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ABSTRACT

Von Neumann stability analysis is performed for a Galerkin �nite element formulation of Biot’s consolida-
tion equations on two-dimensional bilinear elements. Two dimensionless groups—the Time Factor and Void
Factor—are identi�ed and these quantities, along with the time-integration weighting, are used to explore the
stability implications for variations in physical property and discretization parameters. The results show that
the presence and persistence of stable spurious oscillations in the pore pressure are in
uenced by the ratio
of time-step size to the square of the space-step for �xed time-integration weightings and physical property
selections. In general, increasing the time-step or decreasing the mesh spacing has a smoothing e�ect on
the discrete solution, however, special cases exist that violate this generality which can be readily identi�ed
through the Von Neumann approach. The analysis also reveals that explicitly dominated schemes are not
stable for saturated media and only become possible through a decoupling of the equilibrium and continuity
equations. In the case of unsaturated media, a break down in the Von Neumann results has been shown to
occur due to the in
uence of boundary conditions on stability. ? 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the �eld of soil mechanics, it is a well-known fact that soil subjected to an instantaneous load
deforms in two distinct stages. The �rst stage is an instantaneous deformation at the contact area,
followed by the second stage consisting of additional deformation caused by the settlement of soil
over time.1 The initial deformation is an elastic displacement of the solid matrix, with exiting pore

uid inducing the subsequent displacement. This process is known as soil consolidation and was
�rst modeled in one dimension by Terzaghi.2 Terzaghi considered the soil as a porous sponge-like
material consisting of a solid matrix saturated with a pore 
uid, usually water. Following Terzaghi,
Biot presented a general theory for three-dimensional consolidation.3

Although consolidation theory has been primarily used in the �eld of soil mechanics, recently
there has been an emerging interest in applying this theory to soft tissue mechanics.4–7 Due to the
viscoelastic nature of soft tissue, consolidation may prove to be an amenable modelling theory. By
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relating volumetric strain to media hydration, consolidation theory provides a potentially powerful
tool for analysing the mechanical behaviour of tissue.
One of the most common computational schemes for consolidation problems is the Galerkin

Finite Element Method (GFEM). While the formulation of the consolidation equations on �nite
elements is relatively straightforward and examples of computational successes abound in the
literature,4–6; 8; 9 only a modest amount of attention has been devoted to analysing the stability
of this system of equations. In particular, Booker and Small10 examined the stability of several
time-stepping FEM formulations by using a Laplace transform approximation. In their analysis
they assumed a fully saturated medium and concluded that schemes weighing implicit information
more than explicit information are always stable. They also indicated that stable, explicitly dom-
inated methods are possible and provided a time step criterion. Recently, Murad and Loula11; 12

studied pore-pressure oscillations at certain spatial and temporal discretizations during the early
stages of consolidation using equal order interpolation and Taylor–Hood13; 14 mixed interpolation
elements. With equal order interpolation they found that spurious spatial oscillations occur early in
the consolidation process and are a result of an incorrect incompressibility constraint on the initial
condition.11 In addition, they indicate that although Taylor–Hood elements are stable they lead to
an approximation for pore pressure which is one order lower in convergence than the displace-
ment �eld. They also proposed a sequential Galerkin/Petrov–Galerkin post-processing technique to
recover accuracy.12 These mathematically elegant studies have been useful for highlighting certain
computational features of FEM solutions of the consolidation equations especially for the Taylor–
Hood type of interpolation scheme. However, the insights gained from a Von Neumann stability
analysis have yet to be appreciated for FEM consolidation.
The goal of this paper is to explore Von Neumann stability analysis of the GFEM for the

Biot problem using equal order interpolation elements (bilinear). While mixed elements have been
demonstrated to o�er certain attractive features vis-�a-vis the suppression of transient pore pressure
spatial oscillations, the practical utility of exploiting the simplest interpolation schemes (i.e. equal-
order linear elements) is considerable especially in large-scale three-dimensional computations
which occur in complex brain tissue models.15; 16 As a result there is signi�cant interest in and
rationale for examining the numerical stability of equal-order linear elements and the Von Neumann
approach is a previously untapped vehicle for exploring the discrete behaviour of the Biot equations
in this regard. Although the underlying details would be di�erent if other interpolation schemes
were to be analysed in this way, the predominant discrete system behaviours which have been
noted by others are demonstrated to be readily predicted with this analysis. New insights are also
gained.
For example, the results concerning soil-dependent parameters show that materials with low

shear moduli or low hydraulic conductivity decrease the stability of a Galerkin discrete form of
the equations. Increasing the spatial resolution has a stabilizing e�ect while increasing temporal
resolution does not stabilize in this case. In fact, the development of two dimensionless groups
through the Von Neumann analysis highlights the �nding that, all else being equal, it is the ratio of
the time-step to the square of the space-step size which in
uences the presence and persistence of
stable oscillations in the pore pressure. In a fully saturated media, the only reliable time-stepping
method which always avoids all unstable and oscillatory temporal behaviour is found to be a
fully implicit time-stepping scheme, whereas in unsaturated media, explicitly dominated methods
are possible but only when the system of equations is decoupled. In addition, it is shown that
reliable combinatory explicit/implicit schemes are possible provided the implicit information is
more heavily weighted.
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2. BASIC EQUATIONS

The theory of general consolidation proposed by Biot assumes that the soil is a linearly elastic
isotropic solid experiencing small strains.3 The theory also assumes that the pore 
uid/liquid is
incompressible, 
ows in accordance with Darcy’s law and may contain gaseous voids (i.e. air bub-
bles) which makes the pore pressure medium potentially compressible. The equations incorporating
two-dimensional plane strain mechanical equilibrium in Cartesian co-ordinates for a homogenous,
linearly elastic continuum as described by Biot are:

G∇2u+
G

1− 2�
@�
@x

− �@p
@x

= 0 (1)

G∇2v+
G

1− 2�
@�
@y

− � @p
@y
= 0 (2)

where G is shear modulus, � is Poisson’s ratio, � is the ratio of water volume extracted to the
volume change of the soil, assuming the soil is being compressed and independent variables,
u; v are the x; y displacements in the Cartesian plane, p is the pore 
uid pressure and � is the
volumetric strain, � = @u=@x + @v=@y.
In order to complete the continuum model, a constitutive relationship relating volumetric strain

and 
uid pressure is required. The �nal constitutive equation describing this relationship is

∇ · k∇p− �@�
@t

− 1
S
@p
@t
= 0 (3)

which contains additional constants, k as the coe�cient of hydraulic conductivity and 1=S as the
amount of water which can be forced into the soil under pressure while the volume of soil is kept
constant.
The �rst two terms in equation (3) provide the necessary coupling between volumetric strain

and pore 
uid pressure. The last term is created to account for the small gaseous voids in the
media by making the pore pressure medium compressible.† Equations (1)–(3) can be written more
compactly in terms of the unknown vector displacement u and pressure p

G∇ · ∇u + G
1− 2�∇(∇ · u)− �∇p = 0 (4a)

�
@
@t
(∇ · u) + 1

S
@p
@t

−∇ · k∇p = 0 (4b)

Standard weighted residual treatment of equation set (4) yields the coupled weak forms〈
G∇u · ∇�i

〉
+
〈 G
1− 2� (∇ · u)∇�i

〉
+
〈
�∇p�i

〉
=

∮
Gn̂ · ∇u�i ds+

∮
G

1− 2� n̂(∇ · u)�i ds (5a)

† Consistent with Biot’s nomenclature, the term saturated will be used to describe incompressible media in the pore space
(i.e. � = 1, 1=S = 0) while unsaturated will be used to refer to a compressible media in the pore space (i.e. � ¡ 1,
1=S ¿ 0)
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〈
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(∇ · u)�i

〉
+
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@t
�i
〉
+
〈
k∇p · ∇�i

〉
=

∮
kn̂ · ∇p�i ds (5b)

where 〈·〉 indicates integration over the problem domain and
∮
is integration over its associated

boundary. Here, �i is the ith member of a complete set of scalar functions of position, in particular,
the usual C0 local Lagrangian interpolant associated with �nite elements. Discretization of (5)
is completed in Galerkin fashion in space leading to ordinary di�erential equations which are
integrated in time using the simple two-point weighting17∫ tn+1

tn
f(t) dt = �t [�f(tn+1) + (1− �)f(tn)]

where �t = tn+1 − tn and 06�61. In two-dimensional Cartesian co-ordinates this produces the
two-level discrete system which is expressible as matrix equation

AUn+1 = BUn + Cn+� (6)

where A and B are composed of the submatrices
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with �̃ = −(1− �) and U and C as the subvectors

Un
j =



uj(tn)

vj(tn)

pj(tn)


 (9)
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Cn+�i =




x̂ ·
∮
�s(tn+�) · n̂�i ds

ŷ ·
∮
�s(tn+�) · n̂�i ds

�t
∮
k∇p(tn+�) · n̂�i ds




(10)

In (10), �s(tn+�) is the linearly elastic stress tensor evaluated at time tn+� (i.e. �s(tn+�) =
��s(tn+1)+(1−�)�s(tn)) which expresses the boundary integrals in terms of normal stresses which
are the natural boundary conditions for the mechanical equilibrium equations. Note that reaching
this form requires some further manipulation of the boundary and volume terms emerging directly
from the discrete versions of (5a).16

3. STABILITY ANALYSIS METHOD

Von Neumann stability analysis is an extremely useful method for understanding the propagation of
errors in linear di�erence equations. By considering a general term in the closed-form Fourier series
solution of the discrete system (prior to application of problem-dependent boundary and/or initial
conditions), one can examine the potential for ampli�cation of any of the possible Fourier modes
which are sustainable on a discrete mesh. While problem dependent boundary/initial conditions may
self-select a subset of these modes, the inevitable presence of rounding error precludes exclusion
of any portions of the discrete Fourier spectrum in terms of stability analysis. Using this approach,
the solution at space–time point (tn+1, xi+1, yj+1) can be related to that at space–time point (tn,
xi, yj) through the relationship

un+1i+1;j+1 = e
��te j�he j�huni (11)

where j in the exponential is
√−1 and �h, �h are the dimensionless wave numbers in the x

and y directions, respectively, on a uniform mesh with space–time discretization xi+1 = xi + h,
yj+1 = yj + h, tn+1 = tn +�t. Stability analysis in this context then amounts to ensuring |
|61,
where 
 = e��t , over all possible values of �h; �h ranging between 0 (in�nite wavelength) and �
(shortest wavelength on a discrete mesh).17

The di�erence relationships between nodal unknowns which result from the integration of the
spatial variations appearing in submatrices Aij, and Bij in equations (7) and (8), when completely
assembled for a single weighting function on a uniform mesh of bilinear elements, are given
in column 2 of Table I.18 These expressions are straight forward to produce and reminiscent of
classical �nite di�erences except for the additional averaging of neighbouring unknowns associated
with �nite element discretization. In Table I, the �rst column represents various Galerkin weighted
residual terms with � serving as the basis and weighting functions and i; j being the nodal indices.
In the second column the i; j indexing in the di�erence expressions denotes a single-node location
at (xi, yj) within the uniform mesh. Substituting equation (11) into these expressions produces the
entries in column 3 which have been rewritten in terms of the identities presented in Table II.18

Note that the quantities in Table II can be viewed as �nite element discretization factors in the
sense that they all approach unity as �h = �h → 0 (i.e. their continuum counterparts). Further,
the �nite-di�erence analogs can be obtained by dividing through by h2 and setting the averaging
factors Ax and Ay to unity.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 955–974 (1998)



960 M. I. MIGA, K. D. PAULSEN AND F. E. KENNEDY

Table I. Di�erence expressions and fourier descriptions

FEM term Di�erence expression Fourier description

1
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h
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h
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@y
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〉

+ h
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h
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h2
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〈
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Table II. De�nition of discretization factors for solutions
of the form u = uijei(�x+�y) (�x = �y = h is the mesh

spacing)

Ax =
4 + 2 cos(�h)

6
Ay =

4 + 2 cos(�h)
6

Bx =
sin(�h)
�h

By =
sin(�h)
�h

Cx =
sin(�h=2)

�h
2

Cy =
sin(�h=2)

�h
2

In the absence of any boundary conditions, matrix system (6) can now be recast as







�Ga �Gb ��hc

�Gb �Gd ��he

�hc �he 1
S h
2g+

��tkf



{ uij
vij
pij

}n

−




�̃Ga �̃Gb �̃�hc
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�hc �he 1
S h
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
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{ uij
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0
0
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(12)
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with

a =
2(1− �)
1− 2� AyC

2
x �
2h2 + AxC2y�

2h2 (13)

b =
2�

1− 2�BxBy�h�h+ BxBy�h�h (14)

c = jAyBx�h (15)

d =
2(1− �)
1− 2� AxC

2
y�
2h2 + AyC2x �

2h2 (16)

e = jAxBy�h (17)

f = AyC2x �
2h2 + AxC2y�

2h2 (18)

and

g = AxAy (19)

where Ax; Ay; Bx; By; Cx; and Cy are the discretization factors in Table II. Simplifying further the
system becomes



(�(
− 1) + 1)Ga (�(
− 1) + 1)Gb (�(
− 1) + 1)�hc

(�(
− 1) + 1)Gb (�(
− 1) + 1)Gd (�(
− 1) + 1)�he

(
− 1)�hc (
− 1)�he (
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(��t(
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

{ uij
vij
pij

}n

=

{ 0
0
0

}
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For a non-trivial solution of (20), the determinant is required to vanish which yields

G2(ad− b2)
(
��tkf +

1
S
h2g+

�tkf

− 1

)
+ G�2h2(2bec − dc2 − ae2) = 0 (21)

after dividing out the factor (�(
−1)+1) from the �rst two equations and the factor (
−1) in the
third equation of (20). Solving (21) for 
 leads to a more compact expression for the ampli�cation
factor shown here,


 = 1− �tkf
(�2h2=G)X + ��tkf + (1=S)h2g

(22)

where

X =
2bec − dc2 − ae2

ad− b2 (23)

After further manipulation, two dimensionless groups can be isolated,


 = 1− f
(1=Tf)X + �f + (1=Tg)g

(24)

where

Tf =
Gk�t
�2h2

(25)
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Tg =
�tk
h2(1=S)

(26)

Interestingly, these two dimensionless numbers relate nicely to Biot’s formulation of the consoli-
dation constant C,3

1
C
= �2

a∗

k
+
1=S
k

(27)

where a∗ = (1− 2�)=(2G(1− �)) which in dimensionless form can then be approximated in terms
of Tf and Tg as

h2

C�t
≈ 1
Tf
+
1
Tg

(28)

Tf is readily recognized as the soil mechanics dimensionless group known as the Time Factor,
T ,1; 8; 9 for completely saturated soils (i.e. � = 1, (1=S) = 0). In e�ect, this quantity represents the
ratio of the rate of pore 
uid transport to media compliance. The second dimensionless group is not
as well established in the literature due to the tendency to consider only saturated soils. It relates
the rate of pore 
uid transport to void volume compliance and will be designated as the Void
Factor, Tg, for the remainder of this paper. Note that a Void Factor value of in�nity corresponds
to a fully saturated medium (i.e. � = 1, 1=S = 0) while a very small Void Factor corresponds
to a decoupled system (� ¡ 1, 1=S ¿ 0) where the pressure is propagated independently by the
di�usion equation. By knowing only four dimensionless quantities, Tf; Tg; �; and �, stability can
be assessed for all natural physical and discretization dependent parameters.

4. RESULTS

In this section we present the Von Neumann stability analysis for the 2-D consolidation equa-
tions in terms of the dimensionless Time Factor, Tf, Void Factor, Tg, Poisson’s ratio, �, and
explicit/implicit weighting, �. Each stability graph reported represents the ampli�cation factor 

from equation (24) plotted as a function of the normalized spatial wave numbers which is referred
to here as a stability plane. As a point of reference, �h∗ = �h∗ = 0·2 corresponds to a mesh
sampling rate of 10 nodes/wavelength on the normalized axes shown in these �gures.
In Figure 1, stability is quanti�ed for varying Time Factor. The results indicate that increasing

the Time Factor has a stabilizing in
uence on the solution which is characterized by the stability
plane being pushed closer to zero for increasing Tf. With ampli�cation factors less than unity, all
Fourier spectral components decay with each successive time-step iteration causing the solution
(and any associated rounding errors) to become smoother over time. However, as the Time Factor
decreases, the decay of the high-frequency (large wave numbers) portions of the Fourier spectrum
decreases serving to preserve the potential for spurious spatial oscillations over longer time scales.
This behaviour can be readily illustrated using one of the predominant benchmark problems in the
soil consolidation literature.3

Compression of a column of soil under a uniform load in its simplest form is a one-dimensional
solution, however, it can be computed on two- and three-dimensional discretizations. Referring to
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Figure 1. Stability plane for dimensionless Time Factor (Tg =∞, � = 0, � = 1)

Figure 2, the boundary and initial conditions for this problem can be stated as:

Boundary 1: u = 0, �sy = 0,
@p
@x = 0

Boundary 2: �sx = 0, v = 0,
@p
@y = 0

Boundary 3: �sx = 0, �sy = −p0, p = 0
Initial Conditions: at t = 0, u = v = 0 and p = p0

To validate that the Galerkin �nite element formulation given in equations (4)–(10) has been
correctly implemented, comparisons between analytical and numerical solutions for this problem
were performed and have been shown to be accurate within 2 per cent of applied load.16 Figure
3 illustrates the e�ect of changing the Time Factor, Tf, on the computed pressure distribution at
various points in time for the soil column example. It is clear from Figure 3 that decreasing Tf
produces increased pore pressure oscillations while increasing this factor has the opposite e�ect
consistent with the Von Neumann analysis presented in Figure 1. Further, these oscillations decay
in time for both Tf values but damp faster as Tf increases, again as predicted. For a �xed set of
physical properties and the same time-integration weighting, the critical parameter becomes the ratio
of the time-step size to the square of the mesh spacing which governs the extent to which spatial
oscillations in the pore pressure exist and persist. Increasing Tf under these conditions can be

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 955–974 (1998)
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Figure 2. One-Dimensional analytical consolidation problem

equivalently accomplished by either increasing the time-step size or decreasing the mesh spacing;
hence, the notion of transient, early-time pore pressure spatial oscillations must be considered in
terms of the accompanying spatial resolution.
In Figure 4, it is shown that an increasing Void Factor also has an e�ect on stability which

is analogous to the Time Factor for a �xed set of property parameters. The in
uence of the
explicit/implicit weighting factor is demonstrated in Figure 5. The results indicate that explicitly
dominated schemes are not possible for Tg = ∞. Also, in order to avoid temporal oscillations
(i.e. −1 ¡ 
60), a fully implicit weighting is required (� = 1); however, decreasing Tf or Tg
can also be used to elevate the stability plane for a majority of wave numbers and is a viable
avenue for reducing this e�ect for semi-implicit (meaning � ¿ 0·5) time-stepping schemes. An
example of this special case is illustrated in Figures 6 and 7.
Figure 6 shows the stability plane calculated for two distinct values of Tf with an implicit/explicit

weighting of � = 0·6: In Figure 6, it is clear that the stability plane has risen by decreasing the
Time Factor. The overall e�ect is to create a more stable environment for solution progression.
This is quanti�ed in Table III which presents a simple characterization of both stability planes in
Figure 6 in terms of the average of the ampli�cation factor over all wave numbers and the averages
of the positive and negative ampli�cation factors in each case. Using the soil column problem,
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Figure 3. Pore pressure distribution with varying Time Factor (Tg =∞, � = 0, � = 1)
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Figure 4. Stability plane for varying dimensionless Void Factor (Tf = 1, � = 0, � = 1)

Figure 7 demonstrates the e�ect of reducing the Time Factor on the pore pressure distribution
in this case. In the �rst sub�gure, Tf was changed by altering the time step size and computed
solutions are compared to the analytic at the same point in time for �xed physical properties and
spatial discretization. It is clear that by decreasing Tf a more accurate solution is calculated due
to the improved suppresion of spurious high-frequency spectral components as predicted by Von
Neumann. The second sub�gure represents the value of pore pressure over time at a �xed point
in space. Again as predicted by Von Neumann, temporal oscillations have been suppressed by
decreasing Tf which reduces the number of Fourier modes with negative ampli�cation factors.
This example provides unique insight into the possibility of stable, accurate semi-implicit time-
stepping schemes and is an excellent demonstration of the predictive power of the Von Neumann
analysis.
It is also possible to relate Tf and Tg back to the physical property parameters assuming

the spatial and temporal discretizations are �xed. For example, materials which readily deform
in shear or have low hydraulic conductivity will have an adverse e�ect on stability. Materials
exemplifying these traits decrease the dimensionless Time Factor which has been shown to be
unfavorable. Table IV provides a qualitative summary of the in
uence of the primary physical and
discretization parameters on stability.
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Figure 5. Stability plane for varying explicit/implicit weighting (Tf = 1, Tg =∞, � = 0)

Another interesting �nding is that stable time stepping can only result from an implicitly dom-
inated scheme (i.e. � ¿ 0·5 or semi-implicit) for a saturated medium. In addition, to avoid
temporal oscillations in general, the scheme must be fully implicit (i.e. � = 1). Reliable semi-
implicit schemes are only possible for the case highlighted by Figures 6 and 7 which has analogous
examples using the Void Factor (i.e. 1=S ¿ 0, � ¡ 1). Similar to Tf, decreasing Tg can have the
e�ect of raising the stability plane which could satisfy 0¡ 
 ¡ 1 for the excited Fourier modes.
However, increasing the 1=S term (i.e. decreasing the Void Factor) can result in a breakdown in
the Von Neumann analysis due to boundary condition e�ects which are not considered.
Figure 8 is an example of a set of parameters where Von Neumann predicts a stable solution

when in fact the method is unstable in practice. Recall that in the case of a small Void Factor,
pressure is being driven by di�usion and the system is approaching a decoupled set of equations
(i.e. � = 0). Some insight can be gained as to how the boundary conditions serve to destroy
stability for explicitly dominated methods in the coupled unsaturated system by examining the
decoupled equations. The decoupled system can be written as

∇ · �s = 0 (29)
1
S
@p
@t

−∇ · k∇p = 0 (30)
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Figure 6. Stability plane for varying Tf weighting in the case of a semi-implicit time integration (Tg =∞, � = 0, � = 0·6)
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Figure 7. Pore pressure distribution with varying Time Factor in the case of a semi-implicit time integration
(Tg =∞, � = 0, � = 0·6)

where �s is the stress tensor. Following the same space–time discretization approach as described
previously, the equilibrium equations can be written as

�AUn+1 = �̃AUn + Cn+� (31)

The next task in solving such a system would be to implement boundary conditions, changing
(32) to

�A′Un+1 = �̃A∗Un + Cn+� (32)
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Table III. Quanti�cation of stability plane elevation in semi-implicit time
integration

Ampli�cation Average value Average value
factor (no. of values) Tf = 10 (no. of values) Tf = 0·1
Whole plane −0·62 (1369) −0·01 (1369)
Positive plane 0·41 (17) 0·48 (595)
Negative plane −0·63 (1352) −0·38 (774)

Table IV. Summary of stability e�ects from varying physical and independent
parameters

Parameter Parameter description Stability e�ect of increasing

G Shear modulus Favorable
� Poisson’s ratio Negligible
k Hydraulic conductivity Favorable
�
1=S Media saturation Favorable
h Average element length Unfavorable
�t Time step size Favorable
� Weighting of explicit/implicit Info. Favorable

The only di�erence between A′ and A∗ would be the rows corresponding to Dirichlet boundary
conditions. After the incorporation of boundary data (which must contain at least one Dirichlet
condition in order to maintain solution uniqueness) the iteration matrix, P,

P =
�̃
�
A′−1A∗ (33)

which advances the solution in time has a maximum eigenvalue

�max = max [eig(P)] = max

[
�̃
�
eig(A′−1A∗)

]
=
�̃
�
(1) = 1− 1

�
(34)

which is greater than one for � ¡ 0·5, hence, making the time evolution of the solution unstable
for these conditions. From this analysis, the following extrapolation can be made:

lim
Tg→0;�→0

max [eig(P)]⇒ 1− 1
�

(35)

This is an important result and indicates that stable explicitly dominated schemes are only
possible when the system of equations is decoupled (i.e. � = 0). By doing so, the only stability
limit considerations would arise from a classic di�usion equation analysis, in which case the
stability plane shown in Figure 8 is representative of the ampli�cation factor pro�le that would
result. It should be noted that while setting � = 0 does not represent soil consolidation in a physical
sense as Biot originally intended, considering this condition does provide a more complete picture
of the numerical stability of the full range of possibilities embodied within this mathematical
framework.
The �ndings regarding an explicitly dominated time-stepping scheme for a saturated medium

(i.e. � = 1, 1=S = 0) appear to con
ict with those reported by Booker and Small. In Booker’s
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Figure 8. Example stability plane of Von Neumann analysis breakdown (Tf = 5, Tg = 4e − 3, � = 0·3, � = 0·25)

approximation, the possibility of an explicitly dominated method for a saturated media was sug-
gested based on numerical calculations10 which led to the conclusions that:

(i) �¿0·5 always stable, and
(ii) � ¡ 0·5 is stable provided �t6 0·614×10−4

(0·5−�)
Figure 9 presents the stability plane resulting from the Von Neumann analysis using the same

parameter space and physical constant values as Booker. Interestingly, over 99 per cent of wave
numbers are within the stable range; however, there are certain wave numbers which will produce
an instability. The discrepancy between Figure 9 and the results from Booker could occur if the
Booker solution did not propagate long enough in time or if the initial conditions utilized did not
excite the unstable Fourier modes shown to exist in Figure 9. Another possible explanation for the
con
icting results could be a result of excessive solution restriction due to boundary conditions.
Von Neumann analysis does not include boundary condition e�ects, and the mesh used by Booker
has two nodes of every triangular element on a boundary, thus allowing only one degree of freedom
per element. Any combination of all these reasons could explain the di�erence between the Von
Neumann analysis presented here and the numerical experience recorded by Booker and Small.10

Murad and Loula also examined the stability characteristics of a Galerkin formulation of the
consolidation equations for saturated media. They observed ‘spurious oscillations in the pressure
�eld in the early stage of consolidation for some combination of displacement and pore-pressure
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Figure 9. Stability plane for comparing Booker and Small results (Tf = 3·2e − 4, Tg =∞, � = 0·25, � = 0·2)

�nite element spaces’.12 In their �rst paper, they use ‘numerical analysis, based on the concept
of elliptic projection of the exact solution as a comparison function, to derive error estimates of
the Galerkin approximation’.11 They go on to propose and implement a post-processing technique
to rectify these oscillations.12 Von Neumann analysis is also a useful tool in determining whether
such post-processing is required. Using the parameter space values given by Murad and Loula
which were found to precipitate spatial oscillations,11 Figure 10 presents the stability plane as
determined by Von Neumann. The predominant feature is that the ampli�cation factor has a value
of unity for virtually all wavenumbers. This would indicate strong neutrally stable characteristics
for this spatial/temporal discretization. In this case, round-o� error is not su�ciently suppressed
and spurious spatial oscillations can develop from the jump conditions induced at the initial time
step. By analysing spatial/temporal discretizations using the simple relationship given in (24), these
spurious oscillations can be predicted.

5. CONCLUSIONS

This analysis reveals that the dominant dimensionless parameters a�ecting stability of the Galerkin
FEM formulation of Biot’s two-dimensional consolidation equations are the Time Factor, Tf, Void
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Figure 10. Stability plane for comparing Murad and Loula results (Tf = 6·1e − 7, Tg =∞, � = 0·2, � = 1)

Factor, Tg, and the weighting between explicit and implicit information, � . It is shown that Biot’s
equations for saturated and unsaturated media must be solved with an implicitly dominated scheme
(i.e. � ¿ 0·5) unless the system is completely decoupled. The results also indicate that in order
to avoid all temporal oscillations in a saturated medium, the time stepping scheme must be fully
implicit (i.e. � = 1·0). Further, the presence and persistence of spatial oscillations in the pore
pressure solution are governed by the ratio of the time-step to the square of the space-step for a
�xed set of physical property values and time-integration weighting. Hence, the notorious problem
of early-time spatial oscillations in the pore pressure must be considered in terms of both the
time step and the mesh discretization. In addition, special cases arise which do allow accurate,
semi-implicit time stepping by decreasing either the Time Factor or Void Factor. However, a
breakdown in Von Neumann analysis is shown to occur for unsaturated media (i.e. Tg.Tf) as a
result of unaccounted boundary conditions which limits the ability to manipulate the Void Factor
to produce gains in computational performance. The analysis also predicts oscillations resulting
from the incorrect initial incompressibility constraint, as reported by Murad and Loula for certain
spatial/temporal discretizations. Finally, performing this analysis provides an improved understand-
ing of FEM solutions generated for Biot’s general theory of consolidation and makes available
guidelines for parameter selections in practical consolidation computations on �nite elements.
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