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Abstract

Purpose Tissue compression during ultrasound imaging
leads to error in the location and geometry of subsurface
targets during soft tissue interventions. We present a novel
compression correction method, which models a generic
block of tissue and its subsurface tissue displacements result-
ing from application of a probe to the tissue surface. The
advantages of the new method are that it can be realized
independent of preoperative imaging data and is capable
of near-video framerate compression compensation for real-
time guidance.

Methods The block model is calibrated to the tip of any
tracked ultrasound probe. Intraoperative digitization of the
tissue surface is used to measure the depth of compres-
sion and provide boundary conditions to the biomechanical
model of the tissue. The tissue displacement field solution
of the model is inverted to nonrigidly transform the ultra-
sound images to an estimation of the tissue geometry prior
to compression. This method was compared to a previously
developed method using a patient-specific model and within
the context of simulation, phantom, and clinical data.
Results Experimental results with gel phantoms demon-
strated that the proposed generic method reduced the mock
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tumor margin modified Hausdorff distance (MHD) from
5.0 £ 1.6to 2.1 & 0.7 mm and reduced mock tumor centroid
alignment error from 7.6 & 2.6t02.6 &= 1.1 mm. The method
was applied to a clinical case and reduced the in vivo tumor
margin MHD error from 5.4 £ 0.1 t02.9 & 0.1 mm, and the
centroid alignment error from 7.2 4+ 0.2 to 3.8 £ 0.4 mm.

Conclusions The correction method was found to effec-
tively improve alignment of ultrasound and tomographic
images and was more efficient compared to a previously pro-
posed correction.

Keywords Ultrasound - Registration - Compression -
Finite element method - Biomechanics

Introduction

Ultrasound is ubiquitous as an interventional imaging modal-
ity and is commonly used to assess the location and geometry
of disease intraoperatively. An inherent problem with this
role is the shape distortion of visualized tissue structures
introduced by the probe pressure exerted. It is widely recog-
nized that relatively large tissue compression can occur in soft
tissue anatomy, e.g., the liver or breast. As a result, compres-
sion can obfuscate geometrical and locational measurements
of subsurface targets such as tumors. This is particularly a
problem for image-guided interventions, which rely upon
tracked ultrasound to provide intraoperative spatial measure-
ments of structures taken during an intervention and then
compared to their co-registered preoperative imaging data
counterparts. Nonrigid tissue compression is a primary cause
of misalignment and shape distortion with these other sources
of information. As image-guided navigation strategies in soft
tissue environments continue to be developed, methods of
correcting the tissue deformation from routine ultrasound
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imaging are necessary in order to ensure that all of these data
are in a consistent spatial arrangement.

There are several methods described in the literature for
performing compression correction. A common approach
is to utilize the intensity information in the ultrasound
images to perform a nonrigid intensity-based registration
with positional tracking of compressed images over a range
of compression states [1,2]. One drawback of this method is
that it requires a stream of ultrasound images, and intensity-
based registration for ultrasound is a challenging task in
practice. For example, in [1], they demonstrated a method
to correct for compression using correlation of a stream of
radio frequency (RF) or amplitude frames, and although the
method performed well in a phantom dataset, the authors
noted its reliance on good image quality as well as the pos-
sibility of correction drift when compression estimates are
accumulated across a large sequence of images. Another
method of correction is to use a mechanical model of the tis-
sue in order to estimate the subsurface tissue displacements
caused by the interaction of the probe with the tissue surface.
One group proposed using a force measurement appara-
tus to provide force boundary conditions to a tissue model
[3,4], although force boundary conditions require some prior
estimate of absolute material properties for the tissue. We
recently proposed an alternative method which utilizes a
biomechanical model-based correction which is driven by
displacement boundary conditions provided by the position
of a tracked ultrasound probe within a co-registered patient-
specific organ surface from preoperative tomograms [5]. This
method was shown to reduce ultrasound compressional error
of nearly 1 cm to approximately 2—-3 mm.

There is a subset of image-guided procedures for which
preoperative tomographic image volumes are not commonly
acquired, or the volumes are acquired with the patient in
a much different presentation than the operative state. This
can be the case in open liver surgery, for example, in which
there is often significant manipulation of the organ by the
surgeon leading up to the surgical presentation of the tissue.
Therefore, a method of compression compensation that does
not rely on a preoperative model would be more valuable. In
addition, it is often the case that subsurface structures may be
necessary for enhancing image-to-physical registration, and
itis easily seen that there are implications if subsurface defor-
mation is not addressed in registration frameworks. Provided
with at least some form of intraoperative measurement of
compression, subsurface structures could be uncompressed
to give true shapes in physical space. These true subsur-
face shapes could then be used in combination with surface
information to compute a combined image-to-physical regis-
tration. An example of this would be a registration framework
that used a surface point cloud from a laser measurement
device and subsurface structures like a tumor [6] or perhaps
blood vessels [7]. With these possibilities in mind, our initial
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goal was to create a compression correction method, which
utilizes a generic approach that is independent of tomo-
graphic imaging and requires no registration to a preoperative
surface. This correction is intended to produce ultrasound
images in which the tissue structures can be rendered in their
uncompressed biomechanical state so as to provide more
accurate shape measurements or as a source of intraoperative
data for geometric comparisons. The second goal was to com-
pare the new method with the method previously described
in [5] by deployment in phantoms and clinical data.

Methods

The compression compensation method is one step within
a pipeline for image guidance using tracked ultrasound. A
brief description of the pipeline is displayed in Fig. 1 to
provide context for the new method and to indicate how it
differs from the previous correction method. In summary, the
input data to the generic method are the original ultrasound
images showing compressed tissue, a calibrated and tracked
ultrasound probe, a surface from some other intraoperatively
tracked instrumentation, and a biomechanical tissue model
that is used to warp the ultrasound data to show the tissue
in an uncompressed state. The previously reported patient-
specific method also requires an additional registration to
preoperative imaging to perform this correction. Each of the
correction steps for workflow in Fig. 1 is described in more
detail below.

Preoperative imaging and patient model

Image-guided interventions often begin with acquisition of
high-resolution CT or MR image volumes prior to the pro-
cedure. The patient-specific compression correction method
utilized a patient model created from these images. However,
these data are unnecessary for the proposed generic method.
The specific details of the model creation for the phantom and
clinical studies are described later in the respective experi-
mental sections.

Intraoperative data collection

The intraoperative data consist of ultrasound images, which
are captured onto a host computer, along with position and
orientation information from an optically tracked target that
is attached to the ultrasound probe. After a calibration proce-
dure (described in the phantom experiments), the pose of the
ultrasound images is therefore known in the coordinate sys-
tem of the tracking device. In addition, other tracked devices
are present which also provide physical measurements in the
same coordinate frame, such as a tracked stylus or laser range
finder devices.
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Fig. 1 Overview of the clinical workflow for the proposed method.
The ultrasound data are calibrated to a tracked target attached to the
probe (a), which is tracked intraoperatively (b) with a tracking system.
A surface digitization tool such as a laser range scanner (LRS) is also
tracked in a consistent coordinate system, and in the patient-specific
method, this surface information is registered to the preoperative data

Compression correction

The goal of this work was to reduce the localization error of
soft tissue subsurface structures as visualized by ultrasound
imaging arising from soft tissue deformations exerted by the
probe itself. We recently presented a method in [5] utilizing
both probe tracking information in combination with a co-
registered patient model in order to estimate the compression
depth of the probe into the tissue during insonation and then
to use that depth to correct the tracked ultrasound image poses
using a biomechanical model-based approach. The novel
method that we now propose does not use a patient-specific
model derived from preoperative imaging, but instead uses a
generic model to drive the correction as shown in Fig. 2. In
order to rigorously compare the two methods, a summary of
the patient-specific method is described in the next subsec-
tion, followed by a description of our novel generic method.

Patient-specific correction

The patient-specific compression correction method pre-
sented in [5] made several key assumptions in order to
compute a reasonable correction. The primary assumption
was that intraoperative ultrasound data could be aligned to
the preoperative imaging with an initial rigid registration.
The second assumption was that the tissue presentation in
terms of mechanical state in the preoperative imaging was

from Tracking Camera

from Model Correction

(¢), which is an optional step in the proposed generic correction method
(denoted by the dashed box). The surface is also used to calculate the
compressive depth for the model to correct the deformed ultrasound
data (d), and it is this step that is the key difference between the two
compared methods (denoted by the solid box)

similar to the intraoperative presentation, in the absence
of tissue manipulation by the ultrasound probe. These two
assumptions led to the next assumption, which was that in
the presence of tissue compression by the ultrasound probe,
the tip of the probe would be some distance below the surface
of the co-registered patient model depending on the magni-
tude of compression.

The strategy in [5] was to use the position of the probe
tip within the tissue model in order to estimate the tissue
deformation, resulting from application of the probe and then
use these data to correct every acquired ultrasound image.
The geometry of the probe tip was constructed by scan-
ning it with the LRS, thus providing a digital probe surface
model. The probe was tracked in physical space using a
tracked target attached to the probe. The next assumption
was that during imaging the user would press the probe only
in the depth direction of the ultrasound plane into the tis-
sue, with no lateral or out-of-plane movement (no dragging
effects). This assumption was made to simplify the next step
of the correction, which was to assign boundary conditions to
the biomechanical tissue model using the pose of the probe
geometry. Assuming purely depth compression, the model
surface nodes directly above the digital probe surface were
assigned Dirichlet boundary conditions corresponding to the
compression vectors calculated from the patient surface to
the probe surface. The rest of the patient model was assigned
a set of initial boundary conditions based upon the surgical

@ Springer



Int ] CARS

Fig. 2 Example of a mesh used (a)
for the patient-specific model
correction method (a),
constructed from preoperative
imaging and aligned to the
ultrasound data using
intraoperative registration
methods, and an example of a
block mesh for the generic
model correction method (b),
which is pre-aligned to the
ultrasound data by performing a
calibration to the ultrasound
probe

=

plan and prior knowledge of the patient presentation. In the
case of the liver phantom, the inferior surface was fixed as
it was on a rigid conforming base, and the superior surface
was set to stress-free boundary conditions and allowed to
freely deform. In the case of the clinical brain case, the mesh
nodes corresponding to the craniotomy region were set as
stress-free, the base of the brain was set as fixed, and the rest
of the brain nodes were set to have zero displacement in the
normal direction but stress-free in the tangential directions to
allow for slipping along the skull. These boundary conditions
have been used in brain models previously for model-updated
image-guided surgery [8,9].

After the assignment of boundary conditions, the model
was solved for 3D displacements over the entire mesh to
estimate the probe-deformed state of the tissue. The model
used in both methodologies was the standard 3D Navier—
Cauchy equations for the displacement field:

2 E V((V-u)=0 (1)
0t a—zy VW=

—V
2(1+v)

where E is Young’s modulus, v is Poisson’s ratio, and u is the
3D displacement vector at a point in the tissue. The partial
differential equation is solved within a finite element method
framework using the Galerkin weighted residual technique
with linear basis functions. The system of equations that
solves for the displacement vectors at every node in the mesh
can be written as:

[K]{u} = {f} ()
where K is the global stiffness matrix, u is the vector of nodal

displacements, and f contains the contributions of bound-
ary conditions. For each ultrasound image to be corrected,
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this system of equations is constructed and solved for the
nodal displacements, which satisfy static equilibrium for the
supplied boundary conditions. These displacements are then
reversed and interpolated onto the tracked ultrasound data,
which was then deformed with this 3D displacement field
to an estimate of its state in the absence of compression. We
should note that there are important implications to the nature
of this patient-specific computation with respect to encum-
brance that will be discussed in comparison with our generic
model in the next section.

Proposed generic correction

The first difference between the generic correction and the
patient-specific correction is that instead of a patient-specific
mesh constructed from preoperative imaging and registered
to intraoperative space, the generic method instead uses a
pre-constructed block mesh (see Fig. 2), which is calibrated
to follow the tip of the tracked ultrasound probe. The most
important consequence of this framework is that the generic
method only requires a sparse intraoperative measurement of
tissue compression in order to provide a model correction,
rather than a registration to preoperative imaging. This could
be either provided by having separate digitization of the sur-
face in physical space (e.g., a laser range scan of the surface
of interest) or would need a trigger to track ultrasound posi-
tion once in contact with the tissue. In this work, we have
chosen the former rather than latter methodology. Lastly, we
should note that a pre-computed mesh in this instance is pos-
sible and offers distinct computational advantages that are
described later below.

The block mesh calibration procedure simply requires the
alignment of the top of the ultrasound image with the cen-
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Fig. 3 Example of the meshes
used in the simulation studies
with sizes of 10 x 10 x Scm
(a), 10 x 10 x 10cm (b) and

10 x 10 x 15cm (c¢). In this case,
a simulated 20-mm-diameter
tumor is shown at the equivalent
3cm depth in each mesh

(a)

ter of one side of the mesh, and of the image plane itself
with the plane through the center of the block. The pose of
the generic block mesh thus is defined by the same tracking
information which defines the pose of the ultrasound image,
i.e., the optically tracked attached target in this case. In this
realization, the general strategy is to acquire intraoperative
measurements of the undeformed tissue surface using an LRS
and then use that surface in conjunction with the location
of the ultrasound probe to estimate the depth to which the
tissue was compressed. This depth is computed by casting
rays down from each point of the LRS cloud in the depth
direction and finding the average length of the ray segments
which intersect with the tracked probe tip surface. This depth
is then used to assign Dirichlet boundary conditions to the
block mesh in a similar manner as the patient-specific correc-
tion, although with a slight difference. The initial boundary
conditions for the mesh in this method were assigned such
that the far-field face of the block was fixed, and the superior
and side surfaces were stress-free. This is one of the key
assumptions of this work; far-field deformations are near
zero. This certainly represents a potential source of error
depending on the angle of insonation, the location on the
organ, and the size of the organ. One way to mitigate this is
to pre-compute multiple tissue blocks with differing far-field
lengths (see Fig. 3). Similar to how ultrasound transducers
can have different fields of view that can be selected by the
user, we envision that a user could select a correction far-
field assumption based on in vivo conditions at the time of
interrogation. This is a central reason why we examine the
effects of differing far-field assumptions in the experiments
describer further below.

Nevertheless, after assignment of boundary conditions,
the model is solved for 3D displacements in the block of tis-
sue, and the displacements are reversed and interpolated onto
the ultrasound data to perform the correction. The model con-
struction is governed by the same constitutive equations given
by (1) and (2). However, there are several advantages that
the generic correction offers compared to the patient-specific
model. With respect to the patient-specific method, the global
stiffness matrix, K, would need to be reconstructed when-
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ever different regions of the organ boundary were engaged
for imaging, i.e., with the application of Dirichlet bound-
ary conditions at different nodes based on localization, the
stiffness matrix would need to be altered, such as from a
displacement to a stress-free condition or vice versa. While
all equations for every boundary node could be stored to
prevent repeating element assembly, preconditioners would
likely need to be recomputed followed by iterative matrix
solutions. This would be an expensive process, especially if
trying to achieve framerate updates. One strategy would be to
use force-based boundary conditions, which would allow for
a great deal of pre-computation but would require accurate
measurement of applied force as well as material properties
of the tissue [3,4]. With respect to the generic correction,
however, the type of boundary condition assigned to each
boundary node will always remain the same, as each cor-
rection proceeds by merely altering the magnitude of the
displacement boundary conditions on the top of the block
mesh. Thus, it is possible to pre-compute K and reuse it for
each correction whenever f is updated in a simple matrix
multiplication:

{u} = (K17 { f} ()

Another property of the generic method offers a further
computational speedup. In order to correct the ultrasound
data, only the model solution at a plane of the mesh which
corresponds to the ultrasound image plane is actually needed.
The computations solving for the rest of the mesh node dis-
placements are not essential, but only their influence on the
localization information within the slice itself is needed. This
makes it desirable to somehow eliminate the computational
burden of those nodes from the system of equations during
surgery. This can be accomplished through the method of
condensation, which results in a smaller system of equations
that can be solved much more rapidly [10]. The first step in
this process is to carefully arrange the ordering of the mesh
node indices to ensure that the first N equations belong to the
nodes lying on the ultrasound plane, as well as any nodes on
the top surface which are assigned varying amounts of com-
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pression boundary conditions. Assuming this ordering, the
equation from (2) can be rewritten as a block matrix system
where the subscripts p and a indicate the plane nodes and all
other nodes, respectively:

2 22]lz)-17]
Kap Kau Ug fa
The block matrix system in (4) can be rearranged to a form

involving only the displacement solution of the plane nodes,
Up:

(Ko [us] = { 7] )
where
[Kpp] = Kaal = [K pa] [Kaal ™ [Kap] (©)
{7} = £} = [Kpal 1Kaa ' {1} )

The modified stiffness matrix given in (6) represents a
transfer of the displacements from all nonplane nodes to
the plane nodes which are the primary concern and main-
tains the volumetric nature of the model. Using this stiffness
matrix offers significant computational benefit because it is
a fraction of the size of the full K matrix. It can be similarly
pre-computed and stored for very fast solutions of the u,
vector of plane node displacements. In addition, given the
careful ordering of the node indices explained above and the
assignment of initial boundary conditions, it will also be the
case that all nodes in the f, vector will always be assigned
either zero stress or zero displacement boundary conditions.
Given (7), this implies that changes in the compression depth
during imaging will result in simple reassignment of the val-
ues in fsz

Uil =t ®

Given the pre-computation of the modified stiffness matrix in
(6) and the speed of assigning new values in (8), the generic
method offers a very large speed increase compared to the
patient-specific method and can potentially be performed at
near real-time frame rates. Both correction methods were
implemented in MATLAB on an Intel Core 2 Quad CPU at
2.4 GHz with 4 GB of RAM.

Experimental validation
Simulations

Several simulations were performed to examine the sensi-
tivity of the generic correction method to various factors.
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The first simulation performed was to analyze the effect
of the finite element mesh resolution on the model correc-
tion. This simulation consisted of constructing equivalent
10 x 10 x 5 cm block meshes with a tetrahedral element edge
length ranging from 2 to 10 mm. The number of nodes in the
meshes ranged from 53,018 to 634 between the 2- and 10-mm
resolution, respectively. Three simulated tumors were created
with diameters of 10, 20, and 40 mm and placed separately
in an instance of each mesh. A 10-mm surface compression
was then simulated for each mesh, and the model solution was
interpolated to the tumor nodes for comparison of the effects
of the mesh resolution on the correction strategy. The com-
parison was performed by utilizing the most finely resolved
mesh (2-mm edge length) as the ground-truth solution, with
each subsequent model solution from the coarser meshes
being compared to the ground-truth solution in terms of the
difference in final tumor position.

The second simulation performed was aimed at determin-
ing the potential effects of the following variables upon the
correction: (1) the block mesh size, (2) the tumor stiffness,
and (3) the tumor size. Three block meshes were created
with dimensions of 10 x 10 x 5cm, 10 x 10 x 10cm, and
10 x 10 x 15cm constructed with 5-mm edge length. Three
simulated tumors were created with diameters of 10, 20, and
40mm and each placed at a 3cm depth (half the maximum
depth of the linear array probe used for the phantom and
clinical data in this work) in an instance of each block mesh
described above. To illustrate, the 20-mm tumor is shown
in the meshes of different sizes in Fig. 3. The tumors were
assigned stiffness values of 1:1, 10:1, and 30:1 compared to
the rest of the tissue block, resulting in 27 meshes (three mesh
sizes, three tumor sizes, and three stiffness ratios). Each mesh
was then subjected to surface compression ranging from 0 to
10 mm. For each state of compression, the model-deformed
tumor surfaces were compared to the uncompressed tumor
surfaces to illustrate the effect of tumor stiffness and size on
the model solution, which would in turn affect the correction.

The last simulation performed was aimed at examining the
sensitivity of the generic correction to varying tumor loca-
tions within the tissue. An organ-like finite element mesh was
first constructed from a CT image volume of a liver phantom.
Three 20-mm-diameter spheres were manually inserted into
the mesh at different locations to act as simulated tumors. The
three locations are shown in Fig. 4 and were chosen to demon-
strate that the generic correction method improves subsurface
target localization regardless of the local organ geometry
involved. In the case of each tumor, a surface compression of
Icm was simulated using the liver mesh to compress the
tumor, and then the generic correction method was used
to correct the deformed tumor using a 10 x 10 x 10cm
block mesh. The generic corrected tumors were then each
compared to the original uncompressed spheres in terms of
boundary node error and tumor centroid error.
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Fig. 4 Simulated tumor locations, showing a tumor in the middle of
the liver (/), in the small left lobe (2), and in the larger right lobe (3)

Phantom experiments

A compliant gel phantom was constructed by mixing 7 %
by mass polyvinyl alcohol (PVA) in water with 10% by
volume glycerol. A small amount was poured into a tumor
mold and subjected to four freeze—thaw cycles, in which the
gel was frozen at —40 °C for 12h and then thawed at room
temperature for 12 additional hours. The first freeze—thaw
cycle produces a gel with a tissue-like consistency, and each
additional cycle results in an increasingly stiffer material.
The phantom tumor was then suspended by wire in a larger
anthropomorphic liver mold with PVA mixture and subjected
to one additional freeze—thaw cycle. This resulted in a soft
tissue phantom containing a stiffer tumor. The completed
phantom was fixed to a rigid base containing fiducials, which
were used to initialize the image-to-physical registration.

Phantom tomograms were acquired in this study in order
to compare the patient-specific and generic correction meth-
ods to a ground-truth CT image set. CT image volumes
were acquired for the phantoms using a clinical CT machine
at 512 x 512 x 422 with 0.6-mm isotropic voxels. The
bulk phantom and tumor were segmented using intensity
thresholding in Analyze 9.0 (Mayo Clinic, Rochester, MN).
Isosurfaces were generated from the segmentations using the
marching cubes algorithm and smoothed with a Laplacian
filter. A patient-specific finite element mesh with tetrahedral
elements was created from the smoothed phantom isosurface
using custom-built mesh generation software [11].

The phantom fiducial markers were localized in physical
space with a tracked pointer, and an initial rigid point-based
registration to the CT images was performed [12]. An LRS
scan of the liver surface was acquired, and an iterative closest
point (ICP) registration was performed of the tracked LRS
point cloud to the CT surface in order to refine the registration
[13]. This alignment was used to perform the patient-specific
correction method and served as the gold standard validation
for the proposed generic correction method.

An Acuson Antares ultrasound machine (Siemens Inc.,
Munich, Germany) with a VFX13-5 linear array probe at
10MHz was used to acquire all ultrasound images in this
study. The machine was used to collect both B-mode and

strain images with the eSie Touch elasticity software from
the manufacturer in order to illustrate the general applicabil-
ity of the correction method to all forms of ultrasound data.
The ultrasound images were tracked in 3D space by syn-
chronizing each image with the pose detected by a Polaris
Spectra optical tracking system (Northern Digital, Waterloo,
ON, Canada) for a passive rigid body attached to the ultra-
sound probe. The tracked ultrasound probe was calibrated
using the method described by Muratore and Galloway [14]
such that all pixels in each image were associated with a 3D
pose.

In addition to the ultrasound data collected above, the other
intraoperative tools used in this study were a tracked pointer
and LRS [15]. The pointer was used to digitize point fiducials
such as beads on the phantom base and craniofacial land-
marks on the patient. These points were used to initialize a
surface-based registration of the dense point clouds from the
LRS to the preoperative patient-specific model in the case of
the phantoms.

Tracked B-mode and strain images were acquired of the
embedded tumor, and the transformation matrix from the ICP
registration was used to automatically align all tracked ultra-
sound images with the CT data. A total of 178 B-mode and 83
strain images were collected of the tumor. The tracking and
registration transformations were then applied to the digital
probe surface in order to generate boundary conditions for
the two correction methods as described previously.

After the generation of boundary conditions, the patient-
specific and generic correction methods were applied to
each ultrasound image. This resulted in a collection of
uncorrected, patient-specific corrected, and generic corrected
images. With respect to the generic correction, a 10 x 10 x
10cm block mesh was used. For both methods, the meshes
were assigned a tumor Young’s modulus ratio of 1:1 with
Poisson’s ratio at 0.49 because PVA is known to be nearly
incompressible. Each population of images was compared
to the baseline CT images in terms of tumor geometry in
order to evaluate the corrections. The tumor borders in each
B-mode and strain image were segmented semiautomati-
cally using the Livewire technique, and for each ultrasound
image, the CT volume was re-sliced to provide a coplanar
CT slice and tumor contour corresponding to the 3D pose of
the co-registered ultrasound slice. The tumor borders from
ultrasound and CT were then compared in terms of modified
Hausdorff distance (MHD) and centroid distance between
the two contours [16]. The MHD and centroid error metrics
were computed prior to and after each correction and were the
primary metrics in determining the efficacy of the methods.

Clinical case

The patient-specific and the generic correction methods were
deployed in a preliminary clinical case. The clinical dataset
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consisted of a meningioma patient at Vanderbilt Medical
Center. Informed written consent was obtained from the
patient prior to the study with the approval of our insti-
tutional review board. The preoperative MR volume was
segmented to produce brain and tumor surfaces, which were
used to create a patient-specific model in the same manner
as the phantom data. With respect to the generic correction,
a 10 x 10 x 10cm block of tissue was used. The tumor in
this case was a meningioma located superficially on the left
side. In this case, the tumor and brain were assigned a 1:1
stiffness ratio and Poisson’s ratio of 0.45 [17]. Alignment
of the intraoperative tracked ultrasound images to the MR
was performed by scanning the face of the patient with the
LRS and performing an ICP registration between the LRS
face point cloud and the MR patient model. There was no
LRS cloud of the brain surface available in the case of this
specific patient, and so a random sampling of the MR model
surface was used to simulate LRS data in that case. Tracked
B-mode images were obtained immediately after the cran-
iotomy. Both correction methods were then applied to the
ultrasound data and compared to the co-aligned MR tumor
borders in terms of the coplanar contour MHD and centroid
error.

Computational efficiency

In order to provide an estimate of the computational speed
offered by the generic correction framework, the time to
compute the generic model solution for an image slice in
the phantom B-mode dataset was recorded in the case of a
10 x 10 x 5cm block mesh with 5-mm edge length consist-
ing of 4042 nodes and 19,672 tetrahedral elements. When
taking into account our condensation approach, the number
of nodes and elements used in the generic correction was
reduced to 697 and 2698, respectively. The analogous cor-
rection using the patient-specific correction was computed
using a mesh with 5-mm edge length consisting of 10,989
nodes and 55,165 tetrahedral elements. The difference in the
numbers of nodes and elements in the meshes having similar
edge length corresponds to the difference between the vol-
ume of the full patient-specific organ versus the volume of
the block of tissue in the generic method.

Results

Simulations

The results of the mesh resolution simulations are shown
below in Fig. 5. This figure displays how the model solu-
tions at varying mesh resolutions changes compared to the

solution to the high-resolution mesh using a 2-mm element
edge length. The general trend in each case was that as the

@ Springer

Solution Error Due to Mesh Resolution (%)

Tumor Diameter (mm)

3 5 7 10
Mesh Edgelength (mm)

Fig. 5 Effects of mesh resolution on three sizes of a tumor after a
simulated 10-mm surface compression. The tumor node error is defined
relative to the result of the solution of a mesh with 2-mm edge length
resolution

mesh becomes coarser, the interpolated model solution devi-
ates from the solution obtained from the more finely resolved
mesh, especially above an edge length of 7 mm.

The results of the second simulation testing the effects
of mesh size, tumor stiffness, and tumor size are shown
below in Fig. 6. Each graph shows that as the applied surface
compression increases, the tumor boundary nodes displace
correspondingly. We see that compression is communicated
to the tumor boundary displacement more effectively as the
tumors decrease in stiffness with larger distortions expe-
rienced by larger tumors (which is expected, i.e., softer
materials would experience larger shape distortion). Looking
across depth block sizes, we see that the tumor bound-
ary experiences more displacement with increasing block
depth. This is expected as the far-field fixed displacement
will inhibit internal block motion less in larger depth blocks.
However, looking at the top subfigures in Fig. 6, we do see
more pronounced effects from stiffness at large compressions
with larger tumors.

The results of the last simulation testing the effects of
tumor location are shown in Fig. 7. This figure shows the
tumor boundary node error (for 50 boundary nodes) prior to
correction and after application of the generic method. Prior
to correction, the centroid error for the compressed tumor in
location 1, 2, and 3 designated in Fig. 4 was 6.7, 5.0, and
2.0mm, respectively. After correction, the centroid error in
location 1, 2, and 3 was 1.6, 1.8, and 0.8 mm, respectively.

Phantom experiments

The patient-specific and generic model corrections were
deployed in the liver phantom, and an example of the correc-
tion process applied to a tracked ultrasound slice is shown
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Fig. 6 Effects of block mesh depth, tumor stiffness, and tumor size upon the model-predicted tumor border deformation under varying amounts

of surface compression (colorbar is in millimeters)

in Fig. 8. Qualitatively, there was a clear improvement to the
alignment between ultrasound and co-registered tomograms
in the phantom experiments. In addition, the ultrasound con-
tours corrected with the generic model method were very
geometrically similar to the ultrasound contours corrected
with the patient-specific method. We should note that dif-
ference in contour and green rendered object in Fig. 8b, e
represents the error in object localization and shape if no
correction is performed in the case of patient-specific, and
generic model respectively.

The quantitative results of the phantom experiments in
Fig. 9 show the MHD and coplanar—centroid distances as
error metrics in comparing the ultrasound tumor borders
with the co-registered CT borders, for both B-mode and
strain images. The B-mode MHD values for the uncorrected,
patient-specific corrected, and generic corrected tumor bor-
ders were 5.0 £ 1.6, 1.9 £ 0.6, and 2.1 £ 0.7 mm, respec-

tively. A Wilcoxon signed rank test was computed for the
null hypothesis that the median difference between the error
metrics was zero. It was found that there was a statistically
significant difference between each of the image populations
using this metric (p < 0.01). The B-mode centroid error
values for the uncorrected, patient-specific corrected, and
generic corrected tumor borders were 7.6+2.6, 2.0+0.9, and
2.6 £ 1.1 mm, respectively. The Wilcoxon test again found
the three image populations to be significantly different from
one another based on this metric (p < 0.01).

With respect to the strain images, the strain MHD values
for the uncorrected, patient-specific corrected, and generic
corrected tumor borders were 5.6 = 1.1 mm, 2.0 & 0.5 mm,
and 2.2 + 0.5 mm, respectively. The Wilcoxon test found all
three image populations to be statistically different using the
MHD metric (p < 0.01). The strain centroid error values
for the uncorrected, patient-specific corrected, and generic

@ Springer



Int ] CARS

Tumor Location Simulations
Tumor Location #1

1nr BN 1
]

’é‘ 10 + i J
S oo | -
o
§ of :
| 7t |
z
> 6 |
3
c 5 T -
3 1
8 4 - :
g s :
2 i

14 - 4

Uncorrected Generic Mesh Corrected
1 Tumor Location #2

Tumor Boundary Node Error (mm)
2]

I

Uncorrected Generic Mesh Corrected

Tumor Location #3

Tumor Boundary Node Error (mm)

Uncorrected Generic Mesh Corrected

Fig. 7 Effects of tumor location on generic block mesh correction
improvement in three simulated tumors (number of tumor boundary
nodes N = 50)

corrected tumor borders were 8.0 &= 1.6mm, 3.0 & 0.9 mm,
and 3.3+ 1.1 mm, respectively. The Wilcoxon test also found
all three image populations to be statistically different using
the centroid error metric (p < 0.01).
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Clinical case

The patient-specific and generic model corrections were
deployed in the clinical case, and an example result is
shown in Fig. 10. The quantitative results of the clinical
case in Fig. 11 show the MHD and coplanar—centroid dis-
tances as error metrics in comparing the ultrasound tumor
borders with the co-registered CT borders, for both B-
mode and strain images. The B-mode MHD values for the
uncorrected, patient-specific corrected, and generic corrected
tumor borders were 5.4 +0.1,2.6 0.1, and 2.9 = 0.1 mm,
respectively. A Wilcoxon signed rank test was computed for
the null hypothesis that the median difference between the
error metrics was zero. It was found that there was a sta-
tistically significant difference between each of the image
populations using this metric (p < 0.01). The B-mode
centroid error values for the uncorrected, patient-specific
corrected, and generic corrected tumor borders were 7.2 +
0.2mm, 3.5 + 0.4 mm, and 3.8 & 0.4 mm, respectively. The
Wilcoxon test again found the three image populations to be
significantly different from one another based on this metric
(p < 0.01).

Computational efficiency

A breakdown of the various computational costs in terms
of execution time for the patient-specific correction and
generic correction is given in Table 1. In the case of the
patient-specific method, the mesh is created from preop-
erative imaging, which typically requires at least 30 min,
assuming that some manual oversight of the image segmen-
tation is required. Creation of the mesh from the segmentation
mask takes at least Smin. In terms of actual intraoperative
expense, the construction of the 32,967 x 32,967 stiff-
ness matrix K and the solution of Eq. (2) were conducted
together in approximately 50 s, and this represented the
vast majority of the total intraoperative computation time
of 52.5s.

In the case of the generic method, the modified stiffness
matrix given by (6) was pre-computed for the block mesh
prior to collection of ultrasound data. There were only 697
nodes in the ultrasound plane region of the mesh, and so the
condensed stiffness matrix in this case contained 2091 x 2091
entries. For each model correction, the vector given by (7)
was modified with the detected compression vectors, and (5)
was solved for the plane node displacements. The inverse
of the modified stiffness matrix in (6) was stored, and the
solution time for the model was approximately 10 ms. The
overall intraoperative computation time was approximately
80 ms.
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Fig. 8 Example of B-mode
image slice correction with the
patient-specific model
correction (a—c) and generic
model correction (d—f). a, d The
co-registered LRS point cloud
on the respective mesh, b, e the
tracked probe surface and the
misalignment between the
ultrasound tumor border with
the CT tumor, and ¢, f the
corrected ultrasound image

Discussion
Simulations

The mesh resolution sensitivity study in Fig. 5 shows that in
all but the largest tumors, there is less than an approximate
~5 % difference between mesh solutions when the element
edge length is approximately 5 mm. This would suggest that
in domains with large heterogeneities more care and finer
resolution may be needed but as a routine method, 5-mm
edge lengths may be sufficient.

The second simulation study showed how the block mesh
size, tumor size, and tumor stiffness affect the model solution.
The first observation is that the size of the block mesh did not
affect the solution at the tumor nodes until the size was much
larger than the depth at which the tumor was located (recall
the tumor was placed at 3 cm to be in the center of a 6cm US
image). The solutions at the tumor nodes were similar when
utilizing block sizes of 10 x 10 x Scm and 10 x 10 x 10cm,
but at the 10 x 10 x 15 cm size, the tumor solutions tended to
become less variable across different tumor sizes and stiff-
ness. One trend to note from Fig. 6 is that there is very little
impact on the model solution from the size of a tumor or
its stiffness ratio at low levels of surface compression. How-
ever, as the surface compression becomes quite large, there is

a divergence in the solutions on the basis of both tumor size
(illustrated by the displacement magnitudes in each graph)
and the stiffness ratio (the vertical axis on each graph). Larger
tumor size resulted in greater overall tumor boundary defor-
mation, which was expected because a larger tumor diameter
implies that a greater proportion of tumor nodes were closer
to the surface deformation, since all three tumors were placed
at the same tissue depth. It is especially worth observing that
the importance of tumor stiffness increased with increas-
ing tumor size. In the case of the 10-mm-diameter tumor
at the maximum surface displacement of 10 mm, the differ-
ence in mean tumor displacements when using the 1:1 and
30:1 stiffness ratios varied by approximately 1 mm. How-
ever, in the case of the 40-mm-diameter tumor, the difference
in mean tumor displacements when using the 1:1 and 30:1
stiffness ratios varied by approximately 3 mm for the same
surface displacement magnitude. These simulations indicate
that although in many cases the tumor geometry and mater-
ial properties do not greatly impact the model solution, these
variables can become important when the target is a large
tumor with a much different stiffness from the surrounding
normal tissue. This becomes somewhat of a limitation for the
generic method, as with the generic method the mesh is pre-
computed based on a homogeneous domain. There may be
some superposition and weighted combinatorial possibilities

@ Springer
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Fig. 9 Alignment error results for the B-mode (a, b) and strain imag-
ing (¢, d) modalities for the organ-like phantom (n = 178 for B-mode,
and n = 83 for strain). The position of tumor borders in each modality
was evaluated in terms of MHD to the co-aligned CT borders (a, ¢), as

that could account for stiffness variations that would entail
more pre-computation but would likely reduce these errors.
While this is outside the scope of this paper, it does provide
some intriguing directions for the work.

The last simulation showed the effect of tumor location
within the organ on the correction. The main observation
from Fig. 7 is the trend in tumor boundary error reduc-
tion after application of the generic correction compared to
the uncorrected error. These simulations predict very well
the subsequent results observed in the phantom and clini-
cal experiments. It is also interesting to note the consistent
behavior of the correction regardless of the tumor loca-
tion and the local organ geometry. For instance, the median
boundary error for the tumor in location 1 was reduced from
a median value of 6.3—-1.7mm, over a 70 % reduction. In
the case of the tumor in location 3, which was located deep
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well as the distance between the centroid of the ultrasound tumor with
the coplanar CT tumor border (b, d). The edges of the boxes are the
25th and 75th percentiles, and the whiskers extend to the most extreme
data points not considered as outliers

in a thick region of the organ and thus was not deformed as
much, the median uncorrected error was only 1.8 mm and was
still reduced to 0.8 mm, over a 50 % reduction. This finding
is significant because it demonstrates that even with vary-
ing deformation scenarios due to tumor location, the generic
correction method can improve tumor localization accuracy
compared to no correction.

Phantom experiments

The results of the compression correction methods shown
in Fig. 9 clearly demonstrate the improvement offered by
both the patient-specific and generic methods to the align-
ment between ultrasound and co-registered tomograms in
the phantom experiments. The MHD error metric showed
a significant decrease in misalignment after application of
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Fig. 10 Example of the patient
images of a superficial tumor
visible in MR and B-mode (a)
and the patient-specific
correction (b, ¢) and generic
model correction (d, e) applied
to a B-mode image slice for the
clinical case. b, d The tracked
probe surface and the
misalignment between the
ultrasound tumor border with
the CT tumor, and ¢, e the
corrected ultrasound image

both methods, but with a greater decrease for the patient-
specific method. The centroid distance error metric showed
an even clearer improvement after applying the two model-
based corrections compared to the uncorrected ultrasound
images. Interestingly, a similar trend was noted with respect
to the corrections, in that the patient-specific method resulted
in a greater decrease in error overall compared to the generic
model correction. However, although the correction for the
patient-specific method was considered significantly better
than the generic method according to the Wilcoxon test, the
mean difference between the resultant errors for these cor-
rection frameworks was submillimetric for both the B-mode
and strain images. This result is important because it indi-
cates that the generic model correction performs nearly as
well as the patient-specific method, making it a reasonable
alternative for cases in which a patient-specific model may
not be available or is too cumbersome computationally.

Clinical case

The results of the clinical case in Fig. 11 showed a clear
improvement in alignment between the tracked B-mode and

2:11:42PM 172412013

MR tumor borders after both of the correction methods. The
same trend from the phantom dataset was noted in this case,
which was that the patient-specific model correction yielded
a slightly greater reduction in error than the generic model
correction. However, as with the phantom data, the differ-
ence in the mean error for both metrics was submillimetric
in comparing the two corrections. This reinforces the idea
that the generic model correction could be used to perform
a comparable compression correction in the absence of a
patient-specific model from preoperative imaging or when
computational speed is paramount.

Computational efficiency

It was found that the patient-specific method on average
needed approximately 50 s to provide a compression cor-
rection update to each individual ultrasound frame during
freehand movement of the probe. This long computation time
was primarily a consequence of the need to re-assign bound-
ary condition types to surface nodes in the patient-specific
mesh as the probe was moved around the tissue, thus neces-
sitating a full reconstruction of the stiffness matrix K for

@ Springer



Int ] CARS

Bmode-MR Modified Hausdorff Distance

_
D
~—

45+ .

35 b

Modified Hausdorff Distance (mm)
S

25}

Uncorrected Patient Model Comrected  Generic Model Corrected

(b) Bmode-MR Centroid Distance

Centroid distance (mm)

+

Uncorrected Patient Model Corrected Generic Model Corrected

Fig. 11 Alignment error results for the clinical case (n = 118
B-mode images). The position of tumor borders was evaluated in terms
of MHD to the co-aligned MR borders (a), as well as the distance
between the centroid of the ultrasound tumor with the coplanar MR
tumor border (b). The edges of the boxes are the 25th and 75th per-
centiles, and the whiskers extend to the most extreme data points not
considered as outliers

each correction. The stiffness matrix for the patient-specific
mesh was much larger than the mesh in the generic correction
due to the greater number of nodes needed to represent the
full patient organ, thus leading to a longer solution time as
well. We should note that with some clever storage strategies,
the potential to nearly eliminate the 40 s element assem-
bly construction is likely, but one would still be faced with
an approximate 12.5 s process. Regardless, these correction
times still remove one of the primary advantages of ultra-
sound as an interventional imaging modality, which is its
real-time data acquisition. There is clearly motivation to pro-
vide both a corrected image while maintaining a high frame
rate.

By contrast, the generic correction method was shown to
provide a model solution in approximately 10 ms using the
condensation method to only solve for the mesh nodes in
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Table 1 Approximate execution time for each step in the patient-
specific and the generic correction pipelines

Patient-specific Generic
correction correction
Preoperative phase
Image segmentation 30 min -
Mesh construction 5 min 2 min
Mesh calibration N/A 2 min
Stiffness matrix pre-construction ~ N/A 1 min
Total 35 min 5 min
Intraoperative phase
Boundary condition determination 50 ms 50 ms
Stiffness matrix construction 40s N/A
Model solve 12's 10 ms
Ultrasound tumor interpolation 04s 20 ms
Total 52.5s 80 ms

Times were determined using a single thread of an Intel Core2 Quad
CPU at 2.4GHz

the immediate vicinity of the ultrasound plane. This essen-
tially represents the removal of the primary computational
bottleneck from the patient-specific correction, which was
the 52.5/12.5 s required for construction and solution of the
stiffness matrix for a large organ-shaped mesh. The rest of
the intraoperative steps consisted of determining boundary
conditions prior to the model solution and then interpolating
the model solution to the ultrasound data. The other steps
combine with the model solution to give a total intraopera-
tive correction time of approximately 80 ms, which is nearly
real time at 12.5 frames per second. In addition, this work
was implemented on only a single CPU and could easily be
further improved by the use of GPU programming. In clos-
ing, this work demonstrates that although there is a modest
reduction in the accuracy of the solution provided by the
generic correction versus the patient-specific method that is
statistically significant, the dramatic computational benefit
provided by the former at a cost of minor inaccuracy cannot
be discounted.

Limitations

The proposed generic model correction shares many of the
same limitations of the patient-specific correction enumer-
ated in [5]. For example, the generic correction is still subject
to several sources of propagating error in the image guidance
workflow. It heavily relies upon the optical tracking system,
which imparts an inherent error to each measurement made
with the device, including the surface digitization using a
tracked pointer or LRS, as well as the tracked ultrasound
data. It also retains the assumption from the patient-specific
method that the user applies the probe purely in the depth
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direction for each image acquisition. This again simplified
the creation of boundary conditions for the model, which
is a challenge shared by both methods. In addition to the
accuracy of the boundary conditions, the geometry of the
mesh itself was likely the primary cause for the difference
in error observed between the generic model correction and
the patient-specific correction. A block of tissue is clearly a
very simplistic representation of most anatomical structures
on which this method would be used. The size of the block
mesh also needs to be chosen before the correction can occur.
Although a 10 x 10 x 10cm cube was used for each generic
model correction for the phantoms and clinical case in this
study, it would be possible to pre-construct block meshes of
various sizes as shown in Fig. 3 based on observable knowl-
edge of the anatomy of interest that could be selected during
the procedure. It would be fairly trivial to exchange various
pre-constructed block meshes of different depths intraopera-
tively. The most computationally expensive operation during
the procedure would be computing the compression depth
using the LRS or pointer point cloud and then performing the
interpolation of the solution to the ultrasound data. It would
conceivably be possible to perform all of the operations in
Table 1 at a real-time frame rate if efficiently implemented
and with the support of GPU programming. Going a bit fur-
ther, it might be possible to pre-compute the full displacement
field on the slice itself, although this raises questions as to
how to handle applications of the probe in compression that
are not uniform, i.e., cases where the probe face is not approx-
imately parallel with the intraoperative organ surface. More
than likely, a lookup table with an interpolation and super-
position scheme could be used intraoperatively to select the
solution combination corresponding to the correct compres-
sion magnitude. This would likely result in an additional
speedup compared to our current results although validation
of this approach would be needed.

Another assumption retained in the generic correction
method was the assignment of material properties to the
finite element mesh. Accurate intraoperative measurement
of tissue mechanical properties is very challenging in prac-
tice. The approach taken in this work was to assume the
mesh was composed of a single homogenous tissue type.
Under this assumption, the biomechanical model solution
would become less accurate with increasing contrast in
tissue stiffness. It should be noted that only the relative
stiffness values would affect the solution of the model in
either the patient-specific or the generic model correction
because only Dirichlet boundary conditions drive the solu-
tion. Absolute values for Young’s modulus would only affect
the solution if force conditions were integrated into the
approach. Similar to the previous comments regarding pre-
computing the displacement field itself, it is likely that
a pre-computational strategy that uses superposition and
combinatorial approaches intraoperatively could be used to

account for stiffness differences driven by perhaps strain-
imaging data which is and intriguing direction for future work
but outside of the scope of this paper.

Although itis true that the assumptions and simplifications
made in this work could be seen as defeating the purpose
of a patient-specific biomechanical model, these simplifi-
cations can be interpreted as methodologies that allow for
improved fidelity measurements within the context of soft
tissue image-guided environments. More specifically, when
one considers the amount of tissue deformation that is expe-
rienced during the presentation of open or laparoscopic liver
resection as an example, the generic framework allows for
some re-establishment of measurement fidelity of subsur-
face structures acquired by ultrasound imaging. Ultimately,
as guidance systems continue toward the full employment
of nonrigid approaches for registration, the need for accu-
rate localization of tissue structure within a consistent patient
space that is workflow sensitive will be of high importance.
This balance of accuracy and workflow within the context of
sparse data will remain of paramount concern in these new
paradigms.

A final limitation of both the patient-specific and generic
methods is that each requires a surface acquisition during
the procedure, which in our setup was provided by LRS. It
is generally understood that that adding hardware require-
ments to a procedure would limit its adoption. However,
there are four aspects to this to consider. The first is that
in certain procedures with very high accuracy requirements,
such as neurosurgery, the added benefits of an enhanced spa-
tial understanding of the interventional target may justify the
hardware burden. The second aspect is that there are other
methods besides an LRS device, which can be used to pro-
vide the necessary surface measurement. For example, some
have proposed to use a tracked ultrasound probe itself as
a surface digitizer by swabbing the surface [18], and oth-
ers have proposed to use stereoscopic surgical cameras to
construct the organ surface [19]. A third consideration is
that standardized surface acquisition is likely on the hori-
zon for image-guided surgery systems. For example, surface
registration via swabbing is already a standard feature on
many commercial image-guided platforms. The last point to
consider is that it is possible to trigger this correction using
contact conditions by monitoring the ultrasound imaging data
itself as it comes into contact with the tissue. This has its own
challenges but is certainly worth considering. Nevertheless,
much of the equipment utilized in this work is already rou-
tinely available in many operating rooms or can be modified
to acquire appropriate data (e.g., stereo-pair is a standard
feature in surgical microscopes). The method we used for
digitizing the surface is just one embodiment of a more gen-
eral concept.

The overall result of this work is that information in
tracked ultrasound data can be corrected in near real time,

@ Springer



Int ] CARS

provided that a measure of tissue compression is available
intraoperatively. The immediate benefits are obvious in pro-
viding the clinician with more accurate size and position
measurements of subsurface targets. This is important in a
wide variety of procedures and anatomy, such as determining
resection or ablation margins. Additionally, there are implica-
tions for more speculative work using subsurface information
for enhanced registration [20]. An analysis of the effects of
integrating corrected and uncorrected ultrasound data in a
registration framework would be very interesting and also
awaits further study.

Conclusions

In this work, we proposed and validated a novel method for
correcting tissue compression error exerted by an ultrasound
probe. Our novel generic tissue model was used to estimate
physical tissue deformation as a result of pressing the tracked
probe into the tissue surface and also compared to a previous
compensation framework as well as to gold standard intraop-
erative CT imaging measurements. The experimental results
indicate that the generic model correction method provides
significantly improved intraoperative localization data. This
is particularly important when patient-specific models may
not be available from preoperative imaging or when mini-
mizing computational encumbrance is important.
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