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Abstract. Biomechanical breast models have been employed for applications in image registration and diag-
nostic analysis, breast augmentation simulation, and for surgical and biopsy guidance. Accurate applications of
stress–strain relationships of tissue within the breast can improve the accuracy of biomechanical models that
attempt to simulate breast deformations. Reported stiffness values for adipose, glandular, and cancerous tissue
types vary greatly. Variations in reported stiffness properties have been attributed to differences in testing meth-
odologies and assumptions, measurement errors, and natural interpatient differences in tissue elasticity.
Therefore, the ability to determine patient-specific in vivo breast tissue properties would be advantageous
for these procedural applications. While some in vivo elastography methods are not quantitative and others
do not measure material properties under deformation conditions that are appropriate to the application of
concern, in this study, we developed an elasticity estimation method that is performed using deformations
representative of supine therapeutic procedures. More specifically, reconstruction of mechanical properties
appropriate for the standard-of-care supine lumpectomy was performed by iteratively fitting two anatomical
images before and after deformations taking place in the supine breast configuration. The method proposed
is workflow-friendly, quantitative, and uses a noncontact, gravity-induced deformation source. © 2018 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.015003]
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1 Introduction
Breast cancer imaging modalities include x-ray mammography,
ultrasound, and magnetic resonance imaging (MRI). In each
modality, unique patient positioning or the nature of mechanical
excitation confounds the use of these diagnostic images for sur-
gical guidance. For example, in x-ray mammography, the patient
stands erect with the breasts compressed between two plates.
During ultrasound exams, the patient is positioned supine
with the ipsilateral arm placed above the patient’s head. MRI
exams of the breast are typically performed with the patient
lying prone with breasts pendant in the MRI coil chambers.
During surgery, the patient is positioned supine with the ipsilat-
eral arm placed perpendicular to the body. Each modality has
unique benefits for the screening, diagnosis, and staging of
breast cancer. However, there is certainly varied utility in the
use of these data for localizing tumors during surgery. For
breast-conserving therapy (BCT), which consists of a lumpec-
tomy (removal of tumor and small amount of surrounding
healthy tissue) followed by radiation therapy, localization of
the tumor during surgery can be difficult. Reoperations due

to the presence of residual tumor after an initial resection aver-
age 16.5% to 40%.1–5 Furthermore, ductal carcinoma in situ
(DCIS) is associated with a threefold increase in reoperation
rates when compared to invasive carcinomas.6 DCIS lesions
have diffuse growth patterns and ill-defined margins when com-
pared to invasive breast cancers.7 Furthermore, DCIS extensions
into intraductal tissue can be difficult to determine. Due to the
mainstream usage of screening mammography, an increasing
number of patients are being diagnosed with DCIS and early
stage cancers. Therefore, precise strategies to localize the non-
palpable DCIS lesions are needed. While intraoperative ultra-
sound has been shown to reduce the need for re-excisions,8

ultrasound cannot image most cases of DCIS and is limited
in detecting multifocal disease, bilateral breast cancers, and
intraductal spread characteristics.9

While MRI is considered the most sensitive and accurate im-
aging modality in the context of breast cancer,10,11 the limited
specificity of MRI provides some areas of improvement.
There is some evidence that preoperative MRI causes over treat-
ment and is associated with an increase in the use of mastec-
tomy, delay in treatment, and an increase in the number of
additional biopsies.12–14 Alternatively, several studies have
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disputed these claims arguing that MRI provides invaluable
information regarding the extent of disease. In a recent prospec-
tive, randomized, and multicenter study, a significant decrease in
reoperation rates was reported between women who received a
preoperative staging MRI and women who did not receive an
MRI prior to lumpectomy.15 Sung et al.16 published a retrospec-
tive analysis that concluded that reoperation rates among BCT
patients were lower for women who received a preoperative
MRI. Several other studies report positive findings for improved
preoperative staging using MRI.15–18 Overall, the argument
surrounding the value of preoperative MRI remains somewhat
unclear. However, it is generally agreed upon that MRI provides
the most accurate delineation of the size and extent of cancer and
offers the highest sensitivity for intraductal extension involved
in breast cancers.19–21

Regardless, these diagnostic MR images are not particularly
useful in the context of surgical planning and guidance cur-
rently. As previously discussed, preoperative MR images are
acquired in the prone position with pendant breasts while sur-
gery is performed with the patient lying supine. Several studies
have reported significant displacements in breast tumors
between the prone and supine positions in the order of 18 to
60 mm.22,23 A more direct approach is to use MR images
taken in the supine position to guide surgery. Supine breast im-
aging has been a topic of interest in several studies,24–26 includ-
ing the use of intraoperative MRI.27 In the work by Mallory
et al.,27 intraoperative supine MRI for breast surgery planning
was shown to be feasible while also demonstrating limitations
for the use of prone MRI in surgical planning. However, intra-
operative MRI surgical suites are rare in the United States, thus
making this approach difficult to translate across healthcare
institutions. The use of supine breast MRI in the context of
image-guided breast surgery (IGBS) has been suggested in
several frameworks.22,28–30 Image-guided surgery, or frameless
stereotaxy, relates the location of surgical instruments in the
operating room to preoperative imaging data. These systems
are the clinical gold standard for performing neurosurgery
and have been adapted for use in the liver,31 kidney,32 and
lungs.33 Biomechanical models are used in many of these
systems to correct for organ deformation during surgery.34

Commercial systems, such as SonoWand™ and BK Ultrasound
systems, are also emerging for real-time image fusion of intra-
operative ultrasound and preoperative imaging data to account
for organ deformation during surgery.

In the context of IGBS, preoperative supine breast images are
registered to the physical space of the operating room to act as
patient-specific maps to assist surgeons in localizing discrete
breast lesions. The patient-specific aspect of these systems
involves the creation of biomechanical computational models
to correct for deformation that naturally occurs between the pre-
operative image and surgical space breast geometries. In this
study, we developed a method to further optimize the patient-
specific parameters of IGBS systems. In Fig. 1, the basic
steps for IGBS are shown. The process begins with preoperative
imaging of the breast in the supine position. Anatomical and
morphological images are obtained at this step. Preprocessing
of these images include segmentation of the breast tissue into
adipose, fibroglandular, chest wall muscle, and tumor. From
here, a finite-element method (FEM) model is created to simu-
late breast tissue deformation during the intraoperative registra-
tion step. In the intraoperative registration step, the surface of the
breast is digitized by an optical tracking system, and a biome-
chanically assisted nonrigid registration is performed to render
the preoperative data into the physical space of the operating
room. Once this registration is complete, a guidance display
of the coregistered preoperative image data is used to localize
tumors and map out surgical plans. The extra step we have
added and that will be elaborated upon in this study is during
the preprocessing step. Here, we estimate the material properties
of the patient’s breast tissue to be incorporated into the biome-
chanical model for improved accuracy.

An IGBS compatible stiffness estimation method was
recently introduced35 that relies on gravity-induced deforma-
tions of the breast captured in an additional 2-min MRI scan.
In that work, parameter sweeps were performed, sampling stiff-
ness values for adipose and fibroglandular tissue. A biomechani-
cal model was solved for each adipose–fibroglandular stiffness
value set. The displacement field generated by the model was
then used to deform the gravity-induced excitation image.
A measure of image similarity was then calculated between
the model-deformed image and the baseline image for each
adipose–fibroglandular stiffness value set. While the framework
for the stiffness estimation method was tested and shown to
be promising for work in IGBS, performing a parameter
sweep on a sufficient search space with acceptable discretization
of said search space is extremely time consuming. Therefore, in
this study, we perform an investigation into the use of optimi-
zation routines to reconstruct the values of patient-specific

Fig. 1 General framework for IGBS. The process begins with preoperative imaging of the patient breast
in the supine position. The preoperative imaging panel shows a representative MR volume rendering of
a contrast-enhanced supine breast of a patient with breast cancer. The rendering shows a tumor with
elevated image intensity and ring-shaped adhesive surface fiducials used during the intraoperative regis-
tration step. Preprocessing is performed after imaging, prior to surgery. At this step, patient-specific
stiffness properties are extracted to optimize the patient-specific model. Intraoperative registration is
performed to transform the preoperative image and patient-specific model into surgical space. Finally,
the guidance display is used by the surgical team to localize tumors.
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breast tissue stiffness. An interesting set of observations was
reported in Ref. 35 that prompted this investigation. For exam-
ple, the shape of the objective function changes according to the
fibroglandular content of the breast and the magnitude of defor-
mation induced during gravity excitation. Due to inevitable
differences in patient breast size, fibroglandular content, defor-
mation levels, and stiffness values, we opted to test optimization
methods to determine the most appropriate method to use going
forward in the context of IGBS. In this study, simulation data
were generated and human data were collected to test optimiza-
tion performance. Furthermore, an exploration of this stiffness
estimation method for reconstructing a heterogeneous distribu-
tion of properties within the breast was performed.

2 Methods

2.1 Overview of Stiffness Estimation Method

Optimization of patient-specific breast tissue stiffness begins
with the acquisition of two gravity-loaded supine breast MR
images. The baseline image is acquired with the patient lying
supine with the ipsilateral arm placed above her head.
Gravity excitation is produced by placing a foam wedge pos-
terior to the breast being imaged. This causes a rotation
about the longitudinal axis of the body which results in tissue
deformation due to changes in tissue weight distributions with
respect to gravity. From the gravity-excited image, an FEM
model is created. In this framework, the chest wall is assumed
to be a reliably rigid structure and is used to align the baseline
and gravity-excited images. The chest wall in each image is seg-
mented, and a rigid registration is performed by maximizing the
image similarity between the chest walls in each space. The
transformation matrix yielded by this chest wall registration
is used to transform the baseline image into the gravity-excited
space. Now, the chest walls in each space are aligned and the
resulting misalignment of the breast tissue is due to the nonrigid
deformation caused by differences in gravitational loading. Also
from the chest wall alignment, the differences in gravitational
loading are quantified by using the rotational component of
the transformation matrix to calculate the relative change in

the acting gravity direction. The rotated gravity vector is applied
as a body force of tissue weight in the biomechanical model.
A biomechanical model is then solved to obtain a displacement
field. The displacement field is interpolated onto the gravity-
excited image to create a model-deformed image. Material prop-
erties are iteratively updated within an optimization routine until
the model-deformed image matches the chest wall-aligned base-
line image. A visual representation of this process is shown in
Fig. 2 and more descriptive detail of the general framework can
be found in Ref. 35.

An FEM tetrahedral mesh was created from the gravity-
excited image (nominal edge length = 3 mm). The difference
in gravitational loading was approximated by calculating a grav-
ity vector: grotated ¼ gbaseline − R × gbaseline, where gbaseline was
assumed to be unit vector normal to the MR table and R is
the rotation matrix generated from the rigid chest wall align-
ment. A body force of tissue weight ð9.8 m∕s2 × grotated × ρÞ
was applied in a biomechanical model that assumes isotropic
and Hookean linear elastic behavior. Tissue density, ρ, was esti-
mated at 1000 kg∕m3. Nodal positions corresponding to the
chest wall were prescribed a fixed Dirichlet boundary condition
with the assumption that the chest wall remains relatively static
between the two configurations. Using these parameters, a for-
ward biomechanical model with a nonlinear, corotational finite-
element framework36 was solved to obtain a displacement field.
The displacement field was used to deform the gravity-excited
image. An optimization procedure iteratively updates the stiff-
ness properties of the breast tissue until the model-deformed
image matches the baseline image. An expanded description
of the methods involved in this approach can be found in
Ref. 35.

2.2 Human Volunteer Data

With IRB approval and informed consent, five healthy volun-
teers were enrolled to participate in this imaging study. The
left and right breasts of three volunteers were scanned in a sep-
arate imaging setup to comprise a total of eight datasets.
Furthermore, the left breast of the first volunteer was scanned

Fig. 2 Overview of the process to optimize patient-specific material properties. The algorithm estimates
tissue elasticity by fitting two acquired anatomical images by minimizing a similarity metric between
an experimentally acquired image and a model-deformed image.
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twice in a test–retest setup to evaluate reproducibility of hetero-
geneous property reconstruction. While anecdotally suggested,
the quantitative stiffness of each breast was assumed to be
unique. A baseline and gravity-excited image was acquired
in a Philips 3T Achieva MR scanner using a SENSE XL
Torso Coil (Philips Healthcare, Best, The Netherlands) with
the following parameters: T1-weighted, 3-D turbo field echo
sequence with fat suppression, a field of view of 200 mm ×
200 mm × 160 mm, reconstructed voxel size of 0.391 mm ×
0.391 mm × 1 mm, TR∕TE ¼ 7.40∕3.91 ms, and flip angle ¼
20 deg using SENSE parallel imaging (acceleration
factor ¼ 2).

2.3 Simulation Data

A simulation study was performed to assess the performance of
the optimization methods with minimal noise contributions and
to determine a representative true form of the objective function
using similar clinical parameters. Model parameters were
selected to form a representative simulated clinical dataset.
These parameters include: 500 and 2000 Pa for the stiffness
of adipose and glandular tissue, respectively, a Poisson’s
ratio of 0.45, tissue density of 1000 kg∕m3, and a rotation rel-
ative to the initial direction of gravity (grotated) of 15 deg. Using
baseline images from five healthy volunteers with a range of
fibroglandular content (8%, 12%, 20%, 30%, and 40%), a for-
ward model was solved with these simulation parameters and

the resulting displacement field was interpolated onto the base-
line image to create a simulated gravity-excited image. Figure 3
shows representative baseline and simulation images and the
corresponding deformation that drives the stiffness estimation
procedure.

2.4 Optimization Procedures

Two optimization methods were studied along with a fine
parameter sweep to identify the best methods to obtain
patient-specific stiffness properties of breast tissue. There are
several well-established optimization procedures to minimize
the mismatch between the baseline image and model-deformed
image and update material parameters. In previous explorations
of similar work, we found a conjugate gradient (CG) method37

and the Levenberg–Marquardt (LM) algorithm38 to be promis-
ing. Therefore, we tested both the CG method and LM method
in this study. A very brief overview of each method is
given below.

The steepest descent method reduces the sum of the squared
errors by updating the optimization parameters in the direction
of the greatest reduction of the least squares objective

EQ-TARGET;temp:intralink-;e001;326;513ψ ¼ jSTRUE − SESTj2; (1)

where STRUE and SEST are the similarity correlation coefficient
values for the ideal similarity (i.e., experimentally deformed
acquired image volume and itself) and the similarity between
experimentally deformed and model-deformed image volumes,
respectively. With respect to the steepest descent method, it is a
line search method that takes an initial guess and calculates the
function gradient producing a search direction of the steepest
descent. Gradient descent methods are slow to converge espe-
cially when close to the minimum. The CG method39,40

improves the method of steepest descent by reducing repetitious
iteration steps. The CG method takes orthogonal steps to the
function minimum which reduces step redundancies. Due to
the reduction in iterations needed, CG methods are valuable
for large dimension optimization problems. In this study, the
gradient was calculated using a central-difference approxima-
tion and was performed using a custom implementation of
the algorithm.

Alternatively, in LM,41,42 the method takes advantage of the
gradient descent at early iterations to improve its radius of con-
vergence and then accelerates to a Gauss–Newton optimization
(a quadratically convergent fixed point method) method when
estimated values are near their optimum. The Gauss–Newton
algorithm may not converge if the initial guess is far from
the optimal. In this study, the Jacobian associated with the
LM method was calculated using a forward-difference gradient
calculation (requiring one model solve per optimization varia-
ble). The LM method was implemented using MATLAB®

R2015 (The MathWorks Inc., Natick, Massachusetts) lsqnonlin
function.

To observe material property optimization performance,
a parameter sweep was first performed on a moderate search
space to obtain an objective function map. The objective func-
tion was determined using an image similarity metric calculated
in five discrete zones within the image volume. The similarity
metric used in Eq. (1) for this study was Pearson’s correlation
coefficient. The root mean squared (RMS) nodal displacement
error was also calculated during the simulation parameter sweep
to provide some added understanding of how material property

Fig. 3 Representative images used in simulation study. The top row
contains axial, sagittal, and coronal views of a baseline image. The
middle row shows the same three orthogonal slices of the simulated
gravity-induced configuration image. The third row displays the simu-
lated gravity-induced image as a red mask and baseline image as a
gray mask. The fourth row displays the simulated gravity-induced con-
figuration and model-deformed image using optimized reconstructed
properties. The overlay of the baseline and gravity-excited image
masks demonstrates the type of deformation yielded from the grav-
ity-induced excitation used in this method.
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reconstruction variability affects registration fidelity. Clearly, the
RMS nodal displacement errors could not be studied during the
in vivo human subject parameter sweep because known corre-
spondence of tissue features is unavailable. In the simulation
study, the search space for the parameters sweeps was 100 to
1000 Pa for adipose and 400 to 4000 Pa for glandular tissue.
The step size for each tissue type was 50 Pa for adipose tissue
and 50 Pa for glandular tissue. In the human volunteer study, the
parameter search space was 100 to 1000 Pa for adipose tissue
and 100 to 10,000 Pa for glandular tissue with step sizes of 25 Pa
for adipose and 50 Pa for glandular.

After the parameter sweep was performed, an estimation of
the true minimum was obtained by taking the minimum value of
the objective function map. Due to large variations in breast
stiffness, volume, and fibroglandular content, a range of initial
guesses were used for the optimization procedures to maximize
successful convergence despite differences in the shape of the
objective function maps and assess the fidelity of the optimiza-
tion procedure. The initial guesses were distributed around the
ground truth values for the simulation data. For the human data-
sets, the following starting points were used as initial guesses:
(1) 2000 Pa for adipose and 2000 Pa for glandular, (2) 500 Pa for
adipose and 500 Pa for glandular, (3) 500 Pa for adipose and
2000 Pa for glandular, and (4) 100 Pa for adipose and
4000 Pa for glandular.

3 Results

3.1 Simulation Data

The average solve time for the simulation data was
112.6� 63.8 s. The solve time was defined as the total time
it takes to perform one forward model solve with a given prop-
erty set (with three corotational iterations), deform the image,
and calculate the objective function. From this, the average
time to perform a parameter sweep is estimated. For the simu-
lation parameter sweep performed in this study, a total of 1482
solves were executed. This translates to 46.3 h if solved in series.
If the search space were to be expanded (such as in the human
case) or if the step size were to be decreased for a more resolved
error map, the number of model solves required to create the
map would increase significantly. This fact illustrates the impor-
tance of performing an optimization procedure to obtain the
objective function minimum. Property optimization for the sim-
ulation data was in general quite robust, with all but one of the
initial guess values converging to the minimum for the simula-
tion data for both the LM and CG methods. Table 1 shows the

average and standard deviations of the converged reconstructed
values in simulation for each case. Figure 4 shows the tissue
stiffness reconstruction results for the simulation data using
the LM method. The grayscale contour map shows the objective
function error map created during the parameter sweep. The col-
ored lines overlaid on the contour plot represent optimization
iterations for each initial guess. In Fig. 4(e), the initial guess
starting at 500 Pa for glandular and 500 Pa for adipose did
not converge to the minimum using the LMmethod but did con-
verge using the CG method. Figure 5 shows the RMS nodal dis-
placement error maps for the 12% and 20% fibroglandular
simulation datasets. These error maps represent the true form
of the objective function as they were calculated with absolute
knowledge of point correspondences. The 12% and 20% glan-
dular simulation datasets were the most representative of
clinical data, as the percent fibroglandular content of our
clinical datasets was 18.3� 8.7 (min ¼ 7.7% andmax ¼ 32%).
Furthermore, a study looking at the breast density of 230 women
ages 32 to 77 reported a range of 7% to 28% fibroglandular
tissue content.43

3.2 Human Data

The average solve time (includes a forward model solve with
three corotational iterations, image deformation, and correlation
calculation) for the human datasets was 107.8� 26 s. From this,
the average time to perform a parameter sweep was estimated.
The total number of solves for the human dataset parameter
sweep was 7722. Therefore, if the object function error map
was to be created in series, the total solve time for the parameter
sweep would be 231.2 h. This again illustrates the importance of
an optimization procedure to find the optimal set of stiffness
values.

Figure 6 shows three representative results for the human
data reconstruction. Figures 6(a) and 6(d) correspond to case
1, Figs. 6(b) and 6(e) represent case 4, and Figs. 6(c) and 6(f)
correspond to case 5. Here, two representative optimization ini-
tial guesses are shown for each case [initial guess at (500, 500)
and (2000, 2000)].

The objective function value per iteration is shown in
Figs. 6(d)–6(f), while the downward path taken by the optimi-
zation procedure is shown overlaid on the parameter sweep error
maps in Figs. 6(a)–6(c). For the human datasets, the minimum
objective function value was selected out of all initial guess opti-
mization runs. The minimum objective function and corre-
sponding stiffness values were used to populate Table 2. The
parameter sweeps and optimization results for eight unique

Table 1 Reconstruction results for simulation data. Mean (standard deviation) values are reported in Pa for each simulation case.

LM CG

Adipose Glandular Adipose Glandular

8% Glandular tissue 500.2(0.81) 1992.0 (35.5) 501.2 (5.5) 1998.2 (127.8)

12% Glandular tissue 499.9(0.53) 2002.7 (11.1) 499.2 (1.7) 2006.0 (27.7)

20% Glandular tissue 500.6(1.48) 1989.3 (24.4) 501.25 (1.5) 1976 (29.1)

30% Glandular tissue 500.1(0.33) 1999.9 (0.81) 500 (0) 1999.3 (0.26)

40% Glandular tissue 499.5(0.58) 2000.8 (2.17) 499.5 (0.99) 1999.35 (3.42)
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breast datasets are shown in Table 2. For each case, the global
optimal properties were selected based on the overall minimum
objective function value. These optimal properties are high-
lighted in bold in Table 2. The CG method outperformed the
LM method in most cases, with the parameter sweep maintain-
ing the minimum for three cases. For all cases, the CG optimi-
zation achieved less than a 20% difference when compared to
the parameter sweep minimums. In six cases, the CG optimiza-
tion procedure found a lower minimum than the parameter
sweep. In the three cases in which the CG method did not
find a lower minimum, the percent errors from the parameter
sweep values ranged from 0.8% to 11.5% for adipose tissue
and 13% to 18.3% for fibroglandular tissue.

3.3 Elastographic Approach to Stiffness Estimation

A step toward heterogeneous determination of breast tissue
mechanical properties was performed. Rather than classifying
tissues as either adipose or glandular, in this experiment, the
breast was discretized into 20 unique regions (10 glandular
regions and 10 adipose regions). Each region was introduced
as a degree of freedom in the optimization routine. The optimi-
zation minimized an objective function consisting of 10 zone-
based correlation coefficients within the image volume that
represents the residual error between the model-deformed
image and the acquired baseline image. A CG algorithm was
used here due to the superior performance of the method in

Fig. 4 Tissue stiffness reconstruction results for simulation data. Each plot represents a simulation data-
set with a range of fibroglandular content (a) 8%, (b) 12%, (c) 20%, (d) 30%, and (e) 40%. The grayscale
contour map is the objective function error map created from the parameter sweep. The contour values
represent the objective function value at each adipose–glandular combination solved. The colored lines
show the optimization iterations and results for the LM method. Convergence sensitivity of the optimi-
zation was tested using a range of initial guesses (depicted as different colored lines overlaid on the error
maps).
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Fig. 5 RMS nodal displacement errors for simulation parameter sweeps for (a) 12% fibroglandular and
(b) 20% fibroglandular tissue. The x -axis contains the range of stiffness values sampled for adipose
tissue. The y -axis is the range of stiffness values sampled for glandular tissue. The contour levels
represent the nodal displacement error at that adipose–glandular combination. The contour map also
shows the 0.4- and 0.8-mm contour levels which roughly corresponds to the half and full voxel sizes
of the image volumes used in this study, respectively. The diamond shows the location of the minimum
displacement error (i.e., the true property values).

Fig. 6 Summary of human data stiffness property reconstruction results for three different datasets.
(a, b, c) contain objective function contour plots demonstrating the shape of the objective function for
three datasets. Overlaid onto these contour plots are optimization results for two starting points
using the CG algorithm. The starting points shown here are (2000, 2000) and (500, 500). In (d, e, f),
the value of the objective function at each iteration is shown for each starting initial guess.
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human datasets. Similar to Ref. 37, spatial prior constraints were
utilized that rely on image intensity knowledge to designate sim-
ilar tissue types. This anatomical knowledge is used as a soft
constraint in the optimization routine, which penalizes large

variations among similar tissue types and acts to constrain
stiffness values designated as the same tissue type to remain
somewhat similar. Following reconstruction, the output is
a volumetric distribution of absolute stiffness in each of the

Table 2 Reconstruction results for human data. Table containing parameter sweep and optimization results for the human datasets. All adipose
and glandular values are reported in Pa. Note that cases 1 and 2 are of the same breast, acquired in a test–retest setup. The bold values represent
the set of fibroglandular–adipose values that resulted in the overall minimal objective function. The solve time was defined as the total time it takes
to perform one forward model solve (with three corotational iterations), deform the image, and calculate the objective function.

Parameter sweep LM CG_CD

Solve time (s) Adipose Glandular Adipose Glandular Adipose Glandular

127.9 350 1650 356.5 1477.5 347.1 1780

104.4 475 1600 448.3 1971.7 465 1824.9

94.2 650 6800 705.1 4165.2 687 5885

105.9 125 250 116.4 285.97 143.2 266.5

120.3 75 1300 73.1 1451.8 74.2 1576.8

155.1 200 2350 198.7 2016.4 201.7 1983.1

167.2 275 4950 274.9 6581.8 273.9 4000.2

101.7 675 5550 1248 6293 753.7 6533.6

59.9 100 450 108.2 372.8 96.2 412.7

Fig. 7 Test–retest elastography results for (a) case 1 and (b) case 2. The top figures show central axial
slices of the gravity-excited anatomical MR image. The middle panels show the breast discretized into
20 unique regions. The bottom row shows the reconstructed property results for each set. The ratio of
fibroglandular tissue to adipose tissue was 5.2 for the test set and 4.9 for the retest set.
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20 regions. Cases 1 and 2 were used as a test–retest dataset, as
they are both the left breast of the same subject. The test–retest
dataset was acquired by reproducing the baseline and gravity-
excited image in two separate imaging exams. Therefore, these
data are unique with respect to each other but represent two
examinations of the same breast.

Figure 7 shows the test–retest elastography results. The top
panel contains central axial MR slices of the gravity-excited
image for the test (a) and retest (b) cases. The middle panel
shows the discretization of the breast as 20 regions (10 regions
per tissue type). The bottom panel in Fig. 7 shows the recon-
structed elastic property values for each region overlaid on a
mask of the gravity-excited images. The average reconstructed
values for fibroglandular tissue were 1783 Pa for the first test
(case 1) and 2196 Pa for the second retest set (case 2). The aver-
age test/retest values for adipose tissue were 336∕450 Pa. The
ratio of average fibroglandular tissue to average adipose tissue
for the test/retest sets were 5.2∕4.9. The total solve time to
reconstruct 20 unique stiffness properties was 13.7 h for the
test set and 15.8 h for the retest set.

4 Discussion
In these studies, we investigated the use of optimization routines
to facilitate the reconstruction of patient-specific breast tissue
stiffness values. In simulation, reconstructed stiffness properties
robustly converged to the global minimum despite varying ini-
tial guesses. In clinical data, noise is introduced into the system,
resulting in convergence of material properties into local mini-
mums. However, with the introduction of four different starting
points (initial guesses), an acceptable optimization (<20% error)
was obtained in all cases. Figures 6(c) and 6(f) show how one
initial guess might find a global minimum while another gets
caught in a local minimum. Given the nature of image-guided
surgery applications, we estimate that an error of <20% is
acceptable. As shown in Fig. 5, these errors are within an accept-
able range as they introduce less than a 1 mm error into the
overall IGBS system. This can be seen from Fig. 5 where
displacement errors between 1600 to 2400 Pa for glandular
(�20% of true glandular value) and 400 and 600 Pa for adipose
(�20% of true adipose value) lie approximately within the
0.8-mm contour level.

Overall, reconstructing patient-specific stiffness parameters
was successful using our implementation of the CG algorithm.
The number of iterations required to obtain a minimum in the
human datasets using the CG method was 14.7� 5.6 (min ¼ 8
andmax ¼ 23). Therefore, the CG method can be used to obtain
patient-specific breast tissue properties with drastically less
model solves than in a parameter sweep (recall the number
of model solves in the parameter sweep was 7722). Despite
the fact that for each iteration, the CG method requires two
model solves per optimization variable to evaluate the gradient,
the total number of model solves needed to obtain an optimum is
2 to 3 orders of magnitude less than what is required during
the parameter sweep.

The error maps associated with human subject data (Fig. 6)
are noisier than their simulation data counterparts (Fig. 4).
Furthermore, human data are subject to errors associated with
arm-placement-induced breast deformations that are not cap-
tured by the purely gravity-based reconstruction model.
While care was taken to reproduce the same arm positioning
in the baseline and gravity-induced images, further analysis
will be performed to investigate the influences of arm position

differences. In addition, noise and artifact reduction techniques
during the MR image-acquisition phase will be explored.
Registration errors induced by motion artifacts are possible.
Therefore, techniques to mitigate respiratory noise will be inves-
tigated, such as respiratory-triggered supine MR imaging, which
can improve the image quality of supine breast images.44

Heterogeneous property reconstruction is not feasible using
parameter sweep methods as the number of model solves
required would be too burdensome. However, with the optimi-
zation routine demonstrated in this study, heterogeneous
property reconstruction becomes feasible. Here, a step toward
heterogeneous property reconstruction was performed using a
test–retest dataset. Reconstruction of 20 unique stiffness proper-
ties demonstrates the capabilities of expanding this method to
include tissue types beyond adipose and fibroglandular, i.e.,
breast tumors. Selection of optimal discretization (i.e., number
of unique regions per tissue type) and methods to reduce solve
time will be evaluated in the future when tumor tissue is added.
The ratio of fibroglandular tissue to adipose tissue was 5.2
for the test set and 4.9 for the retest set. As shown in Fig. 7,
in reconstructing 10 regions for adipose and 10 regions for glan-
dular tissue, little heterogeneity within tissue types was found.
While moving to this elastography approach was shown to be
feasible, a finer amount of discretization (i.e., more regions) is
currently under investigation to resolve stiffness differences
within tissue types. Beyond the levels of discretization, the num-
ber of zones used during the image similarity calculation and
level of spatial prior weighting should be studied to obtain
optimal reconstruction behavior.

Other in vivo methods to determine patient-specific breast
tissue stiffness have been described. These methods include
MR elastography,45 ultrasound strain imaging,46 and shear
wave elastography.47 Methods providing relative stiffness val-
ues, such as ultrasound strain imaging, are not appropriate for
use in biomechanical models that employ body forces or
prescribe stress components on a boundary. Limitations of
other elastography methods include workflow problems
(not convenient additions to current IGBS frameworks) and
imaging may be performed in positions unrealistic to surgery.
Furthermore, the use of dynamic tissue excitation or large com-
pressive forces may result in higher calculated stiffness values
as breast tissue stiffness has been shown to be frequency
dependent.48 For these reasons, we designed this supine,
gravity-based elastography approach to be most appropriate
for use in IGBS systems.

The use of an image guidance system during breast surgery
will increase the amount of total patient treatment time. Prior to
surgery, patients will undergo a supine MRI exam. For the sys-
tem proposed here, a total of three supine MRI acquisitions of
the breast will be obtained: precontrast, postcontrast enhanced,
and gravity excited. Each of these acquisitions involves a 3-min
scan. Therefore, the estimated MRI exam time, including patient
setup, is 30 min. The calculation of breast stiffness is done after
the MRI exam but prior to surgery. Therefore, this calculation
adds no direct time to the patient’s treatment. Finally, using an
image guidance system in the operating room may add addi-
tional time to the surgical procedure. This length of time varies
among systems depending on registration and computational
requirements. In a study of IGS systems used for neurosurgery,
the use of IGS systems decreased the time needed for surgery by
providing surgeons with superior orientation to anatomical
structures.49 The authors are not aware of a study conducted
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in the context of breast surgery that measures the impact of
surgery duration when using an image guidance system.

5 Conclusion
In this study, a method to obtain patient-specific homogeneous
and heterogeneous breast tissue mechanical properties was
tested. In the homogeneous tissue reconstruction setting,
which was developed for use in IGBS applications, optimization
convergence errors were found to introduce less than a 1-mm
error into the guidance system. We demonstrated that the
gravity-based stiffness estimation method is also capable of
reconstructing heterogeneous stiffness properties with several
avenues for future investigations.
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