is not currently taken
into account in our approach.However, it is clinically infeasible to
acquire sufficient imaging time points throughout the course of
therapy to accurately predict the temporal changes in proliferation
rates and tumor cell diffusion with the current model. We are
currently exploring acquisition of one additional early imaging
time point, collected after two cycles of therapy, in order to better
understand the temporal evolution of parameters and more
accurate prediction of response.

A second limitation, as also noted in Li and colleagues (17), is
the variation in the breast cancer subtype, therapeutic regimen
(including the specific therapeutic agent and dosing frequency),
and number of days elapsed between imaging time points, t1 and
t2. Thus, it is possible that the modeling approach could be
influenced by the underlying dynamics and biology of specific
breast cancer subtypes as well as the particular therapy regimen
utilized. This source of uncertainty due to patient-specific biologic
variability is particularly difficult to control, due to the nature of
clinical research data acquisition constraints. It will be important,
as a greater number of patients are analyzed with this method-
ology, to statistically analyze themodel relative to cancer subtype,
therapeutic regimen, and imaging time point delay to determine
these effects. In addition, future work towardmodel validation in
preclinical and in vitro systems will facilitate greater experimental
control and provide further understanding toward model robust-
ness in the presence of such biological variability. Of course, the
encouraging preliminary results achieved with our modeling
approach in spite of this variability points to the importance,
and potential generalizability, of using models based on patient-
specific information.

Another limitation is that our current approach utilizes central-
slice MR data to initialize and constrain two-dimensional math-
ematical models, rather than using full image volumes and three-
dimensional models. We do note, however, that we are utilizing

Table 2. Table of ROC analysis parameters for RECIST, cellularity (input data to model), reaction–diffusion model, and mechanics coupled model

Analysis metric AUC (95% CI) Sensitivity % (95% CI) Specificity % (95% CI)

RECIST % change t1 to t2 0.71 (0.53–0.90) 92 (62–100) 53 (29–76)
Cellularity % change t1 to t2 0.73 (0.55–0.91) 100 (74–100) 47 (24–71)
Reaction diffusion model % change t2 to t3 0.75 (0.58–0.92) 100 (75–100) 55 (32–77)
Mechanics coupled model % change t2 to t3 0.87 (0.74–1.0) 92 (62–100) 84 (60–97)

NOTE: '% change t1 to t2' denotes observed cellularity or RECIST measures at the post one cycle time point expressed as a percent change to the initial time point.
Similarly, '% change t2 to t3' denotes model predicted cellularity at the final time point expressed as a percent change to the post one cycle time point.
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somewhat thick slices, 5 mm, due to the spatio-temporal acqui-
sition requirements of the trial for which the MRI data were
originally acquired. Extension of our approach to three-dimen-
sional analysis is straightforward, and we would expect an
enhanced predictive capability through the use of additional
volumetric data. However, the current computational demands
for iterative reconstruction of volumetric parameter maps

significantly limit the feasibility of extending our approach to
three-dimensional analysis for an entire patient database at this
time. Currently, efforts are underway to refine our approach
by exploring significant computational speed enhancements
though the use of high-performance computing cluster and/or
graphics processing unit processing in addition to algorithmic
enhancements.

Figure 4.
Tumors from patients either achieving pCR or not were assessed as a percent change from t1 to t2 by RECIST criteria (A) and observed cellularity (B) and as a percent
change from t2 to predicted t3 by reaction diffusion model prediction (C) and mechanics coupled model prediction (D). Data are expressed as mean
with 95% confidence intervals, with P values indicated for statistically significant differences between groups. ROC curves for all analysis metrics are shown
along with the dashed line of identity (E).
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The mechanically coupled reaction diffusion model adds two
additional degrees of freedom to each node in the finite element
mesh (in addition to the existing degree of freedom for tumor cell
number) due to the need for calculation of a displacement
solution. This added complexity increases the computation time
for the forward model by approximately 40%, without paralle-
lization of matrix assembly and/or matrix inversion. In addition,
the impact on total wall-clock time is relatively limited as the
entire mechanically coupled reaction diffusion model prediction
approach typically requires only 1 to 2 hours for each patient.

At present, ourmechanics coupled approach relies on the use of
literature values for the elastic properties of the breast (9). In
addition, our approach currently ignores other important biologic
factors beyond simple growth and mechanoinhibitory diffusion.
Other ongoing efforts are designed to address these limitations
through incorporation of additional quantitative patient-specific
imaging methodologies to inform more complex models (13).

Given these limitations, we note that our approach compares
very favorably, with similar AUC, to previous multimodal statis-
tical regression analysis of this same patient population in pre-
viouswork that combines ROI and voxel-level DW-MRI andDCE-
MRI analysis (17). Importantly, our approach currently includes
data from only one quantitative imaging source, DW-MRI. Con-
trast-enhanced MRI data are used in this work only to identify
tumor ROI, with no sensitivity to pharmacokinetic parameters fit
fromdynamic DCE-MRI data. It is therefore very encouraging that
our model-based analysis framework, based on unimodal and
two-dimensional central-slice input data, achieves similar predic-
tive results to multimodal full-volume analysis.

In summary, we have demonstrated a model-based analysis
method that provides predictions of therapeutic response using
patient-specific early time point imaging data within the course of
therapy. The framework provides good agreement with patho-
logic response observations as demonstrated by a strong predic-
tive ability. The results suggest that an imaging-driven biophysi-
cally constrained modeling approach that combines reaction–
diffusion with mechanical effects is a predictive indicator of
response to therapy. Future work will seek to further enhance
the predictive capacity of our approach by expanding the math-

ematical model of tumor response to include model terms that
can be populated with other sources of quantitative patient-
specific noninvasive imaging, including DCE-MRI, fludeoxyglu-
cose positron emission tomography (FDG-PET), and magnetic
resonance elastography (MRE).
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