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Active surveillance (AS) is a feasible management option for low to intermediate-risk prostate cancer 

(PCa), which represents almost 70% of newly-diagnosed cases. During AS, patients have their tumor 

monitored via multiparametric magnetic resonance imaging (mpMRI), serum prostate-specific antigen (PSA, 

an ubiquitous blood biomarker of PCa), and biopsies [1]. If any of these data reveal tumor progression towards 

an increased clinical risk, the patient is prescribed a curative treatment. However, clinical decision-making in 

AS is usually guided by population-based protocols that do not account for the unique, heterogenous nature 

of each patient’s tumor. This limitation complicates the personalization of monitoring plans and the early 

detection of tumor progression, which constitute two unresolved problems in AS. To address these issues, we 

propose to forecast PCa growth using personalized simulations of an mpMRI-informed mechanistic model. 

We describe PCa growth via the dynamics of tumor cell density with a diffusion operator, representing 

tumor cell mobility, and a logistic reaction term, which accounts for tumor cell proliferation [2]. The prostate 

anatomy is segmented on T2-weighted MRI data, while we delineate PCa and estimate tumor cell density 

using standard apparent diffusion coefficient (ADC) maps from diffusion-weighted MRI data [1,2]. The model 

is initialized with data from a first mpMRI scan. A second mpMRI scan allows for the identification of patient-

specific model parameters by using a nonlinear least-squares method, which aims at reducing the mismatch 

between ADC and model estimates of tumor cell density [2]. For validation, we further compare these two 

estimates of tumor cell density at a third mpMRI scan date. We use isogeometric analysis to perform computer 

simulations of our model [1,2]. To facilitate modelling, the mpMRI datasets from each patient are co-

registered with a biomechanical elastic method that aligns the prostate segmentations [3].  

Our preliminary results on a cohort of seven patients show a median concordance correlation coefficient 

(CCC) and Dice score (DSC) of 0.79 and 0.52, respectively, for the spatial fit of tumor cell density during 

calibration. For model validation, the corresponding median CCC and DSC are 0.65 and 0.46, respectively. 

Thus, while further improvement and testing in larger cohorts are required, we believe that our results are 

promising for the potential use of our methods to personalize AS protocols and predict tumor progression. 
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