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Figure 1. ADC maps are converted to cell number and the models
are used to optimize parameters between the initial and post 1 
cycle time points and projected forward to the final time point. 

Figure 2. Model predicted cell number vs. observed cell number at the 
final time point for the mechanics coupled (blue) and non-mechanics 
coupled (red) models. Black line indicates line of unity. 

Target Audience  Those interested in 1) predicting breast cancer response, and 2) mathematical modeling of tumor growth. 
Purpose  There is currently a paucity of reliable techniques for predicting the response of breast tumors to neoadjuvant chemotherapy.  
One promising approach to address this need is to integrate quantitative imaging data into physically realistic biomathematical models 
of tumor growth. The goal of this effort is to employ quantitative MRI data acquired early in the course of therapy to initialize and 
guide a mechanistic model to predict eventual tumor status at the completion of neoadjuvant chemotherapy.  
Methods  MRI was performed on eight breast cancer patients using a 3T Achieva MR (Philips, Best, Netherlands) scanner. 
Anatomical T1-weighted, DCE-, and DW-MRI data were acquired prior to beginning NAC, after one cycle of NAC, and at the 
conclusion of 8-12 cycles (depending on patient regimen) of NAC. All images for each patient were longitudinally co-registered to the 
final time point using an adaptive basis algorithm with a tumor volume preserving constraint1. DCE-MRI data sets at each time point 
were used to define a tumor ROI by comparing the averages of the baseline pre-contrast images and the enhanced post-contrast 
images. Voxels exhibiting ≥100% signal intensity increase after contrast infusion were used to define tumor voxels. The diffusion data 
for the tumor voxels was transformed to estimate tumor cell number as previously described2. The coupled set of PDE's governing the 
model are shown in Eqs. (1)-(3) and describe the cell number as the sum of random cell diffusion and logistic growth. The cell 
diffusion term is coupled to surrounding tissue stiffness through von Mises stress, and mechanical equilibrium governs the evolution 
of an expansive force as determined by changes in cell number. Figure 1 outlines the approach for generating and comparing model 
predictions at the final time point to clinical observations. 
Results  As shown in Figures 1 and 2, the model predictions of 
tumor cellularity at the final time point of NAC agree well 
with the observed cellularity, with the mechanical coupling 
model exhibiting greater accuracy. Average prediction errors 
were 5.4 × 106 +/- 4.7 × 106  and 10.3 × 106 +/- 5.9 × 106 for the mechanics coupled and non-mechanics coupled models, respectively. 
Discussion  We present a mechanically constrained modeling approach that integrates quantitative in vivo imaging data and 
biomathematical models of tumor growth to predict response based on early measurements during therapy. We use the optimized 
parameters fit between the initial and post one cycle time points to project the model forward in time and compare the model 
prediction to experimental data for tumor cell number at the final time point. The results indicate that the incorporation of mechanics 
within the biomathematical model enhances the accuracy and specificity of the model. 
Conclusion  Incorporating tissue mechanical properties into the reaction-diffusion equation provides excellent agreement with clinical 
observations and suggests that an imaging-based modeling approach to the prediction of tumor response may provide valuable early 
feedback during the course of NAC. 
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