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Abstract. We compare a surface-driven, model-based deformation correction method to a clinically relevant
rigid registration approach within the application of image-guided microwave ablation for the purpose of dem-
onstrating improved localization and antenna placement in a deformable hepatic phantom. Furthermore, we
present preliminary computational modeling of microwave ablation integrated within the navigational environ-
ment to lay the groundwork for a more comprehensive procedural planning and guidance framework. To achieve
this, we employ a simple, retrospective model of microwave ablation after registration, which allows a preliminary
evaluation of the combined therapeutic and navigational framework. When driving registrations with full organ
surface data (i.e., as could be available in a percutaneous procedure suite), the deformation correction method
improved average ablation antenna registration error by 58.9% compared to rigid registration (i.e., 2.5� 1.1 mm,
5.6� 2.3 mm of average target error for corrected and rigid registration, respectively) and on average improved
volumetric overlap between the modeled and ground-truth ablation zones from 67.0� 11.8% to 85.6� 5.0% for
rigid and corrected, respectively. Furthermore, when using sparse-surface data (i.e., as is available in an open
surgical procedure), the deformation correction improved registration error by 38.3% and volumetric overlap from
64.8� 12.4% to 77.1� 8.0% for rigid and corrected, respectively. We demonstrate, in an initial phantom experi-
ment, enhanced navigation in image-guided hepatic ablation procedures and identify a clear multiphysics
pathway toward a more comprehensive thermal dose planning and deformation-corrected guidance framework.
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.025007]
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1 Introduction

1.1 Clinical Factors

Loco-regional therapies, such as thermal ablation, have received
increased indications for use in neoadjuvant roles, ablation-
assisted resection, and for the treatment of unresectable hepatic
malignancies.1–8 While radiofrequency ablation (RFA) is the
most common ablative therapy used clinically, it has presented
a relatively high local recurrence rate (12% to 39%) when com-
pared to microwave ablation (MWA) (6% to 8.8%).1–5 In addi-
tion, in matched cohort studies, patients receiving MWA
saw improved survival compared to those receiving RFA.2,3

Furthermore, MWA has received considerable interest due to
its larger spatial extent of power deposition, penetration through
charred tissues, and ability to ablate up to and around large
vessels.2,3,7 Due to advances in neoadjuvant care, therapeutic
options, and improved patient selection criteria, the long-term
survival of patients receiving ablation treatments for hepatic
colorectal cancer metastases has improved significantly in
recent years3,6,8 and, in smaller tumors (≤3 cm), is comparable
to the clinical standard of surgical resection that can offer 5-year
survival of 44% to 50% in patients with metastatic colorectal
cancer.9

As the procedural process inherently targets internal struc-
tures, the efficacy of ablation is highly reliant on accurate locali-
zation and targeting of these subsurface lesions during a

procedure, as inaccurate delivery can lead to incomplete treat-
ment and local recurrence.10 As such, ablations are generally
performed using image-guidance [e.g., intraoperative ultrasound
imaging (iUS) or computed tomography (CT)] to assist in tumor
localization and probe placement. However, with these methods,
real-time localization, monitoring, and assessment are extremely
limited. Further, these factors are delivery-mode dependent, as
hepatic tumor ablation can be performed percutaneously, lapa-
roscopically, or in open surgery.

Regarding clinical standards for ablation procedural plan-
ning, geometric estimates of expected ablation zone size and
shape are provided by device manufacturers based on experi-
mental measurements taken from ex vivo animal tissue. As
such, these predictions ignore patient-specific anatomical and
physiological variation, potential tissue heterogeneity, tissue
perfusion, and differences in disease state that may be present.
Accordingly, such estimates have been observed to often over-
predict size and result in more homogeneous shapes when com-
pared to clinical ablation outcomes.11,12

1.2 Localization and Therapy Guidance

Recent applications for image-guided ablation procedures have
reported enhanced localization of tumors and improved accu-
racy of ablation antenna placement in open13–16 and laparo-
scopic procedures.17–20 These methods have employed a variety
of electromagnetic (EM) tracking, optical tracking, and registra-
tion methods to provide enhanced image-guidance. However, to
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date, image-guided ablation methods providing image-to-physi-
cal registration in open and laparoscopic settings have been lim-
ited to rigid registration approaches, which neglect soft-tissue
deformations that occur from organ mobilization during these
procedures and can cause substantial registration error.21

EM-tracking, combined with iUS methods, attempts to circum-
vent this problem by tracking the real-time position of surgical
tools in relation to real-time iUS imaging. However, the EM-iUS
approach has limited information, can suffer from poor contrast,
and loses efficacy when targeting lesions in cirrhotic patients or
in those with chemotherapy-induced hyper-echogenicity associ-
ated with steatosis, both of which can compromise ultrasound
lesion visualization.22,23

Several model-based soft-tissue deformation correction
approaches have been presented in the literature for deformable
image registration for hepatic resection. For example, Lange
et al.24 published an algorithm using thin-plate splines to deform
preoperatively acquired vessels to intraoperative vessels
acquired from tracked iUS. Hu et al.25 presented a method using
coherent point drift to nonrigidly register vessel landmarks, such
as bifurcations. Alternatively, other approaches have concen-
trated on achieving surface-based deformation correction meth-
ods. Rucker et al.26 described an inverse approach that optimizes
boundary conditions described by a parameterized posterior dis-
placement field, based on the reality of organ deformation dur-
ing operative mobilization, to minimize the residual error
between the intraoperatively collected anterior surface digitiza-
tion and the deformed model surface. More recently, Heiselman
et al.27 expanded upon the work of Rucker et al. by reformu-
lating the application of boundary conditions to a control point
strategy, which allows for multiple independent support surfaces
to be designated. Both surface-based methods have demon-
strated effective correction of soft-tissue deformation in phan-
tom and clinical applications for hepatic resection.26–30

With respect to thermal dose guidance, predictive, biophysi-
cal modeling of MWA presents a strong alternative to the manu-
facturer-provided estimates of ablation outcome by utilizing
numerical approaches to solve the physical governing equations
defining energy deposition and heat transfer. Other direct ther-
mographic measurement strategies such as MR31 and US32 ther-
mography are on the horizon, but these also have high technical
and economic hurdles for practical use in the operating room or
interventional suite. A computational approach driven by sparse
data would certainly have some advantages. Recent modeling
work has focused on treating tissue properties as a function
of temperature.33–35 These models were generally characterized
within ex vivo animal tissue or simulation. Additional work
is still needed to understand the variations that can present
between patients due to differences in tissue properties32–35

related to perfusion36–40 or disease state (e.g., steatosis or
cirrhosis41,42). Clearly, there is further need for prospective
MWA modeling approaches. In addition, however, with respect
to model-based solutions to guidance, there is certainly need of
studying the power of integrating advanced surgical navigation
methods with predictive MWAmodeling in the delivery of abla-
tion planning, delivery, and execution.

1.3 Impact for Surgical Open and Laparoscopic
Procedures

When specifically considering the open and laparoscopic set-
tings, as is the primary focus of this paper, advanced navigation
approaches have been used to create a spatial mapping between

surgical instrumentation and imaging data to improve visualiza-
tion of anatomical structures. Based on our existing image-guid-
ance work for surgical resection,26–30 the work here uses a
hepatic deformation phantom setup designed to evaluate the
accuracy of ablation probe localization when using the deforma-
tion correction method of Heiselman et al.27 as compared to a
clinically relevant rigid registration method.43 With respect to
presentation, only a portion of the anterior surface of the
liver is available for organ-to-organ registration and assumes
deformation conditions that are associated with surgical pack-
ing, i.e., the presented liver for surgery is first mobilized
from the ligamenture, and then immobilized with surgical pack-
ing placed beneath the posterior surface of the organ. Careful
attention has been paid such that the deformation patterns
mimic those found in a previous clinical study of open resection
by Clements et al.44 Finally, as the impact of the work is con-
sidered, the performance evaluation clearly speaks to MWA
ablation localization and prediction under conditions in open
and laparoscopic surgery.

1.4 Impact for Percutaneous Procedures

Percutaneous image-guided ablation has become a powerful
option in liver cancer patients not eligible for resection or
waiting for transplant.45,46 Due to its low complication rate,
good efficacy, and minimally invasive nature, it is a common
approach to control and manage liver cancer progression.
However, when compared to resection or ablation in the
open surgical setting, ablation site recurrence is quite high.47

Improving percutaneous ablative procedures is an important
need. In this work, while mock organ presentations that correlate
with percutaneous delivery are not specifically considered, the
framework was engaged in the context of organ-to-organ
deformable registration with full liver surface availability.
This would resemble conditions where x-ray-based technologies
are being utilized for guidance such as with C-arm cone beam
computed tomography (CBCT) systems. CBCT guidance for
percutaneous ablation has shown improved effectiveness and
safety in multiple studies.48–53 However, studies evaluating
image registration with CBCT for ablative treatment in the
liver are limited and even more so with respect to the impact
of deformations.50–53 As a result, the experimental design herein
was employed to establish results in the case where complete
liver surface digitization is available. Yet, it is acknowledged
that the percutaneous workflow, mode of soft-tissue deforma-
tion, and the dynamic nature of percutaneous intervention are
not addressed.

2 Methods

2.1 Overview of Validation Study

In this study, a deformable hepatic phantom constructed of albu-
min suspended in agar was treated with 915 MHz MWA (ST
antenna, Perseon, Salt Lake City, Utah) creating a visible abla-
tion lesion. The ablated phantom was imaged using T2-weighted
MRI, from which the phantom boundary, ablation zone, antenna
tip, and antenna insertion point were segmented in the initial
“predeformation” pose of the phantom. Next, support blocks
were inserted beneath the phantom to change the underlying
posterior support surface shape as well as to shift the ablation
(e.g., similar to deformations observed in an open surgical
setting26,44). The phantom was then reimaged in this
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“postdeformation” state, providing the same information as
before but in this new deformed pose. This two-step process
effectively provided all procedural delivery information and
ablation physical outcomes “before” and “after” a deforming
event.

Image-to-physical registration was then performed by
registering the initial predeformation image to the mock full-/
sparse-surface digitization of the organ generated from the post-
deformation imaging data. This experimental setup allowed the
ablation information to effectively be used as a geometric target
for registration assessment. In addition, a simple, retrospective
model of the MWA procedure (i.e., a model of antenna power
deposition and thermal distribution) was simulated in the pre-
deformation pose given the antenna location segmented from
MRI. We should note that the retrospective model was opti-
mized to match the ablation measured. This was done to estab-
lish a baseline of the best possible outcome of model-to-physical
ablation domain comparison as model error is inevitable.
Together, these experiments allow the initial investigation of
how well a computationally modeled, deformation-corrected
ablation prediction performed versus the ground truth ablation
extent and location (i.e., the evaluation of a model-based thera-
peutic and localization system). The experiment included a total
of three ablations present in eight registration scenarios. To our
knowledge, this combined evaluation is a unique contribution to
the literature.

2.2 Summary of Image-to-Physical Registration
Methods

Two methods of image-to-physical registration were evaluated
in this study: a conventional rigid registration and a nonrigid
registration approach that corrects for deformation. Rigid regis-
tration methods are currently the standard method used in com-
mercial navigation systems. These methods are very fast, an
essential requirement in the OR, but they rely on the assumption
that the transformation from image-to-physical space is purely
rigid and therefore could have poor behavior when deformation
is present. The rigid registration method used in this study iter-
atively seeks to align the anterior organ surface and salient ana-
tomical features in the predeformation image to the analogous
sparse-surface and feature data designated in physical space.
These data are synthesized from the postdeformation image
data in this experiment, although in a typical clinical case,
the sparse-surface and feature data would be collected by the
physician in the operating room with an optically tracked stylus.
Typical data collection involves the acquisition of three-dimen-
sional (3-D) points over the anterior liver surface and specific
features (falciform, round ligament, and inferior ridges). To
mimic the quality of data available in a clinical setting, a sparse
clinical collection pattern was taken of the anterior liver phan-
tom surface in its postdeformation state. We should note that this
distribution was extracted from the image volume data rather
than acquired from conventional image-guidance instrumenta-
tion (details are in Sec. 2.7). With respect to the details of
the rigid registration, these are described by Clements et al.43

and their clinical efficacy have been reported in subsequent
work.26–30

To better account for intraoperative deformations in the
image alignment, the second method of registration evaluated
in this study was a nonrigid, model-based approach designed
to account for soft-tissue deformations. This deformable regis-
tration method seeks to minimize the difference between the

surface generated from the segmented image volume of the
preoperative image and the sparse anterior surface data acquired
in the mock intraoperative physical space. Briefly, the technique
manipulates a set of surface control points distributed across
the model surface in areas of anticipated deformation.
Perturbations of the control points provide a precomputed dis-
tribution of volumetric displacements to the biomechanical
model. Intraprocedurally, optimization ensues iteratively with
an active boundary condition reconstruction with simultaneous
rigid parameter update until the preoperative organ shape
matches the intraoperative counterpart. Optimization is per-
formed using the Levenberg–Marquardt algorithm. The details
of this method have been reported by Heiselman et al.27

2.3 Microwave Ablation Model

We utilize a two-dimensional axially symmetric computational
model developed within COMSOL Multiphysics (COMSOL
Inc, Burlington, Massachusetts) and Matlab 2017b (The
Mathworks Inc., Natick, Massachusetts) to retrospectively
model MWAwith the 915-MHz Perseon short-tip (ST) antenna
within an agar-albumin phantom. These retrospective models
were then registered to their known locations in image space,
simulating a preoperatively determined procedural plan.
Following image-to-physical registration, we can then evaluate
the accuracy of the registered ablation model when compared to
the ground-truth ablation zone.

With respect to the biophysics, the electromagnetic wave
equation was implemented to describe the propagation of
electromagnetic waves through the mock soft-tissue phantom:

EQ-TARGET;temp:intralink-;e001;326;425ð∇2 þ ω2μεcÞE
⇀ ¼ 0; (1)

where ω (rad/s) is the angular frequency of the electromagnetic
wave, μ (H/m) is the permeability, εc is the complex permittivity,
and E

⇀
(V/m) is the electric field strength. Penne’s bioheat trans-

fer equation was employed to describe the temperature evolution
and heat transfer:

EQ-TARGET;temp:intralink-;e002;326;334ρc
∂T
∂t

¼ ∇ · k∇T þQ −Qp; (2)

where ρ (kg∕m3) is the mass density, c (J∕kg · K) is the specific
heat capacity, k (W∕m · K) is the thermal conductivity, T (K) is
the instantaneous temperature,Q (W∕m3) is the heat generation,
and Qp (W∕m3) is the heat loss due to perfusion. Perfusion was
not implemented within the phantom and as a result was
excluded from the model. Heat generation within the phantom,
Q, was modeled as a function of the rate of microwave energy
absorption, as such:

EQ-TARGET;temp:intralink-;e003;326;205Q ¼ 1

2
σkEk2; (3)

where σ (S/m) is the electrical conductivity.
An electromagnetic wave transparent boundary condition

was applied at the outer edges of the modeling domain to pro-
hibit microwave reflection:

EQ-TARGET;temp:intralink-;e004;326;119n
⇀
× ð∇ × E

⇀Þ − jkn
⇀
× ðE⇀ × n

⇀Þ ¼ 0; (4)

where n
⇀

is the direction normal to the boundary and k is the
wave number. The antenna is modeled as a conventional
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conductive core surrounded by dielectric material, catheter, with
ring-shaped slot cut on the outer conductor. Conductive material
is not specifically realized but represented by the boundary
condition:

EQ-TARGET;temp:intralink-;e005;63;708n
⇀
× E

⇀ ¼ 0: (5)

The microwave source itself is modeled as a port boundary
condition, which relates the field to the square root of the time
average power flow in the cable and is adopted from Ref. 54.
This antenna model was consistent with observed performance;
however, exact industry specifications were not available.

External boundaries were set to a fixed temperature (room
temperature). Internal boundaries between the phantom and
ablation antenna simulated saline cooling within the antenna
with a convective heat flux condition:

EQ-TARGET;temp:intralink-;e006;63;573n
⇀
· ð−k∇TÞ ¼ h · ðT − TextÞ; (6)

where n
⇀
is the normal vector to the element, k (W∕m · K) is the

thermal conductivity, h (W∕m2 · K) is the heat transfer coeffi-
cient, T (K) is the temperature, and Text is the saline temperature
(room temperature).

To simulate biological ablation, a mock cell necrosis was
approximated as a function of protein denaturation and was
estimated at each time step by the Arrhenius damage integral:

EQ-TARGET;temp:intralink-;e007;63;462α ¼
Zt

0

A exp

�
−

Ea

RTðtÞ
�
dt; (7)

where α is the degree of damage at a given time, A (1/s) is a
frequency factor, Ea (J/mol) is the activation energy required
to denature the protein within the phantom, R (J∕mol · K) is
the universal gas constant, and TðtÞ (K) is the phantom temper-
ature history. The estimated fraction of denatured protein was
then calculated as

EQ-TARGET;temp:intralink-;e008;63;338θd ¼ 1 − e−α: (8)

2.4 Phantom Property Reconstruction

The model conveyed in Sec. 2.3 was retrospectively fit to
ground truth data from mock gross pathology of our phantom
from which ablation extent could be determined. The computa-
tional model fitting framework is based on a nonlinear optimi-
zation approach where a parameter set defining the dielectric
and thermal properties of the phantom domain within the finite
element model is iteratively chosen to maximize the overlap
between the model-predicted and observed ablation zones:

EQ-TARGET;temp:intralink-;e009;63;199P ¼ ½σ; ε; k; c�; (9)

where σ, ε, k, and c are the electrical conductivity, relative per-
mittivity, thermal conductivity, and specific heat capacity of
phantom, respectively. The objective function is defined by
the degree of overlap between the model-predicted and observed
ablation zones as such

EQ-TARGET;temp:intralink-;e010;63;113Ω ¼ 1 −
NTP

NTP þ NFP þ NFN

; (10)

where Ω signifies the ratio of the intersection and union of the
model-predicted and observed ablation zones. For this frame-
work, we use the Nelder–Mead downhill simplex method to
optimize the parameter set [Eq. (9)] by minimizing the objective
function [Eq. (10)]. The Nelder–Mead algorithm is a heuristic
search approach used to solve nonlinear optimization problems
without requiring derivative information.

2.5 Agar-Albumin Hepatic Deformation Phantom

The deformable hepatic phantom used in this study consisted of
a combination of purified water, 1.5 wt. % agar-agar powder
(Thermo Fischer Scientific, Waltham, Massachusetts), and 50
wt. % liquid egg whites (Break Free Liquid Egg Whites, The
Kroger Company, Cincinnati, Ohio). Liquid egg whites were
used to produce a permanent visual history of the thermal
induced ablation lesion, similar in nature to the ablation lesions
that form in tissue. Egg whites contain around 10% ovalbumin
protein dissolved in 90% water with nearly no carbohydrate or
fat content. Thermal denaturing of the ovalbumin protein leads
to aggregation, which causes optical scattering and a large
reduction in the T2 relaxation coefficient of the material. The
resulting ablation lesions were imaged using T2-weighted
MRI and visually observed with mock gross pathology by sec-
tioning the phantom along the midline of the ablation antenna
and backlighting the section [as seen in Figs. 1(b) and 1(c)].

To create the phantom, powdered agar-agar was thoroughly
mixed with water and heated to boiling on a hot plate while
being continuously stirred to produce a 1.5% agar gel. The sol-
ution was then cooled to <60°C with continuous stirring before
adding the liquid egg whites. This cooling ensured that no pro-
tein denatured prematurely. The mixture was then mixed for
1 min and then poured into the phantom mold to allow the
gel to set. A plaster negative derived from contrast-enhanced
CT imaging of a patient liver was used as the phantom mold

Fig. 1 (a) Agar-albumin phantom liver in its predeformation state.
MWA antenna is seen inserted into the right lobe. (b) Mock gross
pathology of an ablation within the agar-albumin phantom. The
outer ablation contour, ablation antenna tip location, and ablation
antenna shaft are clearly visible. (c) Slice from the T2-weighted
MRI of the ablation zone from which the outer ablation contour, abla-
tion antenna tip location, and ablation antenna shaft were segmented.
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to produce a hepatic phantom with clinically relevant anatomical
structure (Fig. 1).

2.6 Applied Deformations

The proposed modeling and registration framework was evalu-
ated across a range of clinically relevant organ deformations.
With respect to open surgery, deformations occur due to the
introduction of packing material beneath and around the
organ following mobilization of the organ from surrounding
anatomy. With respect to intervention, changes between diag-
nostic and intraprocedural presentation incur shape change.
To impose soft tissue deformations, silicone support blocks
(roughly 20 to 30 mm thick) were inserted beneath varying
areas of the phantom to simulate surgical packing for organ pre-
sentation in the case of ablation under open surgical procedures.
Figure 2 provides an example of the extent of deformation
induced in the phantom. In total, four unique applications of
deformation were applied to the phantom. In case 1, support
material was placed beneath the lateral superior right lobe, rais-
ing the largest volume of the phantom. In case 2, support
material was added beneath both the lateral superior and inferior
right lobe, causing the right lobe to rise and rotate about the
falciform ligament. In case 3, support material was inserted
beneath the lateral inferior right lobe and the left lobe, causing
the medial area of the liver to sag. Finally, in case 4, support
material was inserted beneath the lateral inferior right lobe,
causing it to rise. It should be noted that the distribution of
signed closest point differences is similar to those that have
been measured in the literature. More specifically, in Ref. 54,
laser range data of the anterior surface were rigidly registered
to the preoperative imaged counterpart and demonstrated this
periodic distribution of signed closest point distances similar
to Fig. 2. In addition, this was also seen in the analysis by
Heiselman et al.27 for the laparoscopic configuration.

2.7 Data Collection

T2-weighted MRI scans were acquired for each state of phantom
deformation (i.e., one predeformation image set and four

post-deformation image sets). 3-D models were generated
from each set of images using ITK-SNAP.55 Salient feature
regions were manually designated from the surface of each
model. To date, these image-to-physical registration methods
have been clinically implemented using sparse digitizations
of the anterior organ surface attained intraoperatively. Within
this study, we present and compare results following registration
using (1) full-surface data, (2) sparse-surface data, and
(3) resampled sparse-surface data using the resampling method
presented by Collins et al.29

Sparse anterior surface data, akin to what would be available
clinically, were generated using a method similar to the human-
to-phantom data described by Collins et al.29 Briefly, sparse-sur-
face data gathered from actual clinical cases (an IRB approved
study at Memorial Sloan Kettering Cancer Center in Ref. 28)
were rigidly registered to our phantom image volume in its
deformed state. This was accomplished using the weighted
salient feature registration method of Clements et al.43 Once ini-
tialized, an affine registration was performed to account for any
differences in organ size between the clinical and phantom data.
Next, the clinical surface data were projected to their closest
points on the deformed phantom surface, resulting in unique
realistic sparse anterior surface designations for each case.
However, unlike the method of Collins et al.,29 no additional
noise was added to these synthesized sparse-surface data. All
synthesized designations had an extent of organ coverage
between 25% and 30%, which is within the range of typical
clinical data acquisition.27,56 It should be noted that the above
process could be performed in the reciprocal workflow allowing
for a second set of novel conditions (i.e., treating the actual
“postdeformation” data as the preoperative organ state and
the actual “predeformation” data as the intraoperative organ
state). In total, this created eight registration scenarios (the origi-
nal four cases from Sec. 2.6 and the four reciprocal instances)
for the results herein, each with an independent set of simulated
physical space data to drive the registrations.

2.8 Analysis

Two methods of image-to-physical registration were compared
in this study: (1) the salient feature weighted iterative closest
point rigid registration method by Clements et al.43 and
(2) the deformable control point nonrigid registration method
by Heiselman et al.27 Average target registration error (TRE)
was used as the primary quantification of registration accuracy.
A total of nine targets were measured across the three ablations
in each image-to-physical registration scenario: (a) the antenna
tip locations, (b) the antenna insertion points on the phantom
surface, and (c) the centroids of the MRI-segmented ablation
zones. Average TRE for a registration scenario was calculated
as the average distance between corresponding points in the reg-
istered image and physical data sets. This metric measures the
accuracy of the registration methods evaluated in this study
exclusively, independent of the MWA modeling.

The positive predictive value (PPV) was used to evaluate
volumetric accuracy of the predictive MWA model. PPV was
calculated as

EQ-TARGET;temp:intralink-;e011;326;129PPV ¼ NTP

NTP þ NFP

; (11)

where NTP is the volume of the model-predicted ablation zone
overlapping with the observed ablation zone and NFP is the

Fig. 2 Representation of the degree of deformation achieved in the
deformable hepatic ablation phantom. The colormap represents the
signed surface error after rigidly registering the pre- and postdeforma-
tion phantom image segmentations. The ablation zones are pre-
sented as green volumes. In this case of deformation, 20- to 30-
mm thick support material was placed beneath the superior right
lobe to simulate surgical packing for organ presentation. In total,
four applications of deformation were applied and imaged within
the phantom.
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volume of the model-predicted ablation zone, which does not
overlap with the true ablation zone. We present the metric of
PPV in this study for two separate purposes: (1) to quantify
the predictive capability of the MWA model without com-
pounding registration error and (2) to evaluate the accuracy
of the combined registration and MWA modeling framework.

To singularly evaluate the accuracy of the MWA model, the
model-predicted ablation zones were directly compared to the
mock gross pathology. This comparison was made assuming
perfect registration after manually aligning the ablation antenna
tip and shaft from the model space with the corresponding loca-
tions in the mock gross pathology image space. The outer abla-
tion contours from each space were then revolved to create 3-D
volumes, which were then compared by calculating the PPV.
The combined registration and modeling framework accuracy
was also evaluated by computing the PPV following registration
of the model-predicted ablation zone. Inaccuracies in both the
image-to-physical registration methods and MWA modeling
contribute to the error encompassed by this metric.

The Wilcoxon rank sum test was used to determine signifi-
cance in differences between the distributions of TRE and PPV
resulting from each ablation (i.e., 24 total) and each evaluated
registration method (α ¼ 0.05).

3 Results

3.1 Microwave Ablation Model

Model-predicted temperature maps for each of the three abla-
tions with the agar-albumin deformation phantom are presented
in Fig. 3 alongside contours defining the observed and model-
predicted ablation zone extents (as black and dashed red lines,
respectively). These results are under the condition of perfect
localization, which was achieved by manually aligning the
observed and modeled ablation antennas. The degree of ablation
zone overlap for this condition is presented as the PPV, averag-
ing 96.3� 0.3%. The observed transverse and axial ablation
zone dimensions gathered from mock gross pathology were
20.1� 1.0 and 31.6� 1.2 mm, respectively. Model-predicted

ablation zone transverse and axial dimensions were 19.9� 1.8
and 29.9� 0.6 mm, respectively (differing from the mock gross
pathology by 4.2% and 5.3%, respectively).

3.2 Image-to-Physical Registration

TREs resulting from rigid registration and deformation correc-
tion approaches applied to the eight registration scenarios within
the deformable hepatic ablation phantom are presented in Fig. 4
for full-surface data (top) and sparse-surface data (bottom), in
blue/yellow and gray/orange, respectively. Average TRE results
from driving the registrations with full-surface, sparse-surface,
and resampled sparse-surface data are tabulated for both meth-
ods of registration in Table 1.

Distributions of the volumetric overlap (represented by PPV)
resulting from the rigid registration and deformation correction
methods using full and sparse-surface data are shown in Fig. 5 in
blue/yellow (full data) and gray/orange (partial data), respec-
tively. Average PPV results from driving the registrations with
full-surface, sparse-surface, and resampled sparse-surface data
are presented for both methods of registration in Table 2.
Figure 6 presents the PPV plotted as a function of the average
TRE for the corresponding ablation antenna for each method
of registration as well as for the perfectly localized model

Fig. 3 Model-predicted temperature maps, observed (black line), and
model-predicted (red dashed line) ablation zones are presented for
each case of ablation with the Perseon ST antenna within the
agar-albumin hepatic deformation phantom. The observed ablation
zone extent was gathered from mock gross pathology and used to
drive the inverse MWAmodel. It is important to note that each ablation
occurred in a different area of the phantom with varying tissue thick-
ness and antenna depth.

0

5

10

15

20

25

30

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9+

# 
of

 ta
rg

et
s

Target registration error [mm]

Full Surface - Rigid Full Surface - Correction

0

5

10

15

20

25

(b)

(a)

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9+

# 
of

 ta
rg

et
s

Target registration error [mm]

Sparse Surface - Rigid Sparse Surface - Correction

Fig. 4 Histograms of the target errors resulting from the two methods
of registration applied to the eight image-to-physical registration sce-
narios within our agar-albumin deformation phantom. Results of the
rigid registration using the weighted salient feature ICP method of
Clements et al.43 are presented in blue/gray. Results of the deforma-
tion correction method of Heiselman et al.27 are presented in yellow/
orange. (a) Results from registering with full-surface data. (b) Results
from registering with sparse-surface data.
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(i.e., TRE of 0 mm). Results shown in Fig. 6 are from driving the
registration methods with full-surface data.

Figure 7 presents an example of the retrospective ablation
model following rigid registration and deformation correction
using sparse anterior surface data. In each panel, the green

ellipse and line represent the ground truth ablation zone and
antenna pose, respectively. The modeled ablation zone follow-
ing rigid registration is presented in (a) and magnified in (b).
The MWA model result following deformation correction is
presented in (c) and magnified in (d).

4 Discussion
While the impact of soft-tissue deformation on thermal develop-
ment has been explored in other contexts,57 with this work, we
present the first effort to evaluate deformation correction meth-
ods for image-guided hepatic MWA in the open surgical setting.
Further, we couple a simple retrospective model of the ablation
procedure with clinically relevant image-guidance techniques,
allowing for a greater understanding of the magnitude of
error that can be associated with a combined modeling and sur-
gical navigation approach. We evaluate these methods within a
deformable hepatic ablation phantom that allows for compre-
hensive validation with both individual point targets and volu-
metric overlap of predicted and ground-truth ablation zones.

The example visualization of the evaluated registration algo-
rithms on ablation antenna localization (Fig. 7) tangibly demon-
strates the degree to which the applied deformation correction
method is an improvement upon the rigid registration when soft-
tissue deformation is present. This result is further supported by
the quantitative results of the ablation antenna target errors in
Fig. 4 and Table 1, indicating that the deformable registration
method of Heiselman et al.27 represented a significant improve-
ment over the rigid registration results of Clements et al.43

(p < 0.001). Additionally, these results demonstrate that a
more complete source of surface data (e.g., as can be available
in a CBCT-assisted percutaneous ablation procedure) for driving
the registration provides further improvement to the correction
when compared to the sparse-surface data that is available in the
open setting (p < 0.001). From these results, it is also interesting
to note that the source of surface data has a much more pro-
nounced impact on the deformation correction method than

Fig. 5 Distributions of the volumetric overlap of observed and
predicted ablation zones represented by the PPV. The box and
whiskers represent the mean, median, upper and lower quartiles,
maximum, and minimum PPV for the rigid registration method of
Clements et al.43 in blue/gray and the deformation correction method
of Heiselman et al.27 in yellow/orange. Presented results are from
registering with full-surface data (blue/yellow) and sparse-surface
data (gray/orange).

Table 2 Average and standard deviation volumetric overlap are pre-
sented as the PPV for each source of surface data and each evalu-
ated method of registration. Additionally, the PPV is presented for the
case of perfect localization to distinguish model error from registration
error.

Average PPV (%)

Surface data Rigid registration Deformation correction

Full 67.0� 11.8 85.6� 5.0

Sparse 64.8� 12.4 77.1� 8.0

Resampled 69� 11.1 75.1� 6.5

Perfect localization 96.3� 0.3

Table 1 Average and standard deviation TRE are presented for each
source of surface data and each evaluated method of registration.

Average TRE (mm)

Surface data Rigid registration Deformation correction

Full 5.6� 2.3 2.5� 1.1

Sparse 6.0� 2.3 3.7� 1.4

Resampled 4.9� 2.1 3.8� 1.3
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Fig. 6 The PPV is presented for each registered ablation (24 total) as
a function of the average target registration of the corresponding abla-
tion antenna. Antenna TRE was calculated as the average error of the
antenna tip, insertion point, and ablation centroid. Results of the rigid
registration method of Clements et al.43 are presented in blue and
the deformation correction method of Heiselman et al.27 are presented
in yellow. MWA model results in the condition of perfect registration
(manual alignment) are presented for comparison in red. Presented
results are from registering with full-surface data.
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on the rigid registration. We interpret this result to be a repre-
sentation of the degree to which soft-tissue deformation impacts
the maximum achievable accuracy of rigid registration
approaches within this setting. We also note that the relatively
low rigid registration errors achieved in this study, as compared
to prior phantom studies, indicate that the degree of achieved
soft-tissue deformation within the phantom was achieved in a
previous study.26 We believe that this is in large part due to
the nature of the agar-albumin phantom, which is prone to shear-
ing when subjected to very large deformations. However, from
our past characterizations, we suggest that the 20 to 30 mm of
deformation that was achieved in this study was representative
of clinical use and was adequate for understanding the relative
performance of the registration methods.27,54 Additionally, while
the resampled sparse-surface data provide further improvement
to the rigid registration method, that was not the case for the
deformation correction method as it was in original 2017
study.29 We believe that this is because the simulated sparse-sur-
face data in this work did not include simulated acquisition noise
(i.e., it was selected directly from the MRI surface), which the
resampling approach was specifically designed to address (e.g.,
we have observed manually swabbed organ surface data to have
an average noise of 1 to 2 mm).

In addition to reporting antenna target errors, the volumetric
error associated with the retrospectively modeled ablation zones
has been presented in Fig. 5 and Table 2. Again, these results
demonstrate improved localization by the deformation correc-
tion method. This is clearly demonstrated in Fig. 7 when com-
paring the overlap of the red ablation (rigid registration) with the
green (ground-truth) to the overlap of the blue ablation (defor-
mation corrected) on the same ground-truth. As with the target
errors, we see in Table 2 that for each data source the deforma-
tion correction method of Heiselman et al.27 significantly
improves upon the rigid alignment method of Clements

et al.43 (p < 0.001). These registration results are in line with
previous clinical and phantom evaluations.27,28,30

Figure 3 and Table 2 present the maximum volumetric accu-
racy of the retrospective ablation model under the condition of
perfect localization. Furthermore, Fig. 6 presents these results in
comparison to the modeled ablation zones following registration
as a function of their localization accuracy. These novel results
represent the loss in model-predictive capacity (−5.95%∕mm,
p < 0.001, r ¼ 0.93) that is associated with increasing antenna
localization error in a combined navigation and modeling frame-
work. However, in this initial work, we retrospectively model
the ablation outcome by reconstructing phantom-specific prop-
erties, which limit immediate clinical applicability. Although,
there is precedence within the literature for determining disease
state and approximating tissue properties from preoperative im-
aging using MRI58 or ultrasound.59 Another limitation to the
current model is that neither the phantom nor the model include
tissue perfusion, which has been shown to have an impact on
ablation outcome43–47 but is difficult to implement within the
phantom setting.

Further development of these methods would provide a plat-
form for clinicians to preoperatively define an approach for
ablating targeted lesions while sparing healthy tissue and ensur-
ing adequate margins. Such a patient-specific plan would pro-
vide ablation antenna target and trajectory information that
would then be provided intraoperatively to achieve the optimal
ablation. During treatment, organ surface data would be col-
lected and then used to achieve a deformable registration using
the methods presented in this work. Finally, under enhanced
image-guidance, the physician could then deploy the ablation
antenna to the preoperatively defined configuration, confirming
placement with tracked iUS, before delivery therapy.

In summary, our results suggest that this application is a sig-
nificant advancement in the field of open hepatic image-guided

Fig. 7 An example of ablation model predictions following registration with sparse anterior surface data.
In each panel, green represents the ground truth ablation zone as observed in MRI. The rigidly registered
ablation model is presented in (a) and detailed views in (b). The registered ablation model following defor-
mation correction is presented in (c) and detailed views in (d). Additionally, in each panel the registered
ablation antenna are indicated by lines with color corresponding to the registration method.
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ablation, as soft-tissue deformation is a considerable limitation
to current modeling and guidance frameworks for liver tumor
treatments.57 While EM-iUS methods18,19 take a purely intrao-
perative imaging approach to this soft-tissue deformation prob-
lem, they fail to provide additional information concerning
relevant critical anatomy, a common desire given the availability
of preoperative imaging data. Furthermore, EM-iUS approaches
are restricted to US-visible tumors, which restrict its applicabil-
ity when considering nonechogenic tumors that can present
following neoadjuvant therapy.22,23 Other studies have reported
targeting accuracy of ablation antennas on the order of 5 to
10 mm, with the current best being a median accuracy of
4.2 mm.19 In comparison, our presented method of deformation
correction has produced favorable accuracies of 2.5� 1.1 and
3.7� 1.4 mm when using full- and sparse-surface data, respec-
tively. While this work was directed toward the open surgical
setting, we show that these methods can enhance image-guid-
ance for percutaneous, laparoscopic, and open hepatic ablation
procedures.

5 Conclusions
The objective of this work was to quantify the localization and
volumetric accuracy of a model-based deformation correction
method when applied to image-guided hepatic MWA.
Evaluation of the applied method shows significant improve-
ment in localization accuracy when compared to a clinically rel-
evant rigid registration approach. Furthermore, we incorporate a
simple, retrospective model of MWA into the navigational
framework, providing an important initial evaluation of the
interplay between localization accuracy and volumetric overlap
of predicted and ground-truth ablation zones. While future work
is necessary to apply this modeling and navigational framework
as a prospective, targeting approach, the deformation correction
method applied in this study is certainly an advancement toward
improved localization in open hepatic MWA procedures. Going
further, this work proposes to extend the concept of “model cor-
rection” in surgical navigation to include a new biophysical
domain, namely the deposition of ablative energy, and its cor-
responding thermal evolution. This combined mechanics/energy
framework represents the first study toward a more comprehen-
sive model-predictive paradigm for an important image-guided
therapeutic process in use today.
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