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Summary

In this experimental and
computational study, 3 bio-
physical models are devel-
oped and evaluated for their
ability to accurately describe
in vivo growth and response
after whole-brain radiation
therapy. Models that include
reduced proliferation after
radiation therapy more
accurately predicted future
tumor growth.
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Purpose: To develop and investigate a set of biophysical models based on a mechan-
ically coupled reaction-diffusion model of the spatiotemporal evolution of tumor
growth after radiation therapy.
Methods and Materials: Posteradiation therapy response is modeled using a cell
death model (Md), a reduced proliferation rate model (Mp), and cell death and reduced
proliferation model (Mdp). To evaluate each model, rats (n Z 12) with C6 gliomas
were imaged with diffusion-weighted magnetic resonance imaging (MRI) and
contrast-enhanced MRI at 7 time points over 2 weeks. Rats received either 20 or
40 Gy between the third and fourth imaging time point. Diffusion-weighted MRI
was used to estimate tumor cell number within enhancing regions in contrast-
enhanced MRI data. Each model was fit to the spatiotemporal evolution of tumor cell
number from time point 1 to time point 5 to estimate model parameters. The estimated
model parameters were then used to predict tumor growth at the final 2 imaging time
points. The model prediction was evaluated by calculating the error in tumor volume
estimates, average surface distance, and voxel-based cell number.
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Results: For both the rats treated with either 20 or 40 Gy, significantly lower error in
tumor volume, average surface distance, and voxel-based cell number was observed
for the Mdp and Mp models compared with the Md model. The Mdp model fit, however,
had significantly lower sum squared error compared with the Mp and Md models.
Conclusions: The results of this study indicate that for both doses, the Mp and Mdp

models result in accurate predictions of tumor growth, whereas the Md model poorly
describes response to radiation therapy. � 2017 Elsevier Inc. All rights reserved.
Introduction

For glioblastoma multiforme patients, radiation therapy is
typically administered after surgical resection to target any
residual or inoperable cancer (1). Unfortunately, with the
current standard-of-care therapy, nearly all glioblastoma
patients have progressive disease 7 to 10 months after
adjuvant treatment (2). Individualizing predictive models
on a patient-specific basis (3) could optimize radiation
therapy plans for the individual patient, to both maximize
tumor cell death and minimize exposure of healthy tissue.
Several groups have studied incorporating patient-specific
imaging information into biophysical models of tumor
growth (4-14), and recently these models have begun to
include response to radiation therapy (15).

Response to radiation therapy is commonly modeled
using the linear-quadratic (LQ) model, and this formalism
has been incorporated into several mathematical models of
radiation therapy response and planning (16-21) that use
medical imaging data to initialize and constrain patient-
specific tumor simulations (3). One such model, by
Rockne et al (16, 17), uses magnetic resonance imaging
(MRI) data acquired before and after the start of treatment
to evaluate various dose schedules or estimate a patient’s
radiosensitivity. Corwin et al (18) expanded upon Rockne
et al’s model to demonstrate an approach for individual-
izing intensity modulated radiation therapy plans. The
simulated optimized plans had a decreased exposure to
normal tissue and increased time to progression, by 63% to
93% and 21% to 105%, respectively, compared with the
simulated standard of care. Badoual et al (20) incorporated
a model of edema in addition to radiation therapy response
to recapitulate observations of posteradiation therapy
growth delay. Although these patient-specific radiation
therapy models demonstrate the potential value modeling
has for clinical radiation therapy, the accuracy and preci-
sion of these modeling approaches need to be validated
with in vivo experiments. Toward this end, in vivo imaging
measurements and histologic sections are used in this study
to assess the model prediction error of 3 models of response
to radiation therapy.

In this contribution we systematically evaluate the
ability of 3 biophysical models to describe and predict the
in vivo spatio-temporal development of C6 glioma growth
after radiation therapy differentiated by (1) cell death
immediately after radiation therapy (or Md model); (2) a
r (n/a) at Vanderbilt University  - NAL
ly. No other uses without permission. 
reduction of proliferation rate after radiation therapy (or Mp

model); and (3) the combination of cell death and reduced
proliferation rate (or Mdp model). Diffusion-weighted MRI
(DW-MRI) and contrast-enhanced MRI (CE-MRI) data
acquired before and after radiation therapy are used to es-
timate tumor cell count. The Md model is related to the LQ
model resulting in immediate cell death; that is, after
irradiation some fraction of the cells lose their clonogenic
survival, eventually resulting in predominantly apoptosis or
necrosis. The Md model assumes that the effect of radiation
therapy (ie, cell death) occurs over a relatively short period.
The Mp model assumes that irradiation predominantly
result in a reduced net proliferation of tumor cells. A dose-
dependent reduction in proliferation rate has been observed
in the C6 line (22) and may be due to cell cycle arrest (23)
or senescence. The Mp model, however, assumes that the
effect of radiation therapy is a long-term alteration of
growth kinetics. The Mdp model incorporates the effects
of both reduced proliferation and cell death to model
posteradiation therapy growth, providing a balance be-
tween the short- and long-term effects of radiation therapy.
The Md, Mp, and Mdp models are then fit to the measured
3-dimensional tumor cell count time courses. The estimated
model parameters are then used to predict future tumor
growth and response. The discrepancy between the
model prediction and the measured data is assessed at the
posteradiation therapy time points. The model prediction is
also compared with postmortem histologic analysis.

Methods and Materials

In vivo experiments

The experimental procedures were approved by our Institu-
tional Animal Care and Use Committee. Rats were anes-
thetized with 2% isoflurane in 98% oxygen for all imaging,
surgical, and irradiation procedures. Twelve female Wistar
rats (257 � 9 g, mean � 95% confidence interval) were
anesthetized and inoculated intracranially with 105 C6 gli-
oma cells via stereotaxic injection on day 0. On day 8, per-
manent jugular catheters were placed in each rat for injection
of an MRI contrast agent. Rats were imaged 3 times before
treatment (days 10, 12, and 14, or t1 through t3) and 4 times
after treatment (days 16.5, 18.5, 20.5, and 22.5, or t4 through
t7). Magnetic resonance images were acquired using a 9.4T
horizontal-boremagnet (Agilent, Santa Clara, CA). A pulsed
A Peak from ClinicalKey.com by Elsevier on October 31, 2018.
Copyright ©2018. Elsevier Inc. All rights reserved.



Hormuth et al. International Journal of Radiation Oncology � Biology � Physics1272
gradient fast spin echo DW-MRI (24, 25) sequence was used
to measure the apparent diffusion coefficient (ADC), which
was then used to estimate tissue cellularity as previously
described (8, 9, 26-28). A T1 map acquired using an
inversion-recovery snapshot experiment was used to identify
anatomic regions. A spoiled gradient echo CE-MRI experi-
ment was used to identify tumor regions of interests after the
injection of a 200-mL bolus (0.05mmol kg�1) of gadolinium-
diethylenetriamine-pentaacetic acid (Gado-DTPA; BioPal,
Worcester, MA). Magnetic resonance images were acquired
over a 32 � 32 � 16-mm3 field of view sampled with a
128 � 128 � 16 matrix (250 � 250 � 1000-mm voxel
resolution). Additional MRI experimental details are re-
ported in the Supplementary Material (available online at
www.redjournal.org).

Rats were irradiated with 20 Gy (n Z 5) or 40 Gy
(n Z 7) at a dose rate of 2.3 Gy/min with a Therapax DXT
300 x-ray machine (300 kVp/10 mA; Pantak, East Haven,
CT) on day 14.5 (trt). Large single-fraction doses were
selected for this initial study to elicit distinct responses for
model development and validation. During the irradiation
protocol, rats were shielded to minimize exposure outside
of the brain. At the conclusion of the last imaging study,
animals were killed, and the brain tissue was prepared
for histologic sectioning and staining with hematoxylin
and eosin and Ki-67. Additional histology details are re-
ported in the Supplementary Material (available online at
www.redjournal.org).

Biophysical models of tumor growth

Tumor growth is modeled using Equation 1, which de-
scribes the change in the distribution and number of tumor
cells due to the random movement of tumor cells (first term
on the right-hand side), the proliferation of cells (second
term on the right-hand side), and the death of cells due to
radiation therapy (third term on right-hand side):

vNðx; tÞ
vt

Z V$

�
qmaxDðx; tÞV

�
Nðx; tÞ
qðxÞ

��

þ kpðxÞ$RTpðx; tÞ$Nðx; tÞ
�
1 � N ðx; tÞ

qðxÞ
�

� RTdðx; tÞ$Nðx; tÞ

ð1Þ

where the number of tumor cells at 3-dimensional position
x and time t is Nðx; tÞ, qmax is the maximum number of cells
that can physically fit in a voxel (50,970 cells), Dðx; tÞ is a
mechanically coupled tumor cell diffusion coefficient (8, 9,
29, 30) (details in the Supplementary Material; available
online at www.redjournal.org), qðxÞ is the local carrying
capacity, kpðxÞ is the local proliferation rate, RTpðx; tÞ is a
posteradiation therapy proliferation function, and RTdðx; tÞ
is a posteradiation therapy death function. RTpðx; tÞ is
represented by a piecewise function, as in Equation 2:

RTpðx; tÞZ
�
fp;rtðxÞ t � trt
1 t < trt

ð2Þ
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where fp,rt is a reduced proliferation fraction. In this
implementation we are assuming that the long-term effects
of radiation will simply reduce the number of proliferating
cells or the effective proliferation rate. Thus, this model
does not consider long-term cell death or delayed cell
death. Similarly, RTdðx; tÞ is also represented by a piece-
wise function, as in Equation 3:

RTdðx; tÞZ
�
kd;rtðxÞ tZ trt

0 ts trt
ð3Þ

where kd,rt is the posteradiation therapy death rate. The
cell death term is assumed to occur instantaneously over a
single time step. We note that although the LQ model is not
explicitly used, the Md model plays an equivalent role.
Specifically, the model parameter kd,rt could be replaced
with an LQ formulation of cell survival (as done in refer-
ence [17]). Instead of fitting for a spatially varying kd,rt, we
could fit for a spatially varying a (and assume a fixed a/b
ratio and uniform dose distribution). The end result would
still be a fraction of cells that do not survive radiation
therapy. We decided to then simplify the model to capture
this effect as a single parameter that implicitly takes into
account dose and radiosensitivity. These 3 models represent
natural extensions of the LQ model to incorporate the
instantaneous and delayed effects of radiation therapy and
do so using imaging data that are available in the clinical
setting.

Measured values of Nðx; tÞ, Nmeasðx; tÞ, are obtained
using DW-MRI before and after radiation therapy (27, 28,
30). Pretreatment (t1 through t3) measurements of Nðx; tÞ
are used to solve an inverse problem (28, 30) to return
estimates of qðxÞ, kpðxÞ, and tumor cell diffusion. Simi-
larly, posttreatment measurements (t4 through t5) are then
used to solve an inverse problem to estimate kd,rt and fp,rt
voxel-wise within the tumor. Model parameters were
calibrated using a Levenberg-Marquardt least squares al-
gorithm (31, 32), which minimizes the error between the
modeled and measured cellularity. For the Md model, kd,rt
is estimated, and fp,rt is set to 1. For the Mp model, fp,rt is
estimated, and kd,rt is assigned to 0. For the Mdp model,
both kd,rt and fp,rt are estimated. Literature values used for
mechanical tissue properties (discussed in the
Supplementary Material; available online at www.
redjournal.org) were assigned from excised rat brain
samples (33, 34), though it would be preferable to measure
these parameters on an individual basis (potentially
through MR elastography [35]). Literature values were
also used to assign cell packing density (36) and the
average cell size (37). We further assume that the packing
density and cell size remain constant throughout the
duration of the experiment. (Future efforts could use
advanced diffusion approaches to measure, for example,
changes in cell size [38, 39]). The estimated model pa-
rameters are then used in a forward evaluation of the
model system, Nmodelðx; tÞ, to predict tumor growth at t6
and t7. The finite difference method was used to solve
A Peak from ClinicalKey.com by Elsevier on October 31, 2018.
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Equation 1 using a 3 dimension in space (250 � 250 �
1000-mm grid spacing) and fully explicit in time simula-
tion (time step of 0.01 days). (The Supplementary
Materials [available online at www.redjournal.org]
expand on the in vivo and computational details.)
Error analysis

The model prediction error was assessed using 2 metrics on
days t6 and t7. First, the differences between the predicted
and measured tumor size and shape were assessed by
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Fig. 1. Measured and simulated Nðx; tÞ for a rat irradiated wit
and h) Nðx; tÞ are shown for a rat irradiated with 20 Gy. The b
Nmeasðx; tÞ. Percent error between the measured and simulated Nð
indicating areas where Nmeasðx; tÞ Z 0. The tumor size was over
with the Mp model. The Mp and Md models had greater than 60%
Nmeasðx; tÞ (row c). The pretreatment parameters D0 and mean
posttreatment parameters were as follows: fp,Mp Z 0.38 � 0.06;
0.34 � 0.02.
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calculating the percent error in tumor volume and the
average surface distance (ASD), respectively. Second, within
overlapping regions of the predicted and measured tumors,
the percent error in cell number was calculated. The percent
error in tumor volume was determined by calculating the
percent difference between the predicted and the measured
estimates of tumor volume. The ASD reports the average
minimum distance between a voxel on the surface of the
model tumor volume and a voxel on the surface of
the measured tumor volume. The error in model fit poste
radiation therapy was calculated using a weighted sum
squared error (wSSE), described in the Supplementary
5 t6 t7

t3 t4

20 Gy

 (x,t)

meas)/Nmeas

meas)/Nmeas

rror

rror

rror

meas)/Nmeas

 (x,t)

p (x,t)
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h 20 Gy. The measured (rows a-c) and simulated (rows d, f,
lack lines in rows d, f, and h represent the boundaries of
x; tÞ are also shown in rows e, g, and i, with the white space
estimated for the Md and Mdp models at t6 and t7 compared
error (rows e, g, and i) in low cell density areas observed in
kp were 1.19 mm2/d and 2.16 d�1, respectively. The mean
fp,Mdp Z 0.36 � 0.01; kd,Md Z 0.47 � 0.06; and kd,Mdp Z
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Materials (available online at www.redjournal.org), to equally
weight each time point according to the total number of cells
at each time point. At the voxel level, the percent difference in
cell number was calculated between the model and mea-
surement wherever Nmeasðx; tÞ was greater than 0. All results
are reported as the mean and 95% confidence interval when
appropriate. A 1-way analysis of variance was used to eval-
uate the differences in global and local errors between the
model fits within treatment groups. Tukey’s honest significant
difference test was then used for pair-wise comparisons. A P
value of <.05 was considered significant. Pearson’s correla-
tion coefficient (r) was calculated between the histology
measurements and model parameters.
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Fig. 2. Measured and simulated Nðx; tÞ for a rat irradiated wi
Fig. 1). The Md model overestimated tumor size on days t6 throug
the tumor shape and size at all time points (rows f and h). The pr
4.23 day�1, respectively. The mean posttreatment parameters we
kd,Md Z 0.72 � 0.04; and kd,Mdp Z 0.63 � 0.03.
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Results

Figures 1 and 2 show measured and modeled number of
tumor cells, as well as the percent difference between the 2,
from the central tumor slice for representative rats from the
20-Gy and the 40-Gy groups, respectively. For the rat
irradiated with 20 Gy, the predictions of the Md model (row
d) overestimate tumor size (error greater than 55.7%) on t6
and t7 compared with the Mp and Mdp models (error less
than 17.0% and 9.6%, respectively). No significant differ-
ences were observed between the models at the voxel level
(mean error ranged from 10.2% to 13.2%). Importantly, the
Md and Mp models fail to capture the developing low cell
t3 t4

t5 t6 t7

,t)

s)/Nmeas

s)/Nmeas

r

40 Gy

r

r

s)/Nmeas

,t)

,t)

th 40 Gy (The data are presented in an identical fashion to
h t7 (row d). The Mp and Mdp models more closely matched
etreatment parameters D0 and mean kp were 2.01 mm2/d and
re as follows: fp,Mp Z 0.06 � 0.01; fp,Mdp Z 0.25 � 0.01;
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Fig. 3. Model and measured Nðx; tÞ compared with histology for a rat irradiated with 20 Gy. Magnetic resonance imaging
measured and simulated Nðx; tÞ (panel a) are compared with equivalent hematoxylin and eosin (H&E) (panel b) and Ki-67
(panel c) stained sections for a rat irradiated with 20 Gy. Insets A and B indicate areas of low cell density and low positive Ki-
67 stained cells. In panel c, positive staining (brown) was seen throughout the tumor, with the exception of the low cell
density regions (insets A and B). The low cell density regions in Nmeasðx; t7Þ are present in inset A from the hematoxylin and
eosin slide. (A color version of this figure is available at www.redjournal.org.)
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density region on days t6 through t7 (row c, resulting in
greater than 50% error in these regions [rows e, g, i]),
whereas the Mdp model exhibits lower error (less than 30%)
in these regions.

For the rat irradiated with 40 Gy, the predictions of the
Md model had high error in tumor volume (greater than
114.9%), whereas the Mp and Mdp had lower error in tumor
volume (less than 23.5% and 10.5%, respectively). At the
voxel level, no significant difference was observed among
the 3 models (average error less than 5.1%).
Nmeas (x,t7)weighted MRIT2

Np (x,t7)Nd (x,t7)

Es

0 10,1

Ndp (x,t7)

a b

–

–

–

–

Fig. 4. Model and measured Nðx; tÞ compared with histology f
identical fashion to Fig. 3). Very few areas of low cell density
Column c shows a Ki-67estained tissue section in which cluster
Abbreviation: H&E Z hematoxylin and eosin.
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Figures 3 and 4 compare the central imaging slice with
histologic sections from the same representative rats in
Figures 1 and 2. For the rat irradiated with 20 Gy, low cell
density regions (2281 � 238 cells/mm2) in Nmeasðx; t7Þ,
panel a, are also present in the hematoxylin and eosin slice
(panel b, inset A), whereas a second low density region
(panel b, inset B) is not visible in this imaging slice. A high
level of positive stained Ki-67 cells (73.95% � 4.56%) is
observed throughout the tumor region. For the rat irradiated
with 40 Gy, an average cell density of 6336� 334 cells/mm2
H&E

Inset A Inset A

timated Cell Number

94 20,388 30,582 50,97040,776

Inset BInset B

Ki-67c

or a rat irradiated with 40 Gy (The data are presented in an
(column b, inset A) were observed throughout the tumor.
s of proliferating cells were observed throughout the tumor.
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was observed in the tissue sections. High cell density is
observed in both insets A and B, although there are a few
low cell density regions (inset A) that appear throughout the
tumor. Fewer positive Ki-67 stained cells (64.53% � 2.90%)
were observed compared with the rat irradiated with 20 Gy.
The necrosis observed in the rat irradiated with 20 Gy, but
not the one irradiated with 40 Gy, is likely due to inter-
animal variability in tumor growth and response.

Figure 5 summarizes the error analysis for both groups
of irradiated with 20 (panels a-c, g) and 40 Gy (panels d-f,
h). A statistically significant (P < .03) reduction in error
was observed at all time points for the Mp (error in tumor
volume, ASD, error in voxel cell number) and Mdp (error in
tumor volume, ASD) models compared with the Md model.
Similarly, for the rats irradiated with 40 Gy, a statistically
significant (P < .04) reduction in error was observed at all
175
150
125
100
75
50
25
0

175
150
125
100
75
50
25
0

1.25

1.00

0.75

0.50

0.25

0.00

1.25

1.00

0.75

0.50

0.25

0.00

30

25

20

15

10

5

0

30

25

20

15

10

5

0
t6 t7

t6 t7

t6 t7 t6

t6

20 Gy 40 

t6

Pe
rc

en
t 

Er
ro

r 
in

Tu
m

or
 V

ol
um

e
Pe

rc
en

t 
Er

ro
r 

in
Vo

xe
l C

el
l N

um
be

r

Significant difference (P < .05) 
Significant difference (P < .05) 
Significant difference (P < .05) 

a

b

c f

e

d

Av
er

ag
e 

Su
rf

ac
e

Di
st

an
ce

 (
m

m
)
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the 20-Gy and 40-Gy rats, respectively. Generally, high global-lev
groups, whereas the Mdp model resulted in low global-level errors
group (panel c), whereas the Md and Mdp models had lower erro
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time points for the Mp and Mdp (error in tumor volume,
ASD, error in voxel cell number) models compared with
the Md model. For both treatment groups, significantly
increased wSSE (P < .05) was observed for the Mp and Md

models compared with the Mdp. Additionally, the Mp model
for the rats irradiated with 20 Gy had significantly
decreased wSSE (P < .01) compared with the Md model.

Table 1 reports the mean estimated model parameters
and their correlation to the percent positive stained Ki-
67 cells within tumor regions for both treatment groups.
Significant differences were observed between doses forMp

and Mdp model parameters. Significant (P < .05) and strong
correlation was observed for fp,rt for the rats irradiated with
40 Gy (r Z 0.99) and kd,rt for the rats irradiated with 20 Gy
(r Z �0.98) parameters estimated for the Mdp model and
Ki-67 staining.
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Table 1 Estimated model parameters and correlation to histology

Model Parameter Estimated value, mean � 95% CI

Model parameter vs percent
positive stained Ki-67 cells

r P

20 Gy
Md kd,rt 0.66 � 0.24 �0.77 .23
Mp fp,rt 0.52 � 0.27* 0.84 .16
Mdp kd,rt 0.31 � 0.10* �0.98 .02

fp,rt 0.30 � 0.09* 0.90 .10
40 Gy

Md kd,rt 0.74 � 0.12 �0.73 .25
Mp fp,rt 0.12 � 0.07* 0.73 .27
Mdp kd,rt 0.61 � 0.02* �0.80 .20

fp,rt 0.22 � 0.09* 0.99 .01

Abbreviation: CI Z confidence interval.

* Statistically significant differences (P < .05) between treatment groups.
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Discussion

The Md model is a variation of the LQ model that has been
previously applied (16, 40-42) to clinical data sets after
fractionated radiation therapy. The Md model reflects some
of the short-term effects of radiation therapy, including
cell death and shrinking of the tumor. Rather than
assigning the death rate as the fraction of cells that die
because of radiation therapy (16, 17), we fit the models to
time course data to estimate a spatially varying death rate.
The negative (although not statistically significant) corre-
lation between kd,rt and percent positive stained Ki-
67 cells suggests kd,rt may reflect observed tumor biology.
The varied response between the 20-Gy and 40-Gy groups
suggests that the Md model may be more valid at low doses,
where posteradiation therapy growth kinetics more closely
match the untreated growth kinetics (Fig. E1; available online
at www.redjournal.org).

The Mp model is another variation of the LQ model, in
which the loss of proliferative ability is modeled as a
decrease in the net proliferation rate compared with the
pretreatment proliferation rate. Generally, the Mp model
provided better model predictions compared with the Md

model. On the basis of the reduced doubling time
observed after radiation therapy (Fig. E1; available on-
line at www.redjournal.org), it was hypothesized that this
model may be able to better describe the posteradiation
therapy growth kinetics. The positive (although not sta-
tistically significant) correlation between fp,rt and percent
positive stained Ki-67 cells, as well as the dose de-
pendency of the mean fp,rt, suggests fdp,rt may reflect the
observed decrease in tumor proliferation. However, the
Mp model results in high error in cases in which the
tumor volume shrinks or indicates no growth after radi-
ation therapy. The Mp model may more accurately
describe growth at lower doses; however, it fails to
capture decreases in tumor volume after therapy or areas
of necrosis.
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The Mdp model combines both short-term and long-term
effects (22, 43). Both the Mp and Mdp resulted in decreased
error (ie, in tumor volume, ASD, and voxel cell number) in
model predictions, but the Mdp model may provide a better
overall description owing to the decrease in wSSE
compared with the Mp model. The statistically significant
differences between the Mdp and Mp models for the wSSE
metric, but not the other metrics, are likely to due to
reduced error in both the calibration and prediction phases
for the Mdp model, which only the wSSE metric assesses.
The Mdp model may also provide improved predictions of
intra-tumor heterogeneity (Figs. 1 and 3). Model parame-
ters (fp,rt and kd,rt) seemed to be dose specific, suggesting
that a more explicit relationship between dose and fp,rt and
kd,rt may exist; this is the subject of ongoing efforts.
Comparison of model parameters with histologic staining
indicated an inverse relationship between kd,rt and the
percent positive stained Ki-67 cells and a positive rela-
tionship between fp,rt and Ki-67 staining. The histologic
correlation for both parameters suggests that they may
provide insight into the underlying tumor biology after
radiation therapy (ie, delayed or altered proliferation,
reduced number of proliferating cells). The Mdp model is a
natural extension of previous modeling efforts (16, 17) of
response to radiation therapy. The main benefit of the Mdp

model is the incorporation of both single time-point cell kill
and a long-term effect, which more accurately recapitulates
in vivo observations of the persistent effect of radiation
therapy.

There are several limitations to the present study. One
limitation is in the interpretation of imaging measurements
after radiation. In this work we use ADC measurements to
estimate cell number. Several preclinical and clinical
studies have demonstrated a strong correlation between
histologic estimates of cellularity in human brain tumors
(44), breast cancer (45), extracranial lesions (46), small
animal models of breast cancer (47), and in vitro studies
(26). There are, however, other factors (cell membrane
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permeability [48], cell size, tortuosity [49], edema [50],
necrosis [50]) that can also affect the measured ADC before
and after treatment. This approach to transform ADC to cell
number must, therefore, be regarded as a first-order
approximation to the true tumor cellularity. Contrast-
enhanced MRI enhancement may also potentially indicate
false volume increases or decreases after radiation therapy
(51). Pseudoprogression is often a result of increased
inflammation, edema, and vessel permeability and can be
challenging to distinguish from actual progression, and
separating these 2 phenomena is an active area of research
(52-55).

A second limitation is that there is a lack of histology for
untreated rats to which the treated groups can be compared,
as well as a lack of histology at the time of treatment.
However, the dose-dependent decreases in Ki-67 have been
observed by others (43).

A third limitation is the use of single large doses over
the whole brain. Radiation therapy is more commonly
delivered in small doses over several fractions with a more
focal dose. Large single-fraction doses were selected for
this initial study to provide 2 distinct treatment responses
from which to test and validate the mathematical models.
Ongoing studies will investigate smaller, fractionated dose
response.

A fourth limitation is the lack of a validation of the
pretreatment parameters. An additional imaging time point
could be used to verify the pretreatment parameters; how-
ever, that will limit the number of posttreatment time points
we could acquire. When applied to a cohort of untreated
rats, this modeling approach resulted in less than 2.20%
error in tumor volume, average surface distance less than
0.38 mm, and average percent error in voxel cell number
less than 13.25% (30). On the basis of those results we have
confidence in the ability of this framework to capture un-
treated tumor growth. Finally, in a data-limited setting (eg,
standard-of-care clinical studies) this approach may not be
tenable. However, with the advent of MRI-guided external
beam radiation treatment (56), functional or anatomic data
could be acquired on a per-fraction basis. This scenario
would produce measurements that can be used to calibrate
model parameters (and correct parameters as more data
become available) that can be used to adapt the remaining
treatment plans (57).
Conclusion

The models developed and analyzed within this study are
an encouraging step toward the development of mathe-
matically rigorous, individualized radiation therapy plans.
After receiving 20 Gy, growth can be accurately described
using theMp orMdp model. At higher doses the Mp andMdp

models both resulted in lower error in tumor volume, ASD,
and voxel cell number, whereas the Md model poorly
described tumor response at high doses. Overall, the Mdp

model provides a more complete characterization of the
Downloaded for Anonymous User (n/a) at Vanderbilt University  - NAL
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posteradiation therapy growth kinetics, although further
model development is needed to more accurately charac-
terize the heterogeneous response to radiation therapy
within the tumor.
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