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Abstract. Soft-tissue deformation represents a significant error source in current surgical navigation systems
used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue defor-
mation that is encountered during open liver surgery, clinical validation of the proposed methods has been
limited to surface-based metrics, and subsurface validation has largely been performed via phantom experi-
ments. The proposed method involves the analysis of two deformation-correction algorithms for open hepatic
image-guided surgery systems via subsurface targets digitized with tracked intraoperative ultrasound (iUS).
Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for
the purposes of computing the physical-to-image space registration and for use in retrospective deformation-
correction algorithms. Upon completion of surface digitization, the organ was interrogated with a tracked iUS
transducer where the iUS images and corresponding tracked locations were recorded. Mean closest-point
distances between the feature contours delineated in the iUS images and corresponding three-dimensional
anatomical model generated from preoperative tomograms were computed to quantify the extent to which the
deformation-correction algorithms improved registration accuracy. The results for six patients, including eight
anatomical targets, indicate that deformation correction can facilitate reduction in target error of ∼52%. © 2016
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1 Introduction
For the successful translation of image-guided surgery
approaches to soft-tissue environments, the problem of intrao-
perative soft-tissue deformation needs to be overcome. Similar
to the well-documented brain shift experienced during neurosur-
gical procedures, intraoperative soft-tissue deformation imposed
after laparotomy in open hepatic resections is the primary source
of error in current image-guided liver surgery (IGLS) systems.
Several studies quantifying the extent of soft-tissue liver defor-
mations have been reported. Heizmann et al.1 visualize soft-tis-
sue deformation via rendered vascular structure tracking within
an intraoperative CT (iCT) environment to include measure-
ments of volumetric changes in anatomical regions during the
surgical procedure. Cash et al.2 made some initial measurements
of soft-tissue deformation during IGLS procedures. While
informative, the work by Clements et al.3 made a much more
extensive systematic study of the trends in deformation by look-
ing at the surface-fits of laser range data of the organ surface to
its preoperative counterpart over 12 open resection cases.
Interestingly, the work also performed an interpatient registra-
tion that suggested some similarity exists in imposed deforma-
tion among similar procedure types.

Given the fact that intraoperative soft-tissue deformation can
limit the utility of preoperative tomographic imaging for surgical

guidance, numerous avenues have been suggested to aid in the
compensation for the experienced soft-tissue deformation,
including the use of intraoperative tomography and ultrasound.
However, intraoperative magnetic resonance and iCT imaging
equipment is cumbersome, overly expensive for a majority of
hospital budgets, and not presently considered standard for
care in open liver procedures.4,5 Additionally, intraoperative
two-dimensional (2-D) ultrasound (iUS) provides low signal-
to-noise, sparse images of the patient’s anatomy. Studies
have been performed to evaluate the utility of three-dimensional
(3-D) iUS for navigated resection of liver tumors, but such a
system is limited by the fact that some lesions cannot be iden-
tified via iUS imaging.6 Ultimately, the ideal image-guidance
modality is to update the high-contrast, high-resolution preop-
erative tomograms to match the intraoperative presentation.

1.1 Related Work

A number of previous studies have focused on the development
and validation of the model-based deformation-compensation
methods driven by sparse organ surface data for IGLS. A num-
ber of previous studies have focused on the development and
validation of the biomechanical model-based deformation com-
pensation methods driven by sparse organ surface data for IGLS.
The initial work by Miga et al.7 proposed the use of laser range
scanner (LRS) data to drive a biomechanical model of the liver
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to correct for nonrigid alignment errors. That initial work used
surface residual-error metrics to evaluate the correction. Cash
et al.8 enhanced that work by proposing an incremental
approach to generate more natural deformations and capture
deformation trajectories. This work was investigated using a
phantom liver model experiencing realistic scale deformations
and contained a set of six subsurface tumor targets. The
work by Dumpuri et al.9 described an approach to generate a
boundary condition sets that were extrapolated closest-point
boundary conditions in regions outside the immediate laser
range area using a surface Laplacian approach equation driven
by the intraoperative sparse surface and preoperative organ
model data. This method was investigated using both an
anthropomorphic liver phantom containing 48 subsurface
steel-bead targets and clinical data where surface closest-
point residual-error metrics were employed. In recent develop-
ments, Rucker et al.10 proposed a model-based nonrigid regis-
tration technique that involved the use of a Levenberg–
Marquardt optimization framework to estimate parameters of
a bivariate polynomial support surface that acted to specify sur-
face displacements. Similar to the work of Dumpuri et al.,9 the
method was investigated using two anthropomorphic liver phan-
toms with subsurface targets as well as clinical data where the
surface residuals provided the target error metric.

Other approaches have focused on the use of spline-based
nonrigid registration techniques to compensate for surgical
deformation. Lange et al.11 used tracked 3-D iUS to generate
a series of vessel landmarks to drive a spline-based deformable
registration algorithm. The algorithm was investigated using the
vessel landmarks as well as a vessel centerline closest-point dis-
tance metric. Nakamoto et al.12 has described a method to model
respiratory motion and liver deformation using a freehand 3-D
ultrasound system in laparoscopic procedures. The validation
experiments for this work were performed via a porcine
model and the error quantification involved a “leave-N-out”
cross validation. Spline-based nonrigid registration techniques
are limited in that the deformation fields provided may only
be valid over the region for which data have been acquired
which could lead to spurious results outside the region of inter-
est. The strength of a biomechanical model-based algorithm lies
in the ability to compute full organ displacement fields from
sparse intraoperative data.

It is clear from the above work, open liver surgery represents
a challenging environment for validation with much of the work
above being investigated via liver phantoms equipped with

subsurface targets, animal experiments, or by surface-error met-
rics in clinical datasets. The acquisition of a series of clinical
data that provides both sparse organ surface characterization
as well as subsurface target digitization is a critical step for
the refinement and validation of the proposed biomechanical
model-based deformation-correction techniques.

1.2 Objective

The primary objective of this work is to define a validation pro-
cedure of a model-based deformation compensation algorithm
driven by sparse organ surface data using tracked iUS acquis-
itions of subsurface anatomical landmarks acquired during
clinical procedures. A subsurface target error metric can be
computed between the contours of anatomical structures delin-
eated in tracked iUS and corresponding 3-D anatomical models
generated from preoperative image sets. For this work, the per-
formance of two different biomechanical model-based deforma-
tion-correction techniques will be evaluated.

2 Methods
The proposed deformation-correction clinical validation tech-
nique involves three steps: (1) clinical data collection using a
surgical navigation system equipped with ultrasound tracking
functionality, (2) retrospective deformation correction using
the intraoperatively acquired liver surface digitization to drive
the algorithm, and (3) retrospective quantification of the efficacy
of deformation correction based on subsurface anatomical land-
marks that can be localized in the tracked iUS images as well as
the preoperative tomograms.

2.1 Clinical Data Collection

For this study, a series of clinical data have been acquired for six
patients undergoing open liver resection at Memorial Sloan-
Kettering Cancer Center. The patients provided written consent
and were enrolled in an ongoing study that has been approved
by the Memorial Sloan-Kettering Cancer Center Institutional
Review Board. A summary of the demographic, pathology,
and surgical procedure information for the six patients is
shown in Table 1.

2.1.1 Preoperative image processing

Standard contrast-enhanced CT images were acquired for all
patients prior to the surgical procedure for radiological

Table 1 A summary of the demographic, pathology, and surgical procedure information for the patients enrolled in the Institutional review board-
approved clinical study at Memorial Sloan-Kettering Cancer Center. The study population included six patients for which eight anatomical feature
targets were digitized intraoperatively with tracked 2-D iUS.

Patient Sex Age Weight (kg) Height (cm) Pathology Resection

1 F 36 66.2 160 Metastatic colorectal cancer N/A

2 M 56 68.9 160 Intrahepatic cholangiocarcinoma Right lobectomy

3 F 36 81.1 168 Intrahepatic cholangiocarcinoma Left lobectomy

4 M 54 93.4 186 Metastatic colorectal cancer Left lobectomy and caudate lobectomy

5 M 76 55.0 159 Metastatic colorectal cancer Right lobectomy

6 M 45 78.0 183 Metastatic colorectal cancer Segmentectomy (II) and 2× Wedge (III)

Journal of Medical Imaging 015003-2 Jan–Mar 2016 • Vol. 3(1)

Clements et al.: Evaluation of model-based deformation correction in image-guided liver. . .

Downloaded From: http://medicalimaging.spiedigitallibrary.org/ on 04/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



evaluation and surgical planning processes. Prior to the surgical
procedure, 3-D anatomical models of the liver, tumor(s), and
vasculature structures were generated from the preoperative
tomograms using surgical planning software (Scout™ Liver,
Analogic Corporation, Peabody, Massachusetts). A summary
of the methods used in the preoperative planning software
has been provided by Li et al.13 and an evaluation of the clinical
impact of the software has been performed by DuBray et al.14

Upon completion of the processing, the preoperative tomo-
graphic data and associated anatomical models were then
imported into a surgical navigation system (Explorer™ Liver,
Analogic Corporation, Peabody, Massachusetts) for use during
the open-resection procedure.

2.1.2 Intraoperative data collection

After laparotomy and liver mobilization, the anterior liver sur-
face was digitized using both a tracked LRS and an optically
tracked stylus. An image of the tracked LRS device and the
Explorer™ interface used for the manual stylus-based surface
acquisition are shown in Fig. 1. The LRS device is used to
acquire an initial dense scan of the liver surface within line
of sight via the laparotomy incision. Further, a brief apneic
period, initialized at end-inspiration, is used to minimize motion
artifacts in the scan due to respiration. Based on the work of
Cash et al.2, hepatic motion due to respiration in open liver sur-
gery displays a periodicity that supports the use of apneic peri-
ods at similar points in the respiratory cycle to facilitate data
collection that is minimally impacted by respiratory motion.
The LRS device used in this study has been characterized by
Pheiffer et al.15

In addition to the LRS surface digitization, a surface acquis-
ition also performed via manually swabbing the surface of the
organ with an optically tracked stylus. In addition to acquiring
the liver surface, a series of anatomical features including the
umbilical fissure, falciform ligament, and inferior ridges are
also acquired for the purposes of driving the salient feature
rigid surface registration used within the Explorer™ Liver guid-
ance system.17 As with the LRS acquisition, a brief apneic
period was used to compensate for respiratory motion.

After qualitative evaluation of the registration within the
guidance display, the clinician proceeded to interrogate the
organ with the tracked iUS transducer (shown in Fig. 2). The
Explorer™ Liver navigation system is equipped with a tracked
rigid body attachment designed for the Aloka T-probe (Hitachi
Aloka Medical Ltd., Wallingford, Connecticut). The tracked

ultrasound system was calibrated using the method described
by Chen et al.18 and clinical experience with the tracked iUS
equipped navigation system has been described by Kingham
et al.16 During the surgical procedure, the clinician utilized
the tracked iUS to image anatomical features that could be reli-
ably identified within the preoperative tomograms. During the
interrogation, iUS image screen captures and corresponding
tracked locations of the transducer were recorded for retrospec-
tive evaluation.

2.2 Deformation-correction Methods

The deformation-correction methods that were evaluated in this
study have been described previously by Dumpuri et al.9 and
Rucker et al.10 To provide an overview, both methods are bio-
mechanical model-based techniques driven by sparse surface
data of the organ collected intraoperatively. The method
described by Dumpuri et al. (Algorithm 1) is based on the
fact that the rigid alignment between the intraoperative sparse
organ surface and the preoperative model surface provides an
insight into the surface displacements that are reflected by
the intraoperative surface deformation. Given that intraoperative
organ surface digitizations are sparse in nature, the algorithm
uses a surface Laplacian to extrapolate the closest-point distance
measurements and generate a realistic set of surface displace-
ment boundary conditions. The method described by Rucker
et al. (Algorithm 2) utilizes a parameterized “support surface”
to reflect the impact of the liver mobilization and “packing” pro-
cedure that occurs after laparotomy. The support surface is
described by a bivariate polynomial that specifies a series of sur-
face displacements. An optimization framework is then used to
determine the optimal parameters for the support surface such
that the residual error between the intraoperative sparse surface
digitization and the deformed liver surface, generated from pre-
operative images, is minimized.

2.2.1 Biomechanical model

The underlying tissue-deformation model begins with the
assumption that the liver is an isotropic solid with a linear
stress–strain relationship as in previous studies.7–9 The equation
for a linear-elastic 3-D solid at static equilibrium is

EQ-TARGET;temp:intralink-;e001;326;296∇ · σ ¼ B; (1)

where σ represents the stress tensor and B represents the body
forces acting on the object. Given Hooke’s law, a series of

Fig. 1 (a) The tracked LRS device used for organ surface acquisition during the study. (b) The manual
surface swabbing interface within the Explorer™ Liver navigation system highlighting a surface align-
ment generated from the stylus-based digitization. Note that the images shown were initially included
in the works of Pheiffer et al.15 and Kingham et al.16
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substitutions can be made such that Eq. (1) can be restated as a
system of partial differential equations (PDEs) in terms of the
displacement vector (u) and the Young’s modulus (E) and
Poisson’s ratio (ν) material properties

EQ-TARGET;temp:intralink-;e002;63;369

E
2ð1þ νÞ∇

2uþ E
2ð1þ νÞð1 − 2νÞ∇ð∇ · uÞ ¼ B: (2)

In order to solve the system equations in (2) over the liver
mesh domain, the Galerkin weighted residual method is applied
using linear basis functions. Using this technique, the system of
PDEs reflecting the displacement vectors (u) at each node in the
tetrahedral mesh can be compiled in matrix form using the fol-
lowing relation:

EQ-TARGET;temp:intralink-;e003;63;260½K�fug ¼ fbg; (3)

where ½K� is the global stiffness matrix and fbg is the body force
distribution at each node. The driving force generating deforma-
tions with an FEM model is provided by the prescription of the
appropriate conditions along the boundary of the tetrahe-
dral mesh.

2.2.2 Algorithm 1: Laplacian-Based boundary condition
specification

The first algorithm tested in this work (described by Dumpuri
et al.9) drives the biomechanical model by generating a boun-
dary condition set from the closest-point distances between
the intraoperative organ surface digitization and the preoperative
surface model. Given the fact that the closest-point distances
computed between the intraoperative and preoperative organ

surfaces are sparse in nature, displacement boundary conditions
can be specified for only a relatively small number of mesh sur-
face nodes. Given the fact that the entire organ surface experi-
ences deformation during surgery, driving the biomechanical
model with a sparse set of surface displacements could result
in inaccurate predicted deformation fields. Since intraoperative
tomographic imaging is not part of the standard of care in open
liver surgery, it is not possible to obtain a full characterization of
the surface displacements that occur during the intervention.
Therefore, this algorithm performs an extrapolation of the sparse
closest-point distance measurements (after rigid alignment) over
the entire organ surface by solving a Laplace equation on the
surface of the undeformed tetrahedral finite element mesh.
The method was originally used by Ou et al.19 within the context
of point correspondence determination in nonrigid registration
for breast elastography. The extrapolated closest-point distance
measurements are used as Dirichlet boundary conditions, speci-
fied in a coordinate system that is described by the normal and
tangential nodal directions on the undeformed surface, to drive
the biomechanical model.

2.2.3 Algorithm 2: nonrigid deformation and optimization

As mentioned, the Dirichlet boundary conditions are determined
by a “support surface” specified to the posterior region of the
organ surface. The support surface is specified via the bivariate
polynomial form as follows:

EQ-TARGET;temp:intralink-;e004;326;121us ¼ n̂s
X

1≤iþj≤n
cijti1t

j
2; (4)

where us is the displacement vector for a point on the support
surface, n̂s is the average normal unit vector over the designated

Fig. 2 (a) The tracked adapter device in use during surgery during the organ interrogation with ultra-
sound and (b) a schematic of the adapter used to track an Aloka T-probe (UST-5713-T, Hitachi
Aloka Medical Ltd., Wallingford, Connecticut) within the Explorer™ Liver navigation system. (c) A
view of the OR during the use of the tracked iUS functionality within the Explorer™ Liver navigation
system and (d) a screen capture of the Explorer™ Liver navigation system with iUS tracking in use during
an ablation probe placement in an open hepatic procedure. Note that the oblique CT slice that corre-
sponds with the tracked iUS plane is displayed in the lower right quadrant of the interface. These images
were published in the work of Kingham et al.16

Journal of Medical Imaging 015003-4 Jan–Mar 2016 • Vol. 3(1)

Clements et al.: Evaluation of model-based deformation correction in image-guided liver. . .

Downloaded From: http://medicalimaging.spiedigitallibrary.org/ on 04/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



support region (the area weighted average over the triangular
boundary elements), and t1 and t2 are the tangential coordinates
of the point on the support surface (measured from the origin
perpendicular to n̂s in two orthogonal directions). Thus, the con-
stant coefficients cij define the nonrigid displacement field over
the support region. The sum over 1 ≤ iþ j ≤ n avoids redun-
dancy with the subsequent rigid transformation by excluding the
constant displacement mode, which is captured with general
rigid body motion.

Using the principle of superposition, it is possible to facilitate
rapid computation of model solutions given a combination of
support surface coefficients. The model solution for each of
the coefficients cij is precomputed and stored in matrix M,
where each column is the displacement vector uij obtain by
solving Eq. (4) where the right-hand side vector is computed
with cij ¼ 1 with all other coefficients set to zero. Therefore,
the following equation can be used for rapid model solution
computation:

EQ-TARGET;temp:intralink-;e005;63;554fug ¼ ½M�fcg: (5)

After generating a model solution for a particular set of poly-
nomial coefficients, the rigid alignment can be updated between
the intraoperative surface digitization and the deformed organ
model. To achieve this end, a six degrees-of-freedom rigid
body transformation can be applied to the deformed nodal coor-
dinates. Therefore, the set of parameters used to generate the
total displacement field is as follows:

EQ-TARGET;temp:intralink-;e006;63;446P ¼ fcT; tx; ty; tz; θx; θy; θzg: (6)

The optimal parameter set in Eq. (6) is determined via a
Levenberg–Marquardt algorithm such that the following objec-
tive function is minimized:

EQ-TARGET;temp:intralink-;e007;63;381F ¼ 1

N

XN

i¼1

½n̂Tciðpdi − pciÞ�2 þ αE2; (7)

where pdi is a 3 × 1 vector containing the Cartesian coordinates
for the location of the i’th point in the intraoperative sparse sur-
face, pci is the location of the corresponding point on the pre-
operative organ model surface, generated via the closest-point
operator, and n̂ci is a unit vector normal to the model surface
at pci, and N is the total number of intraoperative surface points.
The energy constraint term (E) is proportional to the total strain
energy stored in the displacement field produced by the model
solution and is calculated as E ¼ uTKu. Given that α is a
weighting constant, the term αE serves as a regularization
term for the optimization to balance the distortion of the defor-
mation field. The algorithm is initialized via initial rigid surface
alignment between the intraoperative surface digitization and
preoperative organ model. The optimization procedure is per-
formed for a fixed number of iterations or until the residual
error between the two surfaces reaches a certain threshold.

2.3 Retrospective Validation Procedure

Using the liver surface generated from the preoperative tomo-
grams, a tetrahedral mesh of the organ was generated using a
customized mesh generator. We employ the algorithm described
by Sullivan et al.20 to generate the tetrahedral liver mesh. After
mesh generation, a “support surface” region on the posterior

side of the organ is delineated for the nonrigid correction within
Algorithm 2. Both mechanics-based correction algorithms were
initialized with the rigid surface registration computed within
the Explorer™ Liver guidance system,17 and the final solution
of mesh node displacements was used to deform the 3-D surface
models of the patient anatomy generated from the preoperative
tomograms. As in the work of Rucker et al.10, the value for the
energy weighting coefficient (α) of 2 × 10−4 and the order of the
bivariate polynomial (n) of three were used in this work while
running Algorithm 2. It should be noted that the value of α was
selected in the work of Rucker et al. based on an empirical
evaluation of performance using clinical data and the value
of n was selected based on a sensitivity analysis.

It should be noted that the intraoperative surface digitizations
acquired from the tracked LRS device and the tracked stylus
were concatenated to maximize the extent of organ coverage
for the deformation-correction algorithms. In our experience
with a number of clinicians over different open surgeries,
there is considerable variability in the size of laparotomy inci-
sion employed by a particular clinician and for a particular
patient. As such, the extent of organ coverage that can be
obtained using the LRS scanner is limited in cases where a
small laparotomy incision is employed. The optically tracked
stylus design facilitates the acquisition of organ surface regions
that cannot be reached by the optical line of sight of the LRS
device. Therefore, the optimal intraoperative surface digitization
involves a combination of the dense sampled, noncontact LRS
data as well as the sparser manual surface digitization, despite
the impact of manual acquisition error for the swabbed sur-
face data.

Upon completion of the surgical procedure, a review of the
tracked iUS images acquired was performed by the clinician to
delineate anatomical structures that would best serve as targets
for the deformation-correction evaluation. Based on the clini-
cian review, contour segmentations were performed of the ana-
tomical structures (i.e., vessels) and transformed by both the
rigid surface registration computed within the guidance system
and the updated rigid surface registration computed within the
deformation-correction algorithm. The quantitative error metric
used was the mean closest-point distance between the contours
segmented in the iUS images and the corresponding 3-D models
of the structures generated from the preoperative tomograms. To
clarify, the deformed anatomical models were used for the con-
tour-to-model closest-point distance calculation for the deforma-
tion-correction evaluation. The contour-to-model closest-point
distance target error (E) metric can be described by the follow-
ing equation:

EQ-TARGET;temp:intralink-;e008;326;236E ¼ 1

Nctr

XNctr

i¼1

kCið½Treg�½T track�½Tcal�pctr;i; ptarÞ

− ½Treg�½T track�½Tcal�pctr;ik; (8)

where Nctr is the number of iUS feature contour points, Treg is
the physical-to-image space rigid body transform for the align-
ment method, T track is the tracked rigid body transformation, Tcal

is the iUS transducer calibration transformation, ptar is the vector
of target anatomical feature points, pctr is the vector of iUS fea-
ture contour points, and C is the closest-point distance operator.
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3 Results
Upon completion of computing the results of the model-based
deformation corrections using the two algorithms for the six
patients, the surface residual errors after computing the rigid sur-
face-based registration and postcorrection using both algorithms
were compiled. The surface residual error refers to the closest-
point Euclidean data set computed between the intraoperatively
acquired surface digitization and the preoperative organ surface.
A summary of the surface residual errors for the six patients is
shown in Table 2 and indicates that the surface residual errors
values are reduced after the performance of deformation correc-
tion using both methods.

Further, Fig. 3 shows the initial rigid registration between
each set of acquired data and the preoperative organ using
our salient feature registration. With each set in the six pairs,
we see the signed closest-point distance map to the closest
model data node on the left. We restrict the level of correspon-
dence to a single point in this case to see the nature of the sparse-
ness of measurements. On the right, we see the combined

swabbing and laser range data registered to the preoperative
image. The signed closest-point distance texture map was com-
puted as described in the work of Clements et al.3

In addition to quantitative metrics, a series of qualitative
visualizations are presented to represent the impact of the defor-
mation-correction Algorithm 2 on the alignment of the tracked
iUS with the corresponding anatomical features generated from
the preoperative tomograms. Figure 4 shows a rendering of the
alignment of a tracked iUS image of the left portal vein conflu-
ence for patient 1 under conditions of rigid registration and
deformation correction. It should be noted that the visualization
of the result of the deformation correction involves both the
deformed anatomical models and an updated rigid body trans-
form. Additionally, a visualization of the location of the tracked
iUS image of the left portal vein confluence using both the rigid
surface-based registration and deformation corrected surface
and anatomy for patient 2 is shown in Fig. 5. Finally, a visuali-
zation of the location of the tracked iUS image of the right
hepatic vein using both the rigid surface-based registration
and deformation corrected surface and anatomy for patient 3

Table 2 A summary of the surface residual errors computed between the intraoperative sparse surface and the organ model generated from
preoperative tomograms after rigid registration and deformation correction. The surface residual error is the mean closest-point Euclidean distance
computed over the intraoperative sparse surface points. The maximum surface closest-point distance is shown in parentheses.

Patient Rigid registration error (mm) Algorithm 1 Postcorrection error (mm) Algorithm 2 Postcorrection error (mm)

1 2.8� 2.1 (12.0) 2.5� 1.2 (12.1) 2.2� 2.1 (15.8)

2 4.8� 3.7 (21.1) 3.1� 2.0 (17.6) 3.4� 2.2 (10.2)

3 4.6� 3.6 (17.0) 2.8� 1.4 (10.1) 1.9� 1.1 (7.0)

4 4.4� 3.2 (14.1) 2.9� 1.8 (12.0) 4.0� 2.7 (13.5)

5 4.3� 2.8 (17.8) 2.4� 1.3 (13.7) 3.0� 2.1 (12.4)

6 4.5� 3.0 (14.1) 2.7� 1.4 (11.9) 3.1� 2.3 (16.4)

Fig. 3 Visualization of the rigid registration alignment and texture map of the closest-point distances for
the six patient cohort included in the current work. The figure panel labels of (a)–(f) indicate the results for
patients 1 to 6, respectively. The six sets of data demonstrate the incidence of significant soft-tissue
deformation in open IGLS and highlight the sparse nature of intraoperative liver surface digitization.
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Fig. 4 Visualization of the tracked iUS image plane rendered within the 3-D models generated from the
preoperative tomograms for patient 1. The raw iUS image captures used in the analysis are shown in
panel (a) and panel (b) shows the highlighted anatomical feature (i.e., left portal vein confluence). The
rigid registration transformation computed during the surgical procedure was used to generate the over-
lays in panels (c) and (d). Panel (c) shows a superior view of the rigid alignment and includes a rendering
of the lesions (brown), hepatic vasculature (blue), portal vasculature (pink), and liver surface (gray).
Panel (d) shows a zoomed superior view of the tracked iUS and portal vein structure. The deformed
anatomical models and updated transform from the deformation-correction Algorithm 2 were used to
generate the renderings in panels (e) and (f). Panel (e) shows a superior view of the deformation cor-
rected alignment and includes a rendering of the lesions (brown), hepatic vasculature (blue), portal vas-
culature (pink), and liver surface (gray). Panel (f) shows a zoomed superior view of the tracked iUS and
portal vein structure after deformation correction.

Fig. 5 Visualization of the tracked iUS image plane rendered within the 3-D models generated from the
preoperative tomograms for patient 2. The raw iUS image captures used in the analysis are shown in
panel (a) and panel (b) shows the highlighted anatomical feature (i.e., left portal vein confluence). The
rigid registration transformation computed during the surgical procedure was used to generate the over-
lays in panels (c) and (d). Panel (c) shows an anterior view of the rigid alignment and includes a rendering
of the lesion (brown), portal vasculature (pink), and liver surface (gray). Panel (d) shows a zoomed supe-
rior view of the tracked iUS and portal vein structure. The deformed anatomical models and updated
transform from the deformation-correction Algorithm 2 were used to generate the renderings in panels
(e) and (f). Panel (e) shows an anterior view of the deformation corrected alignment and includes a ren-
dering of the lesion (brown), portal vasculature (pink), and liver surface (gray). Panel (f) shows a zoomed
superior view of the tracked iUS and portal vein structure after deformation correction.
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is shown in Fig. 6. Qualitatively, the alignment between the iUS
image of the vascular structures and the preoperative model is
substantially improved by the deformation-correction algorithm
in the three patients.

Finally, a summary of the contour-to-model closest-point dis-
tance measurements for the eight anatomical subsurface targets

across the six clinical cases where deformation correction was
performed using Algorithms 1 and 2 are shown in Tables 3 and
4, respectively. As shown, the deformation-correction method of
Algorithm 2 appears to improve registration accuracy by ∼52%.
In contrast, the evaluation of Algorithm 1 (shown in Table 3)
indicates a more modest improvement of ∼10% on average.

Fig. 6 Visualization of the tracked iUS image plane rendered within the 3-D models generated from the
preoperative tomograms for patient 3. The raw iUS image captures used in the analysis are shown in
panel (a) and panel (b) shows the highlighted anatomical feature (i.e., right hepatic vein). The rigid regis-
tration transformation computed during the surgical procedure was used to generate the overlays in pan-
els (c) and (d). Panel (c) shows a superior view of the rigid alignment and includes a rendering of the
lesion (brown), portal vasculature (pink), hepatic vasculature (blue), and liver surface (gray). Panel
(d) shows a zoomed superior view of the tracked iUS and hepatic vein structure. The deformed anatomi-
cal models and updated transform from the deformation-correction Algorithm 2 were used to generate the
renderings in panels (e) and (f). Panel (e) shows a superior view of the deformation corrected alignment
and includes a rendering of the lesion (brown), portal vasculature (pink), hepatic vasculature (blue), and
liver surface (gray). Panel (f) shows a zoomed superior view of the tracked iUS and hepatic vein structure
after deformation correction.

Table 3 Summary of the contour-to-model closest-point distance errors between homologous features delineated in the preoperative tomograms
and the tracked iUS image sets under conditions of rigid registration and postdeformation correction driven by Algorithm 1. The maximum contour-
to-model closest-point distance is shown in parentheses. A mean shift correction measurement is also presented for each feature to provide a
sense of the efficacy of the model-based correction algorithm.

Patient Anatomical feature Rigid registration error (mm) Postcorrection error (mm) Shift correction (%)

1 Left portal vein confluence 5.2� 3.1 (11.9) 5.5� 3.5 (13.0) (5.8)%

1 Left hepatic vein 6.2� 1.5 (8.8) 6.8� 1.9 (9.7) (9.7)%

2 Left portal vein confluence 4.9� 3.1 (10.0) 2.8� 2.0 (7.8) 42.9%

3 Right hepatic vein 4.6� 2.8 (11.3) 5.2� 3.2 (11.2) (13.0)%

4 Portal vein confluence 6.2� 2.9 (10.7) 2.5� 1.4 (5.6) 59.7%

4 Right hepatic vein 10.0� 2.7 (14.9) 6.3� 3.4 (12.5) 37.0%

5 Segment III portal pedicle 5.5� 2.6 (10.9) 8.7� 2.5 (12.4) (58.2)%

6 Segment IVb pedicle 2.2� 1.2 (5.2) 2.0� 1.1 (4.2) 9.1%

Mean 5.6� 2.2 5.0� 2.3 10.7%a

aNote that this value represents the shift correction percentage computed directly from the mean rigid registration and postcorrection errors and not
a direct computation of the mean shift correction percentages.
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The contrast between the impact of the deformation correction
on the surface residual metrics presented in Table 2 and the sub-
surface contour-to-model distances is notable over this patient
cohort. In particular, Algorithm 2 does not have as great an
impact on reducing the surface residual errors, yet has a
much greater impact on the reduction of the subsurface con-
tour-to-model target errors.

4 Discussion
The results presented represent the first effort to evaluate bio-
mechanical model-based deformation-correction algorithms
for IGLS driven by sparse surface data using clinically acquired
subsurface anatomical targets. It should be noted that previous
work by Beller et al.6 has employed a validation technique using
clinical data for their spline-based deformation-correction algo-
rithm. The work presented here is differentiated due to the fact
that the subsurface anatomical targets used in the algorithm val-
idation were completely segregated from the sparse data and not
used to drive the model. In other words, the model-based defor-
mation-correction algorithm employed in this work was driven
solely by sparse surface data acquired intraoperatively, while the
validation metrics were computed using subsurface anatomical
targets digitized via tracked iUS.

The visualizations (shown in Figs. 4, 5, and 6) of the impact
of the deformation-correction algorithm on tracked iUS align-
ment indicates that the proposed algorithm provides a substan-
tial correction for the soft-tissue deformation encountered
during these procedures. Additionally, the quantitative summary
of the subsurface contour-to-model distance errors (shown in
Table 4) indicates that the correction of Algorithm 2 can com-
pensate for ∼52% of the encountered soft-tissue shift and rep-
resents an improvement over the correction results shown for
Algorithm 1. The contour-to-model distance errors shown in
Table 3 indicate that Algorithm 1 is significantly less robust
with respect to correcting subsurface target errors as compared
with Algorithm 2. It should be noted that while Algorithm 2
resulted in a larger contour-to-model target error in case 5

than reported for the condition of rigid registration, the low
absolute value of the target error indicates that, while the surface
deformation was similar to other cases, there was likely minimal
detectable soft-tissue deformation for this particular target.

In addition to, reporting the subsurface contour-to-model dis-
tance metrics in Tables 3 and 4, the surface residual error metrics
have also been presented in Table 2 for reference. It is interesting
to note that Algorithm 2 outperforms Algorithm 1 on six of eight
target errors (six of seven if one does not consider the small tar-
get error comparison of case 5). However, in Table 2, which
compares surface fit, Algorithm 1 outperforms Algorithm 2
in four of six cases. This is an interesting result and implies
that it is critical for validation work to evaluate both surface
and subsurface residual error metrics to really capture perfor-
mance of deformation-correction algorithms. In addition, we
can also glean some insight from this result based on the meth-
odologies employed by each algorithm. Algorithm 1 is a direct
surface residual fit algorithm with an attempt to extrapolate
information from that visible data region to nonvisible regions
of the organ. In contrast, Algorithm 2 attempts to reconstruct
backside liver deformations to best fit the visible surfaces.
Fundamentally, these represent very different modes of enforc-
ing fit on the domain and the results would suggest that the sup-
portive backside deformation reconstruction is a more accurate
representation of the actual deformations imposed during the
surgical procedure and facilitates greater reductions with respect
to subsurface target error.

In summary, the clinical validation presented within the
evaluation of previously proposed deformation-correction
techniques for open liver image-guidance have largely relied
on surface-based metrics and phantom experiments have
been used for the characterization of subsurface target accu-
racy. The proposed method represents a significant advance-
ment in methodology for the evaluation of deformation
correction in open hepatic surgical navigation via the use of
independent subsurface anatomical targets acquired during
clinical procedures for validation. While further refinement

Table 4 Summary of the contour-to-model closest-point distance errors between homologous features delineated in the preoperative tomograms
and the tracked iUS image sets under conditions of rigid registration and postdeformation correction driven by Algorithm 2. The maximum contour-
to-model closest-point distance is shown in parentheses. A mean shift correction measurement is also presented for each feature to provide a
sense of the efficacy of the model-based correction algorithm.

Patient Anatomical feature Rigid registration error (mm) Postcorrection error (mm) Shift correction (%)

1 Left portal vein confluence 5.2� 3.1 (11.9) 2.5� 1.2 (5.0) 51.2%

1 Left hepatic vein 6.2� 1.5 (8.8) 1.0� 0.5 (2.1) 83.9%

2 Left portal vein confluence 4.9� 3.1 (10.0) 2.0� 1.2 (4.9) 59.2%

3 Right hepatic vein 4.6� 2.8 (11.3) 2.0� 1.3 (5.4) 56.5%

4 Portal vein confluence 6.2� 2.9 (10.7) 4.3� 2.9 (9.9) 30.6%

4 Right hepatic vein 10.0� 2.7 (14.9) 4.5� 2.7 (9.8) 55.0%

5 Segment III portal pedicle 5.5� 2.6 (10.9) 2.4� 1.5 (5.4) 56.4%

6 Segment IVb pedicle 2.2� 1.2 (5.2) 2.5� 1.6 (5.7) (13.6)%

MEAN 5.6� 2.2 2.7� 0.7 51.8%a

aNote that this value represents the shift correction percentage computed directly from the mean rigid registration and postcorrection errors and not
a direct computation of the mean shift correction percentages.
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in deformation-correction methodology is needed, the average
error correction of 52% facilitated by Algorithm 2 represents a
meaningful advancement toward the realization of a model-
updated surgical navigation system for open liver resection.

5 Conclusions
The preliminary results indicate that the proposed validation
method is promising in facilitating the refinement of deforma-
tion-correction algorithms for image-guidance systems used in
open liver procedures. The evaluation indicates that deforma-
tion-correction methods are available that are capable of com-
pensating for ∼52% of the soft-tissue deformation that is
experienced during open liver procedures. Future work will
involve the generation of 3-D models of the anatomical struc-
tures acquired via the tracked iUS framework to facilitate the
computation of more descriptive target error metrics and the
methods of Pheiffer et al. to correct for the impact of tissue com-
pression from the iUS transducer.21 Additionally, future work
will also involve use of the subsurface tracked iUS data to val-
idate further refinement of Algorithm 2 via incorporation of
salient anatomical feature weighting that is used in the rigid sur-
face-based registration algorithm used in the Explorer™ Liver
guidance system.
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