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Abstract. Brain shift during tumor resection compromises the spatial validity of registered preoperative imaging
data that is critical to image-guided procedures. One current clinical solution to mitigate the effects is to reimage
using intraoperative magnetic resonance (iMR) imaging. Although iMR has demonstrated benefits in accounting
for preoperative-to-intraoperative tissue changes, its cost and encumbrance have limited its widespread adop-
tion. While iMR will likely continue to be employed for challenging cases, a cost-effective model-based brain shift
compensation strategy is desirable as a complementary technology for standard resections. We performed a
retrospective study of n ¼ 9 tumor resection cases, comparing iMR measurements with intraoperative brain shift
compensation predicted by our model-based strategy, driven by sparse intraoperative cortical surface data. For
quantitative assessment, homologous subsurface targets near the tumors were selected on preoperative MR
and iMR images. Once rigidly registered, intraoperative shift measurements were determined and subsequently
compared to model-predicted counterparts as estimated by the brain shift correction framework. When consid-
ering moderate and high shift (>3 mm, n ¼ 13� 6measurements per case), the alignment error due to brain shift
reduced from 5.7� 2.6 to 2.3� 1.1 mm, representing ∼59% correction. These first steps toward validation are
promising for model-based strategies. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.3.035003]
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1 Introduction
Surgical resection via image-guided neurosurgery (IGNS) is a
standard of care for patients with brain tumors. By coregistering
the patient space to high-resolution preoperative magnetic res-
onance (MR) imaging, surgeons can better localize tumor
regions, assess tumor margins during resection, identify elo-
quent functional areas to avoid, and navigate in the surgical
field. Thus, the quality and safety of the resection procedure
heavily rely on the agreement between the preoperative MR
image registered to the patient space and the patient’s intraoper-
ative anatomy. This agreement, however, can be compromised
when brain shift, i.e., soft tissue deformation, occurs during sur-
gery. Studies have reported cortical surface shifts up to 24 mm
and subsurface shift ranging between 3 and 7 mm.1–4

Brain shift is a complex spatiotemporal event caused by a
number of contributing factors, such as cerebrospinal fluid
(CSF) drainage, the administration of osmotically active
drugs, swelling, and resection effects.2,4–8 Intraoperative imag-
ing is a direct method to visualize and assess brain deformation.
Ultrasonography (US), computed tomography (CT), and MR
are the commonly utilized intraoperative imaging modalities
to monitor brain shift. However, due to poor soft tissue contrast
in both CT and US in comparison to intraoperative MR (iMR),

limited volumetric information provided in US, as well as the
risk of radiation exposure in CT, iMR imaging has emerged
as the most widely adopted option to compensate for brain
shift intraoperatively.1,4,5,9,10

The implementation and practice of iMR imaging have
shown considerable positive effects in clinical outcome. For
example, in a 200-patient study by Nimsky et al.11 using iMR
techniques for a variety of neurosurgical operations, it was
found that iMR had immediate procedural impact in 27.5%
of cases (e.g., further resection when incomplete tumor removal
was revealed on iMR imaging). More recent studies by Senft
et al.12 and Schulz et al.13 have further demonstrated that in a
significant portion of brain tumor resection cases, intraoperative
updating of the preoperative diagnostic imaging data to account
for soft tissue changes is valuable and is needed. However, iMR,
the widely accepted clinical and commercial option at this
time, has had limited adoption due to cost and encumbrance
considerations.3,11 As a result, computational model-based brain
shift compensation strategies designed to realign the preopera-
tive MR image to the patient’s intraoperative anatomy using
sparse, accessible, and readily acquired intraoperative data
may provide a cost-effective and complementary means to com-
pensate for soft tissue deformation.

*Address all correspondence to: Ma Luo, E-mail: m.luo@vanderbilt.edu 2329-4302/2017/$25.00 © 2017 SPIE

Journal of Medical Imaging 035003-1 Jul–Sep 2017 • Vol. 4(3)

Journal of Medical Imaging 4(3), 035003 (Jul–Sep 2017)

http://dx.doi.org/10.1117/1.JMI.4.3.035003
http://dx.doi.org/10.1117/1.JMI.4.3.035003
http://dx.doi.org/10.1117/1.JMI.4.3.035003
http://dx.doi.org/10.1117/1.JMI.4.3.035003
http://dx.doi.org/10.1117/1.JMI.4.3.035003
http://dx.doi.org/10.1117/1.JMI.4.3.035003
mailto:m.luo@vanderbilt.edu
mailto:m.luo@vanderbilt.edu
mailto:m.luo@vanderbilt.edu


There have been several research efforts in the develop-
ment of predictive biomechanical modeling, driven by sparse
intraoperative data, to compensate for brain shift. However,
the main challenge associated with computational model-
based approaches is the difficulty of validating the proposed
methods. As a preliminary validation step, a number of
studies have employed physical or digital phantoms to assess
the accuracy of their proposed brain shift correction
algorithms.14–16 The advantage of using phantoms is that it
is highly controlled and allows for detailed comparisons.
However, phantom testing environments lack soft tissue
equivalence and do not incorporate the heterogeneous nature
of their in vivo counterparts.14

Another approach for evaluating the efficacy of brain shift
correction frameworks, proposed by Dumpuri et al.,17 is a retro-
spective comparison study analyzing the shifts of homologous
feature targets, measured with preoperative and postoperative
MR images, versus model-predicted displacements.4 While
the utilization of postoperative MR images provides a more real-
istic and clinically relevant assessment of the performance of
model-based brain shift correction algorithm, brain shift mea-
sured from postoperative MR was shown to be less pronounced
when compared to intraoperative brain shift. More specifically,
in the follow-up work by Chen et al.,18 when comparing intra-
operative cortical surface shift to that of the pre- and postoper-
ative study of Dumpuri et al.17 for the same patients, the study
found that between the intraoperative and postoperative imaging
presentations, the cortical surface shift could recover as much as
35% to 65% of its intraoperative shift. The differences likely
stem from the natural replenishment of CSF postoperatively
with subsequent restoration of buoyancy forces and potential
difference in head orientation between surgery and postopera-
tive imaging. These studies also further demonstrate the highly
dynamic nature of brain shift.

While the studies above provide insight on the feasibility of
employing a model-based approach for intraoperative brain
shift compensation, the ideal strategy for assessment is to estab-
lish measurements of brain shift using iMR technology and then
compare the measurements to model-based predictions. Several
teams have attempted to compare model-based approaches with
iMR for validation. Skrinjar et al.19 presented an early attempt to
use iMR to validate the brain shift recovery efficacy of a con-
tinuum mechanics-based model in two patient cases, with 14
landmarks in each case. Another early attempt to use iMR
for model performance validation was performed by Ferrant
et al.,20 who evaluate the accuracy of their model by tracking
400 landmarks in five intraoperative scans acquired succes-
sively, where the landmarks are placed in both hemispheres
of the brain. Zhang et al.21 have also taken the iMR approach
to validate their linear elastic model-based brain shift correction
strategy, which is driven by imposing the cortical surface defor-
mation, acquired intraoperatively via laser range scanner (LRS),
as boundary conditions. Five patients were selected for the
Zhang et al.21 study and four to six landmarks are identified
in each case, totaling 25 landmarks, with a mixture of locations
near the tumor, in mid volume, and on the cortical surfaces.
Joldes et al.22 also employ iMR to validate their biomechanical
model in five patient cases, using the misalignment of the three-
dimensional (3-D) bounds of the ventricles between the intra-
operative segmentations and model predictions, rather than ana-
tomical landmarks, to provide an understanding of model
accuracy. Another group that has used iMR to assess their
model-based method is Vigneron et al.23 They similarly
chose not to use tissue landmarks for validation in two patient
cases analyzed, but rather implemented a modified Hausdorff
distance metric where they compare the edge maps extracted
via Canny method from the original, intraoperative, and
model deformed image volumes in the whole brain, as well

Table 1 Reported results and findings in selected literatures—validation of model-based approaches with iMR.

Reference Validation metric Results and findings

Skrinjar et al.19 N ¼ 2; 14 landmarks in each case, throughout the volume
of the cerebral hemisphere, away from the exposed brain
surface, on the side of craniotomy.

Maximal landmark displacement is 3.8 mm; maximal error
of the predicted brain deformation is 1.4 mm.

Ferrant et al.20 N ¼ 1; with a sequence of five successive intraoperative
scans; a total of 400 landmarks placed in both
hemispheres: 37% in boundary surfaces (16% on the
ventricles and 21% on the cortical surface), 41% in mid
volume, and 22% in tumor and resection regions.

Average displacement of all landmarks before and after
deformation modeling is reduced from 1.7 to 0.9 mm (for
surface landmarks: 1.6 to 0.7 mm, for mid volume: 1.6 to
0.9 mm, and for tumor region: 2.3 to 1.6 mm).

Zhang et al.21 N ¼ 5; a total of 25 landmarks: 19 near tumor, 4 in mid
volume, 2 on cortical surface.

For all landmarks, measured displacement is 3.9� 2.8 mm
and error is 1.2� 0.6 mm. For landmarks near the tumor,
measured displacement is 4.2� 3.1 mm and error is
1.25� 0.6 mm.

Joldes et al.22 N ¼ 5; 3-D bounds of the ventricles. The maximum errors were 1.6 mm in the medial–lateral
direction, 1.6 mm in anterior–posterior direction, and
2.2 mm in inferior–superior direction in predicting
intraoperative bounds of the ventricles between
intraoperative segmentations and model predictions.

Vigneron et al.23 N ¼ 2; modified Hausdorff distance in the whole brain, as
well as in the region and neighborhood of the tumor.

For the whole brain, the modified Hausdorff distance
decreased from 1.24 to 1.08 mm in one case and increases
from 1.01 to 1.04 mm in the other case before and after
model intervention. The modified Hausdorff distance
decreases from 1.36 to 1.28 mm in the region and
neighborhood of the tumor.
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as in the tumor region and its neighborhood, as confirmation that
their model was able to better realign the preoperative imaging
data with patient intraoperative anatomy.23 Results and critical
findings of these studies are summarized in Table 1.

These iMR validation studies have further demonstrated the
viability of employing biomechanical models to predict brain
shift intraoperatively. However, small sample sizes in these
studies—in both the number of patients and the number of land-
marks investigated near the tumor region, which are of signifi-
cant interest to the surgeons—provide more impetus for studies
using iMR as a brain shift comparator for model-based shift cor-
rection in tumor resection surgeries.

We have developed a brain shift correction framework that
uses a biphasic biomechanical modeling approach to construct a
deformation atlas of potential deformation solutions precom-
puted based on variables associated with potential surgical pre-
sentations of the patient in the operating room.2,18,24–26

Intraoperatively, the approach is driven by sparse cortical sur-
face deformation data. Subsequently, intraoperative volumetric
brain shift is estimated with an inverse problem approach,
whereby a combination of atlas solutions is drawn from the
suite of precomputed deformation solutions to best-fit the intra-
operative surface data. Once complete, the model-derived defor-
mation field may be applied to the preoperative MR imaging to
reflect the predicted volumetric brain shift during surgery, thus
improving the precision of IGNS.

This study represents our continuing effort to validate the
developed brain shift correction strategy and is the latest
advancement toward a more comprehensive and prospective val-
idation fidelity study in the near future. The objective of this
study is to assess the overall performance of our methodology
by analyzing subsurface landmarks with moderate and high shift
(above 3 mm) near tumor resection regions and compare with
the state-of-the-art clinical iMR technology.10,27

2 Methods
A semiautomated computational framework, built on a biphasic
biomechanical model, for brain shift correction has been
realized.2 Preoperative and intraoperative imaging data of
nine patients have been acquired to assess the extent of brain
shift during tumor resection surgery. All patients provided writ-
ten consent prior to imaging for this Brigham and Women’s
Hospital Institutional Review Board approved study.

In this retrospective study, the data have been used to drive
our brain deformation correction framework, and comparisons
of brain shift between iMR measurement and model prediction
have been performed. The overall workflow of this comparison
study with iMR is shown in Fig. 1.

Briefly, in the preoperative routine shown in Fig. 1, a
patient’s preoperative MR image volume is obtained prior to
surgery. Within a previously developed model framework, a
series of preoperative computing steps are performed beginning
with segmentations of the patient’s brain, tumor, tentorium cer-
ebelli, falx cerebri, and brain stem.25 From the segmented vol-
ume, a patient-specific finite-element mesh is generated. A
preoperative surgical plan is determined by the surgeon,
which includes an approximation to the anticipated head orien-
tation, the location, and approximate size of the craniotomy.
This information is then provided to an automatic boundary con-
dition generator that systematically produces a suite of boundary
conditions that capture anticipated variability of patient’s surgi-
cal presentation within the procedure2,26 Once complete, the

boundary conditions are used within the context of an existing
biphasic soft tissue finite-element model to generate a distribu-
tion of possible volumetric deformation solutions that capture a
range of anticipated brain shifts due to gravitational sag, hyper-
osmotic drugs, tissue swelling, and resection cavity effects, in a
so-called “deformation atlas.”

Intraoperatively, cortical surface deformation is measured,
and a constrained combination of solutions from the deforma-
tion atlas is produced to best match cortical surface shift via an
inverse problem as shown in Fig. 1. This combination of solu-
tion represents the model-predicted brain shift intraoperatively.

For this retrospective study, the sparse input data used to
drive the inverse problem are the measured cortical surface
deformation (shown in the model input block of Fig. 1),
which is obtained by extracting homologous cortical surface
points from the MR image volumes. More specifically, preop-
erative MR and iMR image volumes were rigidly registered. We
note here that this registration has to be taken with care in that it
requires the registration of geometrically consistent features, e.
g., skull. A general intensity-based registration of the brain tis-
sue itself for example would be inappropriate given that the
intraoperative and preoperative presentations of the tissue are
quite different. More specifically, deformations measured to
drive the pipeline must reflect displacement trajectories relative
to the preoperative state, not necessarily the best rigid alignment
of brain tissue intensities. Frameworks that work on a biophysi-
cal simulation basis, such as the one in this work, require this
type of control. Fortunately, in the operating room, the initial
registration of a patient and subsequent attachment of a refer-
ence target to that configuration are the standard of care.
Interestingly, it is only within the iMR validation environment
that this challenge appears but certainly is worth noting here.
Nevertheless, to assess in this work, relatively rigid structures,
such as the skull and/or orbits, were used to establish this regis-
tration reference for quality assurance.

Once rigidly registered, using 3-D Slicer28 and Analyze 9.0
(AnalyzeDirect, Overland Park, Kansas), homologous surface
feature points around the surgical site on the preoperative
and registered intraoperative images were determined, and
differences in position between the corresponding feature points
served as our measurement of intraoperative cortical surface
deformation. After cortical surface shift was determined, surface
deformations only were used to drive the correction algorithm
via our inverse problem approach, i.e., an optimal combination
of precomputed deformation atlas solutions produced to best
match the measured surface deformation. Once achieved, the
preoperative MR image could then be updated based on the

Fig. 1 Overall workflow of the comparison study with iMR in evaluat-
ing a deformation atlas-based brain shift correction framework.
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aforementioned optimal volumetric deformation solution. We
should further note that while the deformation atlas contains sol-
utions with and without resected tumor volume influences, intra-
tumor volume displacements are interpolated based on the
combination of solutions. More specifically, we have found
that interpolating intratumor intensity content from the preop-
erative image, rather than placing a void, is a preferred visual
assessment.17

Last, for model validation in Fig. 1, the quality of the model
correction was assessed by examining the differences between
measured subsurface shift and model-predicted subsurface shift
near the tumor region, as evaluated by determining the shift in
homologous subsurface feature points designated between pre-
operative and intraoperative images and comparing to those
determined from the computational model. We should empha-
size that the homologous subsurface measurements were used
solely to assess the fidelity of our corrections and not used
in any way to drive the inverse problem framework.

2.1 Preoperative Image Information and
Segmentation

Preoperative MR and iMR images were acquired for nine
patients at Brigham and Women’s Hospital (Boston,
Massachusetts). The intraoperative scans are acquired by a
high-performance high-field (3 T) wide bore (70 cm) MRI
scanner (Siemens Magnetom Verio, Erlangen, Germany).
Details of the patient information can be found in Table 2.

The specification of the preoperative MR and iMR images,
namely, the voxel spacing and the selection of MR sequence,
was case specific. Details of the preoperative MR and iMR
images of each patient can be found in Table 3.

For each patient, the patient’s brain and tumor were manually
segmented via ITK-SNAP.29 To facilitate automatic segmenta-
tion of dural septa, the patient’s brain was rigidly and nonrigidly

registered to an expert segmented atlas image set with dural
septa presegmented using a normalized mutual information
algorithm and the adaptive bases algorithm, respectively.30,31

The brain, tumor, and segmented dural septa structures served
as the basis for our finite-element model geometry.

2.2 Preoperative Computational Biomechanical
Model Construction

Using the segmented brain and tumor volume, a marching
cubes algorithm (followed by a decimation and surface
smoothing step) was employed to establish a boundary
description. A custom-built mesh generator was then used
to produce a volumetric tetrahedral mesh.32 The typical
brain mesh was ∼84;000 tetrahedral elements and 18,000
nodes. Once constructed, displacement and pressure boundary
conditions were systemically assigned to generate the sub-
sequent atlas of volumetric displacement estimations.2,18,25,26,33

Specifically, the brain stem region is assigned to be fixed with
no displacement. In regions associated with highest elevation
when the patient’s head is in the operating position, as well as
within the region of the craniotomy, the brain is allowed to
freely deform, i.e., stress-free condition. The remainder of
the brain surface is prescribed with a displacement boundary
condition that allows for tangential slip along the cranial sur-
face but excludes normal-to-the-cranium displacements. The
exact spatial designation where the stress-free and slip condi-
tions meet is dependent on the head orientation, i.e., given a
head orientation relative to gravity, an orthogonal plane based
on a previously published algorithm is determined and serves
as the interface.2,17,25,26 With respect to CSF drainage, boun-
dary nodes above the CSF drainage level were assumed to
be at an atmospheric reference pressure while boundary
nodes below the CSF level were prescribed a boundary con-
dition of no drainage, or Neumann boundary conditions set

Table 2 Patient information.

Patient
#

Age and
gender Tumor type (grade)

Craniotomy
diameter (cm) Orientation

Lesion location,
e.g., L/F, R/T

Lesion
size (cm3)

1 40, M Pleomorphic xanthroastrocytoma
with anaplastic features

5.5 Supine, head rotated almost
90 deg to the left

R/T 22.5

2 39, M Oligodendroglima (II) 3 Supine, head rotated to the right by
15 deg

L/F 87.5

3 43, M Oligodendroglioma (II) 5 Supine, flexed slightly, rotated
45 deg to the left

R/F 84.0

4 51, F Glioblastoma multiforme (IV) 4 Patient on right side, head further
rotated to the right. Total rotation
∼135 deg to the right.

L/O 90.0

5 39, F Oligoastrocytoma (III) 7 Supine, gentle tilt, 30-deg rotation
to the right

L/F 108.0

6 54, F Metastatic adenocarcinoma 4 Supine, 45-deg rotation to the left R/F 27.0

7 68, M Glioblastoma multiforme (IV) 4 Supine, rotated slightly to the right L/F 18.0

8 43, F Astrocytoma (II) 5 Supine, 60-deg rotation to the left R/F 15.0

9 50, M Glioblastoma multiforme (IV) 4.5 Supine, head rotated slightly to the
right

L/F 157.5
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to zero. Last, regarding internal structures (falx and tentorium),
slip boundary condition with no fluid drainage was assigned as
the displacement and pressure boundary conditions, respec-
tively. Given these descriptions, the mechanics-based boun-
dary conditions will change with each head orientation, and
boundary drainage conditions can change with the level of
CSF drainage. These sets of variations will serve as the foun-
dation for the description of the “atlas” below.

We should note that manual inspection of the patient’s brain
mesh, brain stem, falx and tentorium representations, tumor
mesh boundary, and craniotomy region were performed using
Paraview34 as a qualitative check on the process. Figure 2
shows an example of a computational domain.

2.3 Deformation Atlas Generation

Our brain shift compensation strategy relies on the generation of
a suite of possible deformation solutions modeling gravity-

induced, osmotic-agent-induced, and swelling-induced defor-
mations, based on numerous surgical factors, such as head ori-
entation, CSF drainage, hyperosmotic drugs, and swelling.2 To
accommodate for the unpredictable and dynamic surgical envi-
ronment, the aforementioned factors are perturbed such that a
comprehensive and well-distributed atlas of potential deforma-
tions is provided.

More specifically, for gravity-induced shift, three different
CSF drainage levels are assumed. In addition, models both
with and without the presence of the space occupying lesion
are also part of the atlas. This effectively represents six potential
solutions for any given head orientation with respect to the
direction of gravity. For osmotic-agent-induced shift, three dif-
ferent empirically established permeability conditions were
simulated with and without the presence of the tumor, similarly
providing six feasible configurations at a particular head orien-
tation. To adjust for possible deviations from the preoperative
estimation of head orientation, the model creates a cone of
60 probable head orientations, ranging �20 deg from the pre-
operative estimation. Thus, 360 surgical presentations from
gravity effects and 360 from the effects of osmotic agent on
brain deformation were considered. Last, three different vascu-
lar-based solutions considering three different craniotomy sizes
(75%, 100%, and 125% of the size of the planned craniotomy
size) were generated to simulate brain swelling effects, yielding
additional nine configurations. In summary, a total of 729 boun-
dary condition descriptions were generated, which represent a
comprehensive distribution of possible intraoperative shifts.
The values of the material properties used for shift simulations
can be found in Sun et al.2 For each unique boundary condition
set, the Galerkin method of weighted residuals was employed on
the tetrahedral finite elements to resolve the partial differential
equations associated with the 3-D biomechanics of brain defor-
mation in attaining a full volumetric brain deformation
solution.35 The developed biphasic biomechanical model is
based on Biot’s theory of consolidation and is detailed exten-
sively in our prior work.2,17,25,33,36,37 We have included addi-
tional details of our constitutive biomechanical model in the
Appendix. The large sparse matrix systems constructed were
stored and solved using the Portable, Extensible Toolkit for
Scientific Computation.38

Table 3 Patient preoperative MR and iMR information.

Patient # Preoperative MR voxel spacing Preoperative MR sequence iMR voxel spacing iMR sequence

1 0.47 × 0.47 × 1.4 Ax T1 + GAD 0.94 × 0.94 × 0.90 Axial T1 Spin Echo

2 0.47 × 0.47 × 1.4 Ax 3D FSPGR + GAD 0.94 × 0.94 × 1.5 Ax T1 MPRAGE + GAD

3 0.98 × 0.98 × 1.0 Ax T1 MPRAGE + GAD 1.3 × 1.3 × 1.3 Ax T1 MPRAGE

4 0.47 × 0.47 × 1.4 Ax 3D FSPGR + GAD 1.3 × 1.3 × 1.3 Ax T1 MPRAGE + GAD

5 0.98 × 0.98 × 1.0 Ax 3D SPACE T2 0.69 × 0.69 × 2.0 Ax T2 BLADE

6 0.78 × 0.78 × 1.2 Ax 3D SPACE T2 0.69 × 0.69 × 2.0 Ax T2 BLADE

7 0.94 × 0.94 × 0.98 Ax T1 MPRAGE + GAD 1.3 × 1.3 × 1.3 Ax T1 MPRAGE + GAD

8 0.86 × 0.86 × 0.90 Ax T1 MPRAGE + GAD 0.47 × 0.47 × 1.5 Ax T1 MPRAGE + GAD

9 1.02 × 1.02 × 0.90 Ax T1 MPRAGE 0.94 × 0.94 × 0.90 Ax T1 MPRAGE

Fig. 2 Patient-specific brain mesh with atlas falx cerebri, tentorium
cerebelli, and brain stem registered to patient space by applying
rigid and nonrigid registrations. Approximated craniotomy nodes
are in blue, and tumor volume is shown in red.
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2.4 Homologous Surface Point Selection and
Inverse Problem

Patient intraoperative imaging volumes were registered to the
preoperative imaging data via a rigid registration based on nor-
malized mutual information.31 Once again, it is important to
note that the entire head volume was used for registration, rather
than brain-to-brain registration to facilitate better shift measure-
ments. Homologous cortical surface points were designated on
both preoperative and registered intraoperative images using 3-
D Slicer28 and Analyze 9.0 (AnalyzeDirect, Overland Park,
Kansas), e.g., Figs. 3(a) and 3(b). The displacements between
corresponding preoperative and intraoperative surface points
were used to drive the inverse problem, an example of a pair
of such homologous surface points is shown in Figs. 3(a)
and 3(b), in the preoperative MR imaging space and the regis-
tered iMR imaging space, respectively. Figures 3(d) and 3(e)
show the surface deformation, in red vectors, from the preop-
erative mesh (semitransparent white) to intraoperative mesh
(blue). The surface points were selected around the region of
craniotomy to simulate conditions in the operating room
where the exposed cortical surface would be the only source
of surface information during surgery. An example of the dis-
tribution of the surface points and their spatial relation to the
approximated location of the craniotomy is shown in Fig. 3(c).
The objective of the inverse problem is to minimize the least
squared errors between the measured surface shift and the pre-
dicted surface shift, which is a combinatory solution from the
deformation atlas generated in Sec. 2.3, as shown below

EQ-TARGET;temp:intralink-;e001;63;437 min kMw − uk2 ∃ wi ≥ 0 and
Xm
i¼1

wi ≤ 1; (1)

where M is the r × n deformation atlas, in which r represents
the displacements associated with cortical surface nodes and
n is the total number of solutions associated with the atlas, w
are the combinatory coefficients, and u are the measured cortical
surface displacements. The constraints placed on w ensure that
the weighted coefficients are positive and prevent extrapolation
from the existing atlas, safeguarding reasonable model-pre-
dicted deformations.2

Once the optimal combinatory fit is determined via a non-
negative least squares algorithm,39 the coefficients are used to
extract and combine the deformations from the full volumetric
atlas accordingly. Subsequently, the preoperative MR image is
deformed based on the full volumetric displacement prediction
via trilinear interpolation. We should note that the computational
time of the initial realization of our model-based approach
has been reported previously by Sun et al.2 Currently, though
the precomputation phase (i.e., patient-specific mesh build
and deformation atlas construction) can take several hours
(∼3.4 h on average in this study), this particular phase can
be computed in advance of the surgical procedure using preop-
erative diagnostic information (preoperative MR images and
surgical planner). Moreover, intraoperative computing for
model driven deformation estimation can be accomplished in
near real-time (∼1 min) with a standard desktop computer.

2.5 Subsurface Shift Measurement, Prediction,
and Model Performance Assessment

After the patient’s intraoperative image volume was rigidly reg-
istered to the preoperative image volume,31 homologous subsur-
face targets were selected using 3-D Slicer28 and Analyze 9.0
(AnalyzeDirect, Overland Park, Kansas), a process similar to

Fig. 3 Homologous surface point selection: (a) an example of a surface point selected on the preop-
erative MR image, (b) the corresponding surface point to (a) on the registered iMR image, (c) the dis-
tribution of surface point selections (13 points) shown on the preoperative mesh (semitransparent white),
the red region represents the approximated location and size of the craniotomy, (d) the resultant vectors
(red vectors) between homologous surface point selections in (a) and (b) represent the measured intra-
operative surface deformation from the preoperative mesh (semitransparent white) to the intraoperative
mesh (blue), and (e) a zoomed view of the surface deformation vectors in (d) from the preoperative mesh
(semitransparent white) to the intraoperative mesh (blue).
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the surface point selection procedure in Sec. 2.4. An example of
the homologous subsurface points is shown in Fig. 4, where
Fig. 4(a) shows a subsurface landmark near the tumor region
on the preoperative MR image, and Fig. 4(b) shows the selected
corresponding subsurface feature target on the registered iMR
image. The subsurface points were selected near the tumor
region, where any deformation is of greatest interest and impor-
tance to the surgeon and can have the greatest impact on clinical
outcome. An example of the distribution of measured subsurface
displacements around the tumor is shown in Figs. 4(c) and 4(d)
in red vectors.

The identification of these subsurface targets provides mea-
surements of actual subsurface shifts of anatomical features
from preoperative-to-intraoperative space. In addition, the
selected subsurface landmarks in the preoperative space can
be mapped to the finite-element grid, and the model-estimated
displacements, therefore, can be determined and compared. For
comparison, the following were computed:

EQ-TARGET;temp:intralink-;e002;63;554~umeasured ¼ ðxi − xp; yi − yp; zi − zpÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;523~upredicted ¼ ðxm − xp; ym − yp; zm − zpÞ; (3)

where ~u is the displacement or shift vector, x is the sagittal plane
or medial–lateral axis, y is the coronal plane or anterior–pos-
terior axis, z is the axial plane or superior–inferior axis, subscript
i represents the intraoperative space, p indicates the preopera-
tive space, and m represents the model prediction after the pre-
operative image is deformed.

The error of the deformation correction, e, is measured by the
residual distance between subsurface intraoperative landmark

and corresponding interpolated subsurface point in model-
updated image or in equation forms

EQ-TARGET;temp:intralink-;e004;326;730e ¼ k~uerrork ¼ k~upredicted − ~umeasuredk; (4)

where k · k is the L2 norm of the vector or the Euclidean dis-
tance. The overall quality of the brain shift correction is then
evaluated by percent correction, which in its equation form is

EQ-TARGET;temp:intralink-;e005;326;665Percent correction ¼
�
1 −

e
k~umeasuredk

�
× 100%: (5)

The subsurface residual error e in Eq. (4) and the percent
correction of subsurface targets in Eq. (5) are the validation met-
rics employed in this study.

2.6 Point Selection—Measurement of Uncertainty
and Propagation of Error

Since the correction algorithm is driven by homologous surface
points in preoperative and intraoperative space, and the quanti-
tative validation of our model with iMR similarly relies on the
measurement between homologous subsurface points, the
uncertainty in selecting corresponding intraoperative points is
studied to investigate the potential window of error introduced
by this manual process.

Given a distribution of preoperative feature points (surface
and subsurface) in a particular case, corresponding points
were identified on the intraoperative image, which were marked
as point set 1. After a period of time, the same procedure was
repeated to select corresponding intraoperative surface and sub-
surface points, given the same set of preoperative points. These

Fig. 4 Homologous subsurface point selection: (a) an example of a subsurface point selected on the
preoperative MR image near the tumor region, (b) the corresponding subsurface point to (a) on the reg-
istered iMR image, (c) the distribution of subsurface displacements (red vectors) near the tumor region (in
orange), and (d) a zoomed view of the subsurface displacement vectors (red), measured by subsurface
homologous points.
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points were labeled as point set 2. Similarly, point set 3 was
acquired after another waiting period. The waiting period
between selecting any two point sets ranged between 1 to 4
weeks in an effort to mitigate bias due to procedural memory.

For each point of interest, the centroid was computed from
the three point sets (selections at different time points) and was
treated as the ground truth. The Euclidean distances between the
centroid and the manually designated point from each of the
three point sets were computed, providing a measurement of
uncertainty in selecting corresponding points on intraoperative
image, given the same set of preoperative points. Three patient
cases with considerably more identifiable surface and subsur-
face feature points were selected for this study.

To test the robustness of the correction algorithm, i.e., the
impact on the quality of brain shift prediction due to the uncer-
tainty in selecting homologous surface points, the inverse prob-
lem described in Sec. 2.4, was solved three times independently
using each of the three intraoperative surface point sets acquired.
With three unique full volumetric displacement solutions, the
preoperative subsurface landmarks were interpolated to
deformed image space as shown in Sec. 2.5, providing three dif-
ferent predictions of subsurface shifts. The predicted and mea-
sured subsurface shifts were compared to examine how the
effect of uncertainty in selecting homologous surface points
may propagate to the resultant volumetric deformation
prediction.

3 Results

3.1 Overall View: Analysis of Nine Cases

A total of n ¼ 9 patient cases were evaluated, and a total of 143
subsurface targets were identified. Of the 143 subsurface targets
selected on the preoperative MR and registered iMR images,
115 subsurface displacements exceeded 3 mm, a threshold of
moderate and high subsurface shift described by Bucholz
et al.40 The motivation for exclusion of shifts below 3 mm,
or low shift, in this study is detailed in Sec. 4. Considering mod-
erate and high subsurface shift only, the average measured sub-
surface displacement was 5.5� 2.6 mm. The subsurface shifts
were further stratified into moderate- (between 3 and 6 mm) and
high- (above 6 mm) shift groups. The stratification scheme again
is based on the scale proposed by Bucholz et al.,40 yet modified
slightly to prevent substantially uneven sample sizes in the sub-
groups in order to facilitate comparisons. Details of the subsur-
face shift for nine patient cases are summarized in Table 4.

To assess the quality of the model fit, i.e., the combinatory fit
drawn from the precomputed deformation atlas, the measured
surface displacements, obtained by selecting homologous sur-
face points, and model-predicted surface displacements are
compared. This is an equivalent process to the analysis of sub-
surface shift in Sec. 2.5. The outcome of the surface correction,
quantified by residual error in Eq. (4), and percent correction
defined in Eq. (5) is shown in Table 5.

While the surface points alluded to in Table 5 are used to
drive the inverse problem, they are not used to assess the val-
idation performance of our model—Table 5 merely shows what
could be considered a fiducial registration error for our
approach. More specifically, only subsurface points were
used for validation assessment in this study. The validation per-
formance of the correction algorithm is reported in three target
registration error groupings (moderate shift, high shift, and all
shifts above 3 mm). The target registration error or residual error

is described in Eq. (4) and percent correction defined in Eq. (5).
The entirety of the target registration error and percent correc-
tion of all patients can be found in Table 6.

In further analysis of the model percent correction of the nine
cases, results suggested that patient #9 could be an outlier. To
address, after confirming normality using the Shapiro–Wilk test,
a two-sided Grubbs’ test at 5% significance level (for patient #9,
p ¼ 0.0254 < 0.05 or Zpatient#9 ¼ 2.236 > critical value of

Table 4 Subsurface shift (average shift� standard deviation) mea-
sured by homologous points between preoperativeMR and registered
iMR images.

Measured subsurface shift (mm)

Patient #

Moderate shift
3 to 6 mm
(# of points)

High shift
above 6 mm
(# of points)

Moderate and high
shift above 3 mm

(# of points)

1 4.6� 0.5 (10) 7.7� 1.2 (3) 5.3� 1.5 (13)

2 4.5� 0.8 (13) 7.1 (1) 4.7� 1.0 (14)

3 4.6� 0.9 (15) 6.9� 1.0 (11) 5.6� 1.5 (26)

4 4.1� 0.7 (16) N/A 4.1� 0.7 (16)

5 5.83 (1) 10.6� 3.3 (5) 9.8� 3.5 (6)

6 3.8� 0.4 (9) N/A 3.8� 0.4 (9)

7 N/A 10.9� 2.7 (10) 10.9� 2.7 (10)

8 4.3� 1.0 (8) 6.3� 0.2 (2) 4.7� 1.2 (10)

9 4.0 ± 0.7 (11) N/A 4.0 ± 0.7 (11)

Note: N/A indicates the lack of data in a particular subgroup in a
patient case.

Table 5 For surface targets: from left to right, the columns represent
the patient ID, number of points used to drive the inverse problem, the
average surface shift experienced in each case, and brain shift cor-
rection model performance measured in residual error and percent
correction.

Patient #
Number
of points

Average
surface

shift (mm)

Average residual
surface error

(mm)

Percent
correction

(%)

1 12 5.6� 0.9 2.1� 1.0 63.4� 17.9

2 10 7.1� 1.7 2.6� 1.3 63.6� 18.3

3 11 7.6� 1.3 2.9� 1.4 61.7� 18.4

4 10 6.0� 0.7 2.2� 1.2 62.6� 20.0

5 10 13.3� 3.0 3.3� 1.3 75.2� 9.8

6 7 5.9� 1.8 1.8� 1.1 69.9� 18.6

7 10 15.8� 1.5 3.8� 1.0 76.1� 6.3

8 13 6.3� 1.4 2.5� 1.0 60.2� 15.9

9 8 3.9 ± 1.0 2.5 ± 0.5 36.3 ± 12.8
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Z ¼ 2.215) was performed and confirmed that patient #9 was
indeed an outlier. With the identification and exclusion of
patient #9 as an outlier (italics in Tables 4–6), whose exclusion
is also studied in Sec. 4, the remaining eight patient cases were
further analyzed to examine the model’s overall performance.

3.2 Model Overall Performance Evaluation

A total of 124 subsurface targets were identified in the remain-
ing eight patient cases. Of the 124 subsurface targets selected on
the preoperative MR and registered iMR images, 104 subsurface
displacements exceeded 3 mm and were considered as moder-
ate- and high-shift targets. The overall assessment of the mod-
el’s ability, excluding patient #9, to recover intraoperative brain
shift is summarized in Table 7. Briefly, the residual error after
correction is 2.3� 1.1 mm for all shifts above 3 mm (the aver-
age subsurface shift is 5.7� 2.6 mm in 104 targets). This trans-
lates to a percent correction of 59.0%� 19.3% for moderate and
high shifts. Moreover, the residual error after correction for
moderate shift (between 3 and 6 mm) is 2.2� 1.0 mm from
an average subsurface shift of 4.3� 0.8 mm, representing
50.4%� 23.3% recovery, and the residual error after correction
for high shift (>6 mm) is 2.8� 1.2 mm from an average sub-
surface shift of 8.8� 2.8 mm, representing 68.6%� 13.6%
recovery.

The volumetric deformation introduced by the solution of the
inverse problem can be observed in Fig. 5(a), where preopera-
tive brain mesh (white semitransparent mesh) is deformed (to
orange mesh) to match measured surface deformation according
to Eq. (1) of Sec. 2.4. With the obtained deformation field, sub-
surface displacement of the preoperative target is estimated, and
a comparison between measured subsurface displacement and
predicted subsurface displacement is shown in Figs. 5(b) and
5(c), where red vectors represent measured subsurface displace-
ment from preoperative MR and iMR images and blue vectors
represent model predictions.

AWilcoxon rank sum test of the distances from preoperative
landmarks to corresponding intraoperative target locations
before and after model correction yields p < 0.0001, indicating
the differences resulting from the correction algorithm are sta-
tistically significant. Furthermore, a Wilcoxon rank sum test of
the residual distances comparing the moderate- and high-shift
group yields p ¼ 0.02 < 0.05. A Wilcoxon rank sum test of
the percent correction performance comparing the moderate-
and high-shift group yields p < 0.0001. The latter two rank
sum tests indicate the difference observed with respect to
model performance in the moderate- and high-shift group, spe-
cifically that the model performs better in the high-shift range
with greater consistency compared to in the moderate-shift
group shown in Table 7, is statistically significant.

A qualitative comparison of preoperative MR images, regis-
tered iMR images, and model-updated MR images also demon-
strates the impact of our brain shift correction algorithm.
Examples from three different patient cases are shown in

Table 6 For subsurface targets, brain shift correction model performance measured in residual errors (average residual error ± standard deviation
of the error) and percent correction (average percent correction ± standard deviation of percent correction).

Moderate shift (3 to 6 mm) High shift (>6 mm) Moderate and high shift (>3 mm)

Patient #
True shift
(mm)

Residual
error (mm)

Percent
correction (%)

True shift
(mm)

Residual
error (mm)

Percent
correction (%)

True shift
(mm)

Residual
error (mm)

Percent
correction (%)

1 4.6 1.9� 1.1 58.6� 23.9 7.7 2.6� 1.4 66.7� 18.2 5.3 2.1� 1.2 61.3� 22.6

2 4.5 2.6� 0.7 42.9� 15.6 7.1 1.4* 80.8* 4.7 2.5� 0.7 47.0� 14.9

3 4.6 2.5� 1.5 45.5� 32.6 6.9 2.1� 1.0 69.0� 14.5 5.6 2.3� 1.3 57.9� 23.2

4 4.1 1.9� 1.0 53.5� 24.4 N/A N/A N/A 4.1 1.9� 1.0 53.5� 24.4

5 5.8 3.1* 46.93* 10.6 3.0� 1.0 71.3� 9.4 9.8 3.1� 0.9 68.9� 9.2

6 3.8 1.6� 0.7 56.4� 18.4 N/A N/A N/A 3.8 1.6� 0.7 56.4� 18.4

7 N/A N/A N/A 10.9 3.5� 1.2 68.1� 11.0 10.9 3.5� 1.2 68.1� 11.0

8 4.3 2.1� 0.6 50.4� 14.0 6.3 2.8� 0.5 55.9� 7.9 4.7 2.2� 0.7 51.9� 14.9

9 4.0 3.0 ± 0.7 24.9 ± 17.5 N/A N/A N/A 4.0 3.0 ± 0.7 24.9 ± 17.5

Note: N/A indicates lack of data in a particular subgroup in a patient case.
For details of subsurface shift, as well as number of points in each category, see Table 4.
*Indicates only one point was present within range.

Table 7 Overall model performance in eight cases. For subsurface
targets, brain shift correction model performance measured in
residual errors (average residual error ± standard deviation of the
error) and percent correction (average percent correction ± standard
deviation of percent correction).

Model overall
performance
in eight cases

True subsurface
shift (mm) [# of

points)

Residual
error
(mm)

Percent
correction

(%)

Moderate shift (3 to
6 mm)

4.3� 0.8 (72) 2.2� 1.0 50.4� 23.3

High shift (>6 mm) 8.8� 2.8 (32) 2.8� 1.2 68.6� 13.6

Moderate to high shift
(>3 mm)

5.7� 2.6 (104) 2.3� 1.1 59.0� 19.3
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Fig. 5 (a) Deformed brain mesh resulting from the inverse problem described in Eq. (1) in Sec. 2.4.
The white semitransparent mesh is generated from the preoperative MR image, and the orange mesh
is the deformed mesh based on the combinatory fit that best matches the measured surface defor-
mation and reflects the model-updated MR image, (b) comparison between the measured subsurface
displacement (red vectors) between preoperative MR and registered iMR images, and the model-pre-
dicted displacement (blue vectors), and (c) a zoomed view of the measured subsurface displacement
vectors (red) and model-predicted displacement (blue vectors).

Fig. 6 Qualitative comparison of preoperative, registered intraoperative, and model-updated MR
images (from left to right) in three patient cases (top to bottom: patients 1, 4, and 8) in the same
spatial slice. The circles highlight features that have changed from preoperative image to intraoper-
ative patient anatomy, yet are adequately recovered by our model-updated correction, shown in
model prediction.
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Fig. 6, where circles highlight features that have altered from
preoperative imaging data to intraoperative patient anatomy
(i.e., margin of contrast enhancement has changed), compared
to better agreement between registered iMR image and model-
updated MR image on the same slice.

3.3 Point Selection Uncertainty and Propagation of
Error

A total of three cases with considerably more discernible fea-
tures were analyzed to assess the uncertainty in selecting corre-
sponding points on the intraoperative imaging volume from
targets designated on the preoperative image volume. Details
and motivation of this experiment can be found in Sec. 2.6.
The uncertainty in point localization is quantified as the distance
between a selected feature point and the centroid of the same
feature point selected in three different trials. The uncertainty
of all points (97 total points) across three patient cases (patients
1, 3, and 4) is 0.8� 0.5 mm. Specifically, the uncertainty of
selecting corresponding subsurface points (64 points) on the
intraoperative image volume is 0.8� 0.5 mm, and the uncer-
tainty of selecting corresponding surface points (33 points) is
0.9� 0.5 mm. A detailed breakdown of the uncertainty in
selecting homologous points on intraoperative image in each
patient case can be found in Table 8. A Friedman test is per-
formed in each patient case and the p-values are 0.18, 0.12,
and 0.11 for three cases evaluated. Since all p-values are
>0.05, the threshold significance level, it is determined that
the differences among three point sets in each patient case,
whose selections are executed at different time points, are not
statistically significant.

With three sets of intraoperative surface point selections, the
volumetric deformation was calculated three different times by
driving the inverse problem in each patient case. The residual
errors associated with the predictions of moderate and high
shift computed with three different volumetric displacement
profiles are shown in Table 9 for each patient case. The largest
difference of average residual errors, resulting from driving the
brain shift correction with three sets of intraoperative surface
point selections, is 0.07, 0.60, and 0.16 mm for patients 1, 3,
and 4, respectively, indicating that an uncertainty of
0.9� 0.5 mm in homologous surface feature selection introdu-
ces relatively small changes in the model correction.

4 Discussion
The overarching objective of this study is to quantitatively and
qualitatively assess a computational brain shift compensation
strategy using iMR imaging as the comparator, the only widely
accepted commercial technology available for compensating for

soft tissue changes during surgery that can resolve soft tissue
heterogeneity. The findings of this study show promising results
that our method can robustly predict intraoperative brain shift
with sparse intraoperative surface information. The findings
also encourage further prospective validation studies of our
framework with active intraoperative surface deformation mon-
itoring via stereovision or optical tracking. While improved per-
formance is still needed, the performance of the methodology is
quite promising, especially when considering the several orders
of magnitude difference in cost and encumbrance imposed
by iMR.

Overall, the implementation of our brain shift compensation
approach reduces the subsurface brain shift from 5.7 to 2.3 mm,
yielding ∼59% brain shift correction for moderate and high sub-
surface shift, defined as above 3 mm. In our work, the model
prediction in the high-shift range (above 6 mm) outperformed
the predictions in the moderate-shift range (between 3 and
6 mm) with greater consistency, as shown in Table 7, averaging
a percent correction with an impressive near 70% correction
(68.6� 13.6%). The model correction performance is relatively
consistent among eight cases analyzed, as shown in Table 6.
Qualitatively, the updated MR image volume illustrates better
agreement with iMR image as shown in Fig. 6 while comparing
the registered preoperative image volume in this same context is
less satisfying. The subsurface displacement of landmarks near
the tumor is recovered well as demonstrated in Fig. 5. The
localization error associated with the manual selection of
homologous points was also examined. In three cases reviewed,
the average uncertainty in homologous point selection among 97
surface and subsurface points was 0.8� 0.5 mm in Table 8.
Last, the robustness of the correction algorithm was investigated
to analyze the propagation of error stemming from the uncer-
tainty in selecting homologous surface points, the driving con-
dition of the inverse problem approach. The outcome (i.e., the
residual distance) of the model correction exhibits relative indif-
ference toward small surface selection uncertainty, as shown in
Table 9.

In summary, the developed brain shift correction framework,
rooted in a biomechanical biphasic model and inverse problem
approach, has demonstrated a consistent performance in cor-
recting moderate and high subsurface shift. Furthermore, the
developed methodology is workflow-friendly compared to
iMR imaging and has translational potential to be a complemen-
tary technology to iMR in enhancing the quality of IGNS for
brain tumor resection.

While the results from eight cases analyzed show promising
signs that our model-based brain shift correction framework
offers an alternative and inexpensive avenue to recover brain
shift intraoperatively, several limitations have affected our

Table 8 Uncertainty in selecting corresponding points on iMR image volume given a set of preoperative feature points: average uncertainty in
localizing corresponding intraoperative feature point ± standard deviation of the uncertainty measured in distance from the centroid.

Patient # Surface (mm) (# of points) Subsurface (mm) (# of points) All (mm) (# of points) Friedman test p-value

1 1.1� 0.5 (12) 0.9� 0.4 (21) 1.0� 0.5 (33) 0.18

3 1.0� 0.5 (11) 0.8� 0.6 (27) 0.8� 0.6 (38) 0.12

4 0.7� 0.5 (10) 0.7� 0.3 (16) 0.7� 0.4 (26) 0.11

Average 0.9� 0.5 (33) 0.8� 0.5 (64) 0.8� 0.5 (97) N/A
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model performance. The first major limitation is the model’s
relatively low performance in the range of low shift (below
3 mm) compared to moderate- and high-shift range. A total
of 29 low shift targets were examined in our study, the
model reduces the subsurface shift from 2.3� 0.5 mm to
1.9� 0.8 mm. However, the model correction in low shift
range should be examined with caution. Model performance
in the low shift range likely can be attributed to several reasons.
First, in a three-patient study (patients 1, 3, and 4) investigating
the uncertainty in selecting homologous subsurface targets, we
found that the uncertainty is ∼0.8� 0.5 mm. Interestingly, in
those same three cases, the average of low shifting subsurface
targets (i.e., shift below 3 mm) was measured to be
2.1� 0.4 mm (9 points). This suggests that noise from point
selection alone can make up as much as 38% of the subsurface
shift measurement with these low shift targets. Second, and
related, while the above speaks to the ability to consistently des-
ignate the same voxel, it does not address the variability in res-
olution of MR scans themselves (voxel size ranges can be found
in Table 3), possible errors due to image distortion artifacts and
potential partial-volume problems in resolving feature distinc-
tion. Last, instrumentation noise from the acquisitions of preop-
erative MR and iMR images, coupled with registration error
when the iMR image volume is registered to the preoperative
image volume for homologous point designations, can nega-
tively impact the outcome of our brain shift correction algorithm
as well. While not quantified here, a quite conservative estimate
of these last two sources of error would be at least in the order of
a half-voxel or ranging from 0.5 to 1.0 mm. Considering the
above errors, it is likely that the measurement resolution of
low shift targets is compromised. With this realization, while
iMR is a powerful measurement tool, we must temper the verac-
ity of the technology as a validation platform with our under-
standing of how the error of our comparator may influence
our quantitative analysis.

Exploring this last aspect further, the lack of a true gold stan-
dard in quantifying the accuracy of model-based shift correction

is certainly a limitation. Groups have used both nonlandmark
metrics and landmarks for validation, as discussed in Table 1.
Using nonlandmark metrics, such as the 3-D bounds of ven-
tricles by Joldes et al.22 or modified Hausdorff distance from
extracted edge maps by Vigneron et al.,23 is a reasonable
approach to alleviate the concerns of subjective error in land-
mark selection. However, the drawbacks of these metrics are:
(1) the metric of Joldes et al.22 does not provide reliable indi-
cations on the model performance outside of an arbitrarily des-
ignated anatomical structure, which is often remote from the
surgical target and (2) the metric of Vigneron et al.23 has depend-
ency on the adjustable parameters of Canny edge detection
method. Other groups have used landmarks to evaluate their
model-based methods, namely, Skrinjar et al.,19 Ferrant
et al.,20 and Zhang et al.,21 detailed in Table 1. Our comparison
study with iMR has similarly used landmarks for assessment.
However, different from Ferrant et al.20 and Zhang et al.,21

the selection of validation targets in our study has attempted
to only identify subsurface landmarks in the vicinity of the
tumor region. The rationale behind our selection strategy is:
(1) landmarks on the cortical surface may provide biased assess-
ments on the performance of model-based approaches, as most
of the model-based methods also use intraoperative surface data
as a driving force of the model—Ferrant et al.20 report that the
best accuracy produced by their model is for landmarks located
on the boundary surfaces (including the cortical surface), and
the worst accuracy is obtained near tumor and resection
regions.20 A similar trend was observed in our study, the
model performance in correcting brain shift on the surface,
as shown in Table 5, generally exceeds the performance with
subsurface validation targets near the tumors as shown in
Tables 6 and 7. (2) While placing landmarks in both hemi-
spheres in Ferrant et al.20 or extracting edge maps of the
whole brain in Vigneron et al.23 provides valuable metrics
assessing the performance of the model-based approaches glob-
ally, landmarks in the vicinity of the tumor region have the most
significant and immediate effect on the localization of the tumor
region and the assessment of tumor margins intraoperatively
and, therefore, directly impact the outcome and safety of the
surgery.20,23 Last, as shown in Table 1, the limited number of
patient cases and landmarks continues to be a challenge for val-
idation studies of model-based brain shift correction framework.
Hence, further exploration and study should be carried out
regarding the development of better validation metrics, ideally
with less subjective human influence and with a more targeted
region of interest near the tumor.

The third considerable limitation in the work reported herein
is the challenging task of sampling preoperative and intraoper-
ative surface points. Although we have attempted to quantify the
uncertainty in localizing homologous points and find that our
algorithm is relatively insensitive to small uncertainties of
homologous surface point selection, the task of manually find-
ing features on the surfaces of preoperative MR and iMR images
remains difficult. For example, as in Sec. 2.4, the surface points
are often selected near the region of craniotomy to mimic a real-
istic operating room (OR) environment; however, the selections
of surface points did sometimes fall outside of the designated
craniotomy area due to lack of features on the iMR images,
which currently are acquired after surgical resection, as
shown in Fig. 7. The issue of the occasional lack of features
on the surface extends to subsurface point selection near the
tumor region as well. Tables 4 and 5 provide summaries of

Table 9 Residual error (average residual error ± standard deviation
of residual error) from average subsurface shift (average shift ± stan-
dard deviation of shift) after the brain shift model correction driven by
three different homologous surface point sets in three patients.

Patient #

Average subsurface
shift (mm) above
3 mm (# of points)

Trial
number

Average error
for shift above
3 mm (mm)

1 5.3� 1.5 (13) 1 2.1� 1.2

2 2.1� 1.3

3 2.1� 1.1

3 5.6� 1.5 (26) 1 2.3� 1.3

2 2.9� 1.4

3 2.4� 1.3

4 4.1� 0.7 (16) 1 1.9� 1.0

2 1.9� 1.0

3 2.1� 0.9
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the number of surface and subsurface points selected for this
comparison study with iMR and further demonstrate that the
availability of homologous surface and subsurface points varies
from case to case due to a number of factors, such as the quality
of the iMR images (described in Table 3) and the nature of the
surgical procedure itself. However, the problem of identifying
features on iMR imaging volume acquired after resection can
by mitigated by a more active and continuous surface deforma-
tion monitoring technique during procedures, which is an area of
active investigation.

For example, some investigators have considered the deploy-
ment of laser range scanner (LRS), documented by Miga et al.41

as well as Sinha et al.42 and subsequently adopted by Zhang
et al.21 A second approach uses stereovision systems that are
embedded with neurosurgical microscopes, reported by
Kumar et al.43 and Ji et al.44 The advantages of employing active
intraoperative monitoring methods, LRS or stereovision, to
obtain surface deformation are: (1) surface displacement
acquired via these active monitoring techniques is better spa-
tially and temporally resolved than iMR measurements,
(2) the cortical surface is feature rich and offers more dense
measurements, and (3) in the case of stereovision, is extremely
workflow-friendly. Undoubtedly these two noncontact
approaches have their own challenges. The LRS acquisition
time, including the positioning of the apparatus and scanning,
can take up to 4 min, which can be a limitation in providing
temporally dense digitization of the cortical surface for inter-
mediate updates.2,43 The stereovision approach, designed to
overcome the deficiencies of temporal resolution of LRS
data, may be implemented using stereo cameras (1) externally
mounted onto the operating microscope in Sun et al.45 and Ji
et al.44 or (2) internal to the microscope in Kumar et al.43

The challenges associated with the application of stereovision
include the accuracy of calibration, lighting conditions in the
OR, as well as difficulties in establishing continuous stereo cor-
respondence due to significant surgical events, such as bleeding,
or unexpected incidents, such as disturbance or obstruction (e.g.,
surgeon’s gloves) in the field of view.43–45

Also, while not emphasized herein, the use of intraoperative
ultrasound (iUS) should not be neglected as an intraoperative
sparse data source for driving brain shift correction methodol-
ogies. A study by Morin et al.46 has attempted to perform brain
shift correction by registering blood vessels and cortical surface
from preoperative data to iUS data using a constraint-based bio-
mechanical simulation. Subsequently, the preoperative MR im-
aging data can be updated volumetrically via the deformation
field produced in the previous step.46 While demonstrating
promises as a valuable method in acquiring intraoperative sur-
face and subsurface brain shift measurements in Reinertsen
et al.3 and Morin et al.,46 iUS has its own challenges of limited
volume extent, operator dependency, imaging artifacts, such as
from intraoperative bleeding, the possibility of introducing addi-
tional shift as it is a contact method, as well as probe
calibration47,48 (though regarding this last item, an interesting
study by Chen et al.49 was recently reported that suggests sub-
millimeter tracking accuracy may be possible with iUS).

One last note, there are certainly aspects of our brain shift
correction model that can be improved. For example, currently
our model accounts for resection by decoupling the nodes asso-
ciated with the segmented tumor volume during the assembly of
the stiffness matrix.26,50 However, in patient #9, a case that was
deemed a statistical outlier and excluded from overall model
performance assessment, we observed a collapsed resection cav-
ity that our model was unable to capture, and the subsurface shift
near the tumor was not resolved as well as desired. From
Table 5, it is shown that when eight homologous surface points
were selected on the preoperative MR and iMR image volumes,
the average surface shift is 3.9� 1.0 mm, which is the smallest
surface shift among all nine cases examined. When subsurface
deformation is examined, as shown in Figs. 8(a)–8(c), the direc-
tion of the subsurface deformation shows a strong tendency to
collapse into the tumor.

Toquantify this observed“debulking,” the centroidof the tumor
volume was computed, and the vector between each preoperative
subsurface target and the centroid of the tumor was obtained, i.e.,
the debulking direction. The corresponding measured subsurface
deformation (where only shift above 3 mm is considered, as dis-
cussed previously) is represented as the “measured” direction.
The dot product between debulking and measured unit vectors

Fig. 7 An example illustrating the lack of available surface features
near the craniotomy region on iMR image.

Fig. 8 Patient #9: (a) subsurface deformation in red vectors near the tumor, (b) and (c) present different
views of the subsurface deformation vectors (red) in patient #9, illustrating a collapsed resection cavity.
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exhibits a larger average magnitude of 0.95� 0.06, i.e., a smaller
directional difference (14.5 deg�11.0 deg) between the mea-
sured deformation vector and the debulking direction, compared
to themodel-predicted deformationvector and thedebulking direc-
tion (dot product: 0.72� 0.23 or 40.8 deg�19.9 deg), further
confirming the visual observation of a collapsed resection cavity
in Fig. 8. It should also be noted that the average subsurface defor-
mation for moderate- and high-shift targets for this case is
4.0� 0.7 mm, making it the only case that the average surface
shift is less than average subsurface shift. A case of small surface
deformation coupled with strong resection cavity collapse is a sce-
nario thatourmodel, in its current implementation,doesnotmecha-
nistically account for well and illustrates the need to build on our
existingmechanism tobetter account and compensate for resection
effect in our model.

5 Conclusion
This paper reports a comparison study of a biphasic biomechani-
cal model-based brain shift correction framework with a current
clinically available comparator, iMR imaging. It demonstrates
that our model-based methodology, with a patient-specific com-
putational inverse problem approach, can compensate for a con-
siderable extent of brain shift during tumor resection via sparse
intraoperative surface deformation information with minimal
disruptions to the existing clinical workflow and infrastructure
in the operating room. While showing that our approach is a
promising complementary technology to iMR to account for
brain shift in IGNS procedures and standard brain tumor resec-
tion cases, more validation is still warranted. As this study indi-
cates, conducting these evaluations is quite challenging, and
systematic approaches to reduce measurement and validation
assessment errors are needed. Nevertheless, this work provides
important steps forward in validating computational strategies to
reduce intraoperative brain shift error.

Appendix: Computational Model Details
The biomechanical model implemented in our deformation
atlas-based brain shift corrections strategy is a biphasic
model based on Biot’s theory of consolidation, which describes
the mechanical behavior of a poroelastic medium via equations
of linear elasticity for the solid matrix and Darcy’s law for fluid
flow through the porous matrix.17,33,36,51,52 Given its biphasic
nature, Biot’s consolidation theory was used to model the defor-
mation behavior of the brain. Specifically, equations below were
used to describe the deformation behavior of the brain2,17,36

EQ-TARGET;temp:intralink-;e006;63;231∇ · G∇~uþ ∇
G

1 − 2υ
ð∇ · ~uÞ − α∇p ¼ −ðρt − ρfÞg; (6)

EQ-TARGET;temp:intralink-;e007;63;191α
∂
∂t
ð∇ · ~uÞ þ kcðp − pcÞ þ ∇ · ð−k∇pÞ ¼ 0; (7)

where G is the shear modulus, ~u is the displacement vector, v is
the Poisson’s ratio, α is the ratio of the extracted fluid volume
and volume change of the tissue under compression, p is the
interstitial pressure, ρt is the tissue density, ρf is the fluid den-
sity, g is the gravitational vector, t is time, kc is the capillary
permeability, pc is the intracapillary pressure, and k is the
hydraulic conductivity.

In our constitutive model, briefly, Eq. (6) represents the equa-
tion of mechanical equilibrium. In Eq. (6), deformations may be
introduced from interstitial fluid pressure gradient, surface
forces, and displacements, as well as changes to tissue buoyancy
forces.26 Particularly, the right-hand side of Eq. (6) is used to
simulate the effect of gravitational forces on the brain—intrao-
perative CSF drainage decreases the buoyancy, thus causing the
brain to sag.26,33 Equation (7) relates the time rate of change of
the volumetric strain of the solid matrix to the changes in
hydration.2,17,26,36 Moreover, Eq. (7) allows for dilatation effects
or the fluid exchange between capillary and interstitial spaces,
due to osmotically active drugs.2,17,26,36
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