
Vol.:(0123456789)1 3

International Journal of Computer Assisted Radiology and Surgery (2020) 15:75–85 
https://doi.org/10.1007/s11548-019-02057-2

ORIGINAL ARTICLE

A comparison of thin‑plate spline deformation and finite element 
modeling to compensate for brain shift during tumor resection

Sarah Frisken1  · Ma Luo2 · Parikshit Juvekar3 · Adomas Bunevicius3 · Ines Machado4 · Prashin Unadkat3 · 
Melina M. Bertotti3 · Matt Toews5 · William M. Wells1,6 · Michael I. Miga2,7,8,9 · Alexandra J. Golby1,3

Received: 11 January 2019 / Accepted: 14 August 2019 / Published online: 23 August 2019 
© CARS 2019

Abstract
Purpose Brain shift during tumor resection can progressively invalidate the accuracy of neuronavigation systems and 
affect neurosurgeons’ ability to achieve optimal resections. This paper compares two methods that have been presented in 
the literature to compensate for brain shift: a thin-plate spline deformation model and a finite element method (FEM). For 
this comparison, both methods are driven by identical sparse data. Specifically, both methods are driven by displacements 
between automatically detected and matched feature points from intraoperative 3D ultrasound (iUS). Both methods have 
been shown to be fast enough for intraoperative brain shift correction (Machado et al. in Int J Comput Assist Radiol Surg 
13(10):1525–1538, 2018; Luo et al. in J Med Imaging (Bellingham) 4(3):035003, 2017). However, the spline method requires 
no preprocessing and ignores physical properties of the brain while the FEM method requires significant preprocessing and 
incorporates patient-specific physical and geometric constraints. The goal of this work was to explore the relative merits of 
these methods on recent clinical data.
Methods Data acquired during 19 sequential tumor resections in Brigham and Women’s Hospital’s Advanced Multi-modal 
Image-Guided Operating Suite between December 2017 and October 2018 were considered for this retrospective study. Of 
these, 15 cases and a total of 24 iUS to iUS image pairs met inclusion requirements. Automatic feature detection (Machado 
et al. in Int J Comput Assist Radiol Surg 13(10):1525–1538, 2018) was used to detect and match features in each pair of iUS 
images. Displacements between matched features were then used to drive both the spline model and the FEM method to 
compensate for brain shift between image acquisitions. The accuracies of the resultant deformation models were measured 
by comparing the displacements of manually identified landmarks before and after deformation.
Results The mean initial subcortical registration error between preoperative MRI and the first iUS image averaged 
5.3 ± 0.75 mm. The mean subcortical brain shift, measured using displacements between manually identified landmarks in 
pairs of iUS images, was 2.5 ± 1.3 mm. Our results showed that FEM was able to reduce subcortical registration error by 
a small but statistically significant amount (from 2.46 to 2.02 mm). A large variability in the results of the spline method 
prevented us from demonstrating either a statistically significant reduction in subcortical registration error after applying 
the spline method or a statistically significant difference between the results of the two methods.
Conclusions In this study, we observed less subcortical brain shift than has previously been reported in the literature (Frisken 
et al., in: Miller (ed) Biomechanics of the brain, Springer, Cham, 2019). This may be due to the fact that we separated out 
the initial misregistration between preoperative MRI and the first iUS image from our brain shift measurements or it may be 
due to modern neurosurgical practices designed to reduce brain shift, including reduced craniotomy sizes and better control 
of intracranial pressure with the use of mannitol and other medications. It appears that the FEM method and its use of geo-
metric and biomechanical constraints provided more consistent brain shift correction and better correction farther from the 
driving feature displacements than the simple spline model. The spline-based method was simpler and tended to give better 
results for small deformations. However, large variability in the spline results and relatively small brain shift prevented this 
study from demonstrating a statistically significant difference between the results of the two methods.
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Introduction

Neuronavigation systems (e.g., [1–4]) can be used to map 
preoperative anatomical, structural and functional imag-
ing into patient coordinates during brain tumor resections, 
thereby helping to guide surgeons toward planning opti-
mal surgical approaches and achieving more complete 
resections. However, brain shift decreases the validity of 
neuronavigation registration as surgery progresses. Brain 
shift is composed of brain deformation (caused by changes 
in intracranial pressure, osmolarity, CSF levels, air pock-
ets, head position, etc.), tissue retraction and tumor 
resection. It begins when the craniotomy is performed, 
increases when the dura mater is opened and as tumor 
tissue is removed and has been measured to be as large as 
20–30 mm at the brain cortex [5]. As reviewed in [6–9], 
brain shift has been measured and modeled for more than 
20 years. It can be mitigated by navigating from intra-
operative imaging such as intraoperative MRI (iMRI) [5, 
10, 11] or intraoperative ultrasound (iUS) [12, 13] instead 
of preoperative imaging. However, iMRI requires special-
ized equipment and personnel and can significantly disrupt 
and extend the duration of surgery. iUS can be hard for 
surgeons to interpret and cannot provide the high-quality 
anatomical, structural [e.g., diffusion MRI tractography 
(dMRI)] and functional [e.g., functional MRI (fMRI)] 
imaging [14, 15] that can be acquired preoperatively.

An alternative to navigating directly from intraoperative 
imaging is to derive a model of brain shift from intraop-
erative imaging and use the model to compensate for brain 
shift. The model is applied to preoperative image data (e.g., 
anatomical imaging, dMRI, fMRI, segmented structures or 
the surgical plan) to fit it to the shape of the brain after brain 
shift. One common approach is to model brain shift as a non-
rigid registration from preoperative anatomical MRI to iMRI 
[16–19] or preoperative MRI to iUS [20–28]. The nonrigid 
registration can be derived directly from 2D or 3D images 
(e.g., [29]), or it can be derived from sparse measurements of 
the cortical surface [30, 31] or sparse features in the image 
data [32]. Previously, we have shown that displacements of 
the cortical surface can be used to drive an FEM model of 
the brain to achieve accurate representations of brain shift 
[33]. We recently presented a method using the SIFT-Rank 
algorithm [34] to automatically detect and match features in 
pairs of iUS images and validated the feature quality and fea-
ture matching accuracy across multiple clinical iUS datasets 
[32]. This work presented preliminary results showing that 
the automatically detected features could be used to drive a 
simple thin-plate spline deformation that accurately mod-
eled brain shift.

In this paper, we compare two brain shift compensa-
tion methods both driven by the same sparse features 

derived from clinical data. Specifically, matched feature 
points were automatically generated in pairs of iUS images 
acquired at multiple time points during brain tumor resec-
tions in 15 clinical cases for a total of 24 iUS to iUS image 
pairs. The automatic features were used to drive both a 
simple, fast and readily available thin-plate spline defor-
mation and a patient-specific FEM model that incorporates 
physical and geometric constraints and heterogeneous 
material properties but requires significant preprocessing. 
For comparison, the accuracy of each method was meas-
ured using a set of landmarks that were manually identified 
in each iUS image pair.

Methods

Data acquisition

This study was performed on data acquired during 19 
sequential tumor resections performed in the Advanced 
Multi-modal Image-Guided Operating (AMIGO) Suite at 
Brigham and Women’s Hospital (BWH) in Boston, MA, 
between December 2017 and October 2018. Patient consent 
was obtained prior to data acquisition for this IRB-approved 
study. Each patient underwent preoperative imaging includ-
ing, as clinically indicated, T1, T2, dMRI and fMRI. During 
surgery, iUS was acquired at multiple time points: typically, 
immediately after performing the craniotomy but before 
opening the dura mater (U0); immediately after opening the 
dura mater (U1); and after significant resection (frequently 
immediately before acquiring iMRI) (U2). Because 3D 
iUS had only recently been introduced into the neurosur-
gical workflow in AMIGO at the time of this study, some 
iUS scans were incomplete or missing. Thus, four of the 19 
patients and six additional iUS to iUS image registration 
pairs were excluded from the study because one or more 
of the iUS images were missing or had insufficient qual-
ity for automatic feature detection and matching and/or for 
manually identifying landmark points. Table 1 summarizes 
the tumor type, location, size, craniotomy size, iUS images 
acquired and relevant surgical notes for the 15 patients 
whose data were used in this study.

Preoperative MRI was acquired in one of several Siemens 
3T scanners used clinically at BWH. Anatomical MRI acqui-
sition type (e.g., T1 FLAIR, MPRAGE, T1 with gadolinium-
enhanced contrast or T2 SPACE for nonenhancing lesions) 
was selected based on clinical and radiologic factors. iUS 
imaging was performed using a neuro-cranial probe from 
BK Medical [35] with a BK3000 system for patients 1 and 
2 and a BK5000 system for the remaining patients. The 2D 
US probe was tracking using the Brainlab Curve system [1]. 
For each iUS image acquisition, Brainlab software was used 
to reconstruct a 3D US volume from the tracked 2D analog 
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US image stream output from the BK system. Figure 1 shows, 
for each patient, a representative 2D cross section through the 
tumor/lesion and corresponding 2D slice from each iUS image 
acquired for that patient. These images illustrate the variation 
in iUS image quality and coverage as well as the variation in 
brain tumor/lesion size, location and imaging properties which 
makes automatic image registration, tumor segmentation and 
feature detection so challenging for neurosurgical applications.

Data processing

Initial registration from MRI to U0

The sparse data used to drive both deformation meth-
ods were derived from iUS image pairs. Brain shift was 

measured relative to U0, i.e., the iUS image aquired imme-
diately after the craniotomy and before the dura was opened. 
Because the FEM model was initialized from preoperative 
MRI, we performed an initial rigid registration from preop-
erative MRI to U0 for each patient so that FEM modeling 
was performed relative to U0. This initial registration com-
pensated for two factors: (1) any initial rigid registration 
error in the neuronavigation system between the preopera-
tive MRI and the patient’s head at the beginning of surgery 
and (2) brain shift that occurred before the dura was opened 
(e.g., during the craniotomy or from medications adminis-
tered to control intracranial pressure). To perform the rigid 
registration, we manually identified 5–6 landmarks in the 
preoperative MRI and U0 images and used 3D Slicer’s [36] 
Fiducial Registration Module to compute a rigid transform 

Table 1  Tumor/lesion type, location and volume, the preoperative MRI and iUS images available for retrospective analysis, the craniotomy size 
measured from intraoperative MRI and relevant surgical notes for each patient

Tumor types are listed using W.H.O. grading. Volumes were measured from lesion segmentations performed using the Brainlab system

Patient Tumor Imaging Craniotomy 
size  (mm2)

Notes

Type Location Volume (ml) MRI iUS

1 Grade III Anaplastic 
Astrocytoma

Right frontal lobe 10 T1 U0, U1 60 × 30 Repeat surgery

2 Grade II Oligoden-
droglioma

Left frontal, supra-
tentorial

3.9 T1 MPRAGE
T2 SPACE

U0, U1, U2 25 × 40

3 Grade IV Glioblas-
toma Multiforme

Right temporal lobe 23 T1 with gadolinium 
(gad)

U0, U1, U2 60 × 60 Repeat surgery
Large cystic compo-

nent
4 Cavernous Malforma-

tion
Left parietal lobe 0.20 T1 with gad

T1 SPACE
U0, U1, U2 25 × 25

5 Cavernous Malforma-
tion

Left temporal lobe 0.72 T1 with gad
T2 SPACE

U0, U1, U2 33 × 33

6 Grade IV Glioblas-
toma Multiforme

Left language cortex 2.8 T1 with gad
T2 SPACE

U0, U1, U2 60 × 30 Repeat surgery Large 
cystic component

7 Grade II Diffuse 
Astrocytoma

large temporal lobe 13 T1 with gad
T2 SPACE

U0, U1, U2 38 × 38 Partial resection. First 
of two stages

8 Grade II Oligoden-
droglioma

Right frontal lobe 84 T1 with gad
T2 SPACE

U0, U1, U2 50 × 25 Repeat surgery

9 Grade III Anaplastic 
Astrocytoma

Left parietal lobe 3.9 T1 with gad U0, U1, U2 25 × 30

10 Grade IV Glioblas-
toma Multiforme

Left temporal lobe 56 T1 with gad U0, U1 26 × 20 Partial resection

11 Grade IV Diffuse 
Midline Glioma

Right thalamic region 36 T1 with gad U0, U1, U2 44 × 46

12 Grade III Anaplastic 
Astrocytoma

Left frontal lobe 47 T1 with gad U0, U1, U2 57 × 57 Repeat surgery for 
more complete 
resection

13 Grade III Anaplastic 
Oligodendroglioma

Left frontal lobe 0.68 T1 with gad U0, U1, U2 30 × 40 Repeat surgery for 
small enhancing 
nodule

14 Grade II Oligoden-
droglioma

Left posterior tem-
poral

33 T1 with gad
T2 SPACE

U0, U1, U2 25 × 40

15 Grade IV Glioblas-
toma Multiforme

Left temporal–pari-
etal lobe

22 T1 with gad U0, U1, U2 45 × 50 Repeat surgery
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Fig. 1  A representative 2D 
cross section through the tumor/
lesion in preoperative MRI 
images and corresponding 
slices through 3D iUS volumes 
acquired at the indicated time 
points for each patient whose 
data were used in this study

Patient Preoperative MRI U0 U1 U2

1
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3

4

5
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that minimized the mean squared distance between corre-
sponding landmarks in the two images.

We note that while the above rigid registration method is 
labor-intensive, it was used in this study for the sole purpose 
of being able to drive both methods with identical features 
so that a fair comparison could be made. This step is not 
required by the FEM method, and small errors in the initial 
rigid registration in this study do not impact the ability of 
the FEM method to accurately model brain shift between 
iUS image acquisitions.

Manually identified landmarks in iUS

To provide a ground truth for assessing the accuracy of the 
brain shift compensation methods, we manually identified 
ten corresponding landmarks in each iUS images for each 
patient. Landmarks were selected as image features that 
could be spatially localized in 3D, visible in all the patients’ 
iUS images and as dispersed as possible throughout the iUS 
volumes. These landmarks were identified by a computer 
image processing expert (first rater, R1) and validated by 
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15

Fig. 1  (continued)
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two MDs (raters R2 and R3). Given landmarks identified 
by R1 in U0, R2 and R3 each located corresponding land-
marks in U1 and U2 for each patient, thus providing three 
locations for each landmark in U1 and U2. In addition, each 
location was reviewed by an independent rater and assigned 
a confidence score of very high, high, acceptable, low or 
no confidence, which roughly corresponded to a perceived 
error of less than 1 mm, 3 mm, 5 mm, 10 mm or greater 
than 10 mm. Each rater located and rated 250 landmarks. 
Of these, 16, 36 and 24 points located by raters R1, R2 and 
R3, respectively, were assigned a confidence score that was 
less than acceptable. After excluding these points from the 
data, it was found that the average of the distances from each 
landmark to the mean location of that landmark across the 
three raters was 1.3 ± 0.6 mm.

Automatic detection of matched features

A set of matched features was automatically generated for 
each pair of iUS to iUS images. These features were gen-
erated and matched using the SIFT-Rank method [34]. A 
detailed description of this approach and a validation of the 
quality and accuracy of the automatic features in clinical iUS 
acquired during neurosurgery are provided in [32]. Features 
detected by this method are typically dark or light regions 
of roughly spherical shape. In this study, we used the same 
SIFT-Rank parameters detailed in [32] and did not attempt 
to modify parameters when the method failed to generate 
valid features, often due to poor US quality, as occurred in 
eight of 32 possible iUS to iUS image pairs. Instead, those 
pairs were excluded from this study. The number of auto-
matic features for each iUS to iUS pair is identified in square 
brackets in Table 3.

Sparse displacement data

A set of displacement vectors between matched automatic 
features was computed for each iUS to iUS image pair. 
These displacement vectors, which represent a sparse set of 
brain shift measurements, were then used to drive both the 
thin-plate spline deformation and the FEM-based model of 
brain shift.

Thin‑plate spline deformation modeling

A thin-plate spline is a function of piecewise polynomials 
defining a deformation that maps one set of points onto a set 
of corresponding points [37]. In our case, we seek a defor-
mation D that maps automatic features from U0 to matched 
automatic features in U1 or U2. For a set of K automatic 
features Pi, i ∈ [1, K] in U0 and corresponding matched 
automatic features Qi in U1 or U2, the thin-plate spline 
deformation D minimizes the energy function

The thin-plate spline is known as an ‘interpolating 
spline’ because the optimal D maps each point Pi directly 
onto its corresponding point Qi. For this reason, distances 
between corresponding automatic features after spline-
based deformation are approximately zero. This was 
verified and not reported in Table 3. A thin-plate spline 
algorithm is implemented in the 3D Slicer’s Landmark 
Registration Module and used to generate a thin-plate 
spline deformation for each iUS to iUS image pair.

In this study, for each iUS to iUS image pair, we gen-
erated a thin-plate spline deformation in 3D Slicer using 
automatically detected and matched features and applied 
the deformation to the manually identified landmarks of 
the iUS to iUS image pair. A good deformation forces dis-
tances between corresponding automatic features to zero 
and reduces distances between corresponding manually 
identified landmarks.

Finite element method (FEM) for deformation modeling

We used a biophysical computation finite element method 
(FEM) of brain shift that we have presented previously 
[33, 38, 39]. This method precomputes an atlas of possible 
brain shift deformations from an FEM model of the brain, 
subject to a range of contributing factors such as gravity-
induced shift and osmotic agent-induced shift. It uses 
sparse measurements of brain shift and an inverse prob-
lem approach to minimize the least squared error between 
the sparse measurements and the model prediction, where 
the model prediction is a linear combination of solutions 
from the deformation atlas. To initialize the FEM model, 
each patient’s brain, tumor and dural reflections (i.e., falx 
and tentorium) were segmented in the preoperative MRI 
images via a combination of manual and automatic meth-
ods and used to generate surface models of these neuro-
anatomical structures. A custom mesh generator was then 
used to generate a biphasic biomechanical FEM model for 
each patient. The approach and parameters that we used in 
this study are detailed in [33].

For each pair of iUS to iUS images, we generated an 
FEM deformation model from the sparse measurements 
of brain shift (i.e., distances between the automatically 
detected and matched features) and applied the deforma-
tion model to the manually identified landmarks for the 
same iUS to iUS image pair. A good deformation model 
reduces distances between automatic features and between 
corresponding manually identified landmarks.

(1)E(D) =

K
∑

i=1

∥ D
(

Pi

)

− Qi
2 ∥
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Results

Results are presented in Tables 2, 3 and 4. Table 2 presents 
initial registration errors and residual registration errors 
after rigid registration. Table 3 shows brain shift between 
iUS acquisitions and brain shift correction using sparse data 
from intraoperative ultrasound for both the thin-plate spline 
method and the FEM method described above. Table 4 pre-
sents the brain shift before and after brain shift compensa-
tion averaged over all patients and iUS–iUS image pairs.

Initial registration error

The initial registration error was measured, for each patient, 
as the average distance between corresponding manually 
identified landmarks in preoperative MRI and the first iUS 
image (U0). This initial registration error ranged from 2.42 
to 9.89 mm for the 15 patients in our study. The initial reg-
istration error averaged across all 15 patients was 5.26 mm 
with a standard deviation of 0.75 mm.

Displacements between corresponding manual landmarks 
were used to compute a rigid, affine registration from the 
preoperative MRI to U0 for each patient using 3D Slicer’s 
Fiducial Registration Module. After applying this rigid 
registration, the residual registration error between manual 
landmarks ranged from 1.29 to 3.83 mm and the residual 
registration error averaged across all 15 patients was reduced 

to 1.87 mm with a standard deviation of 0.57 mm. Table 2 
details the initial registration errors and residual registration 
errors after rigid registration and the mean results for all 15 
patients.

Brain shift

Brain shift between iUS acquisitions before and after brain 
shift compensation is presented in Tables 3 and 4. Brain shift 
between iUS pairs is measured as the average initial distance 
between corresponding manually identified landmarks in the 
iUS images. For all patients, these measurements correlate 
closely with the average initial distance between correspond-
ing automatic features, providing independent validation that 
the automatic features provide an accurate representation 
of brain shift and were thus a good source of sparse data to 
drive the thin-plate spline and FEM methods.

The average brain shift ranged from 0.77 to 7.66 mm 
using manual landmarks and 0.81 to 9.29 mm using auto-
matic features. These results are detailed in Table 3. The 
largest brain shifts (7.66 and 9.29 mm) were both observed 
between U0 and U2 in patient 3, whose lesion included a 
large cystic component that was drained during resection 
(see Fig. 1).

The initial average measured brain shift across all iUS 
to iUS pairs was 2.42  mm for manual landmarks and 
2.52 mm for automatic features. When subgrouped by sur-
gical interval, the average brain shift across all patients was 
2.00/2.11 mm (landmarks/features) from U0 to U1 and 
3.05/3.05 mm (landmarks/features) from U0 to U2, showing 
an increase in brain shift as surgery progressed, as expected.

For most patients, the average brain shift was reduced 
after applying both the thin-plate spline and FEM defor-
mations, with smaller improvements for smaller initial 
brain shifts. Typically, FEM provided larger improvements 
than thin-plate splines for larger initial brain shifts. In 
some cases, one or both methods reduced the registration 
accuracy slightly. In two iUS to iUS pairs, the thin-plate 
spline method reduced registration accuracy by a relatively 
large amount (e.g., patient 3, U0 to U2 and patient 12, 
U0 to U1). As shown in Table 4, when averaged over all 
iUS to iUS pairs, both thin-plate spline and FEM provide 
only small improvements, with thin-plate spline showing 
slightly better results when modeling initial deformations 
between U0 and U1 and FEM showing better results in 
the presence of resection (i.e., between U0 and U2). The 
FEM method provided more consistent results (i.e., less 
variance in the amount of brain shift correction) than the 
spline-based method. Statistical analysis shows that the 
FEM method produced statistically significant brain shift 
correction using a one-sided t test paired for two sam-
ple means (initial landmark displacements vs. landmark 
displacements after FEM) assuming unequal variances 

Table 2  Initial registration error for each patient is presented as the 
mean distance between corresponding manually identified landmarks 
in preoperative MRI and the first iUS image (U0)

Patient Initial registration error: MRI to U0

Mean initial distance 
between landmarks (SD) 
[#landmarks] (mm)

Mean distance between land-
marks after rigid registration 
(mm)

1 3.74 (0.75) [5] 1.98 (0.96)
2 6.78 (3.40) [6] 3.65 (1.29)
3 9.89 (1.30) [6] 2.02 (0.65)
4 3.14 (1.24) [6] 1.81 (1.20)
5 3.20 (0.65) [5] 2.02 (1.14)
6 4.96 (0.40) [6] 1.61 (0.30)
7 2.42 (1.40) [6] 1.84 (0.46)
8 4.12 (0.80) [6] 1.75 (0.87)
9 6.27 (1.11) [6] 1.38 (0.39)
10 5.99 (1.76) [6] 1.51 (1.03)
11 7.05 (0.61) [6] 1.20 (0.55)
12 6.50 (0.51) [6] 2.10 (0.93)
13 6.04 (1.16) [6] 2.21 (0.50)
14 6.98 (1.61) [6] 1.49 (0.55)
15 2.49 (0.65) [6] 1.52 (0.71)
Mean 5.26 (0.75) 1.87 (0.57)
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(p = 0.002 which is significant at the 0.05 level). However, 
because of the relatively large variance in spline-based 
method results, our study did not find evidence that the 
spline-based method provided statistically significant brain 
shift correction nor did it find a statistically significant dif-
ference between the FEM and spline-based results.

Discussion and conclusions

This study showed that brain shift occurring between iUS 
acquisitions was typically smaller than the initial registra-
tion error. It showed that thin-plate splines tended to be 

Table 3  Brain shift for each patient before and after brain shift compensation for each pair of iUS images

Brain shift is measured as the mean distance between (1) automatically generated features and (2) manually identified landmarks

Patient Brain shift: iUS to iUS

(1) Mean distance between automatic 
features (SD) [#features] (mm)

(2) Mean distance between manual landmarks (SD) [#land-
marks] (mm)

iUS to iUS pair Initial After FEM Initial After thin-plate spline After FEM

1 U0–U1 1.71 (0.79) [46] 1.89 (0.73) 1.53 (0.87) [10] 1.31 (0.67) 1.76 (0.64)
2 U0–U1 4.20 (0.81) [19] 1.43 (0.72) 3.16 (0.06) [10] 1.34 (0.68) 1.71 (0.83)

U0–U2 2.51 (1.08) [7] 1.63 (0.79) 2.00 (0.93) [10] 2.80 (1.61) 1.67 (0.78)
3 U0–U1 1.55 (0.86) [26] 1.52 (0.81) 1.28 (0.43) [8] 0.67 (0.31) 1.13 (0.51)

U0–U2 9.29 (1.59) [5] 7.48 (2.95) 7.66 (5.18) [10] 13.8 (8.57) 7.17 (4.38)
4 U0–U1 1.59 (0.77) [112] 1.16 (0.64) 1.77 (1.22) [10] 1.29 (0.75) 1.53 (0.79)

U0–U2 2.85 (1.53) [16] 1.67 (0.93) 2.93 (1.05) [10] 1.88 (1.00) 1.38 (0.56)
5 U0–U1 0.81 (0.63) [363] 0.81 (0.64) 0.77 (0.40) [10] 0.84 (0.50) 0.82 (0.50)

U0–U2 2.13 (0.72) [87] 1.16 (0.67) 2.33 (1.12) [10] 1.54 (1.37) 1.46 (1.06)
6 U0–U1 2.22 (1.25) [8] 1.16 (0.39) 2.08 (0.80) [9] 2.58 (1.15) 2.06 (1.01)
7 U0–U1 1.34 (0.66) [67] 0.99 (0.61) 1.96 (1.22) [10] 1.72 (0.75) 1.64 (0.86)

U0–U2 2.60 (1.39) [41] 1.33 (1.04) 3.25 (0.99) [9] 2.10 (1.20) 1.27 (0.62)
8 U0–U1 2.68 (0.95) [32] 2.59 (0.94) 2.19 (0.86) [10] 1.61 (0.67) 2.07 (0.60)
9 U0–U1 3.15 (0.60) [67] 2.19 (0.87) 2.97 (0.84) [10] 0.80 (0.40) 2.14 (0.89)

U0–U2 2.97 (0.98) [14] 1.81 (1.00) 3.15 (1.15) [10] 2.66 (1.35) 2.12 (0.96)
10 U0–U1 2.31 (0.89) [10] 1.58 (0.75) 2.08 (0.77) [9] 2.53 (1.47) 2.44 (0.82)

U0–U2 1.79 (1.55) [46] 1.70 (1.56) 1.64 (0.78) [10] 1.57 (0.64) 1.62 (0.85)
11 U0–U1 2.75 (0.92) [39] 2.15 (0.83) 2.82 (0.96) [10] 2.05 (1.12) 2.46 (1.31)
12 U0–U1 2.00 (0.54) [6] 2.00 (0.45) 2.21 (2.17) [10] 5.12 (3.67) 2.14 (2.09)

U0–U2 1.34 (0.66) [48] 1.28 (0.67) 1.75 (1.27) [10] 1.49 (0.92) 1.56 (1.14)
13 U0–U1 1.58 (0.77) [13] 1.50 (0.68) 2.10 (0.89) [9] 2.17 (1.12) 2.41 (1.02)

U0–U2 2.45 (0.80) [12] 1.60 (0.86) 2.64 (1.12) [10] 1.92 (0.78) 2.10 (0.98)
14 U0–U2 2.12 (0.83) [4] 1.70 (0.51) 2.21 (1.75) [10] 2.48 (1.46) 1.81 (1.01)
15 U0–U2 1.71 (0.79) [46] 1.89 (0.73) 1.53 (0.87) [10] 1.31 (0.67) 1.76 (0.64)
Mean 2.52 (1.65) 1.84 (1.30) 2.46 (1.30) 2.44 (2.63) 2.02 (1.18)

Table 4  Average brain shift for 
automatic features and manual 
landmarks before and after brain 
shift correction

Brain shift results are reported for all iUS to iUS pairs (U0–U1 and U0–U2) and separately for U0–U1 and 
U0–U2

Registration pairs Average brain shift: iUS to iUS

Average distance (SD) 
between automatic features 
(mm)

Average distance (SD) between manual landmarks 
(mm)

Initial After FEM Initial After thin-plate spline After FEM

U0–U1 2.11 (0.91) 1.57 (0.52) 2.00 (0.68) 1.52 (0.60) 1.76 (0.47)
U0–U2 3.05 (2.23) 2.19 (1.87) 3.05 (1.68) 3.64 (3.69) 2.35 (1.73)
U0–U1 and U1–U2 2.52 (1.65) 1.84 (1.30) 2.46 (1.30) 2.44 (2.63) 2.02 (1.18)
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better than FEM at compensating for small initial brain 
shifts that occur when opening the dura. This is consistent 
with our previous results [39] where we reported the best 
results for our FEM method when brain shift was greater 
than 3 mm. This study also showed that the FEM method 
performed better than thin-plate splines in the presence of 
significant resection. The thin-plate spline method fared 
poorly in two of the 24 iUS to iUS pairs, increasing the 
registration error by a factor of nearly two or more. This 
failure occurred when there were larger brain shifts (i.e., 
patient 3 where the mean brain shift was greater than 
9 mm) and when the automatically detected features used 
to drive the spline model were located far away from the 
manually identified landmarks (i.e., patient 12).

We observed smaller brain shifts in the 15 brain tumor 
resections reported in this study than previously reported 
[6–8]. There are several possibilities for this discrepancy. 
It is possible, e.g., due to smaller craniotomies and better 
control of intracranial pressure with the use of mannitol and 
other medications, that there is less brain shift today than in 
the past. It is possible that the patient population in this study 
was different than in studies reported in the literature since 
patients in this study were selected solely because their sur-
geries were performed in AMIGO and not because there was 
risk of large brain shifts. Some patients, e.g., patients 4, 5, 
and 9, had particularly small lesions where little brain shift 
would have been expected. Other significant factors include 
the way in which brain shift was measured in this study. 
First, we report measurements of brain shift at deep struc-
tures in the brain while the literature mostly reports shifts at 
the cortical surface. Second, by performing an initial rigid 
registration from preoperative MRI to U0 before measuring 
brain shift, we removed a relatively large component that 
is often included in measurements of brain shift. Third, it 
was often challenging to find landmarks and features in the 
iUS images. The most easily identified landmarks tend to be 
located in the falx and sulcal folds, and these structures tend 
to shift less than brain parenchyma and tend to be relatively 
remote from the tumor margin. Thus, it is likely that our 
measurements of brain shift were smaller than actual shift at 
tumor margins due to the location of our manual landmarks 
and automatic features. We are currently investigating new 
methods for identifying both landmarks and features at or 
near tumor margins and resection boundaries.

This study shows that FEM methods, which incorporate 
patient-specific physical and geometric constraints, may pro-
vide better modeling of brain shift as tumor resection pro-
gresses during surgery than thin-plate spline deformation. 
Although the FEM method used in this study requires time-
consuming preprocessing to build the initial FEM model 
from preoperative MRI and generate the deformation atlas 
used during surgery, both methods can compute brain shift 
correction within a few minutes and are thus suitable for 

interactive brain shift compensation in the operating room. 
This study suggests that iUS could be used to correct for 
initial registration errors caused by misregistration and/or 
brain shift that occurs before the craniotomy. Finally, it sug-
gests that accurate modeling of brain shift at tumor margins 
and resection boundaries will require developing algorithms 
that can measure brain shift at those locations.
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