
Journal of Neural Engineering

ACCEPTED MANUSCRIPT

Impact of brain shift on neural pathways in deep brain stimulation: a
preliminary analysis via multi-physics finite element models
To cite this article before publication: Ma Luo et al 2021 J. Neural Eng. in press https://doi.org/10.1088/1741-2552/abf066

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 129.59.95.115 on 26/03/2021 at 12:58

https://doi.org/10.1088/1741-2552/abf066
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1741-2552/abf066


IOP Publishing Journal Title
Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd

Impact of brain shift on neural pathways in deep 
brain stimulation: a preliminary analysis via multi-
physics finite element models

Ma Luo1,2, Saramati Narasimhan2,3, Paul S Larson4, Alastair J Martin5, 
Peter E Konrad6, Michael I Miga1,2,3 

1 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
2 Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
3 Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
4 Department of Neurological Surgery, University of California, San Francisco, CA, USA
5 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
6 Department of Neurosurgery, West Virginia University, WV, USA 

E-mail: m.luo@vanderbilt.edu 

Received xxxxxx
Accepted for publication xxxxxx
Published xxxxxx

Abstract

Objective. The effectiveness of deep brain stimulation (DBS) depends on electrode placement 
accuracy, which can be compromised by brain shift during surgery. While there have been 
efforts in assessing the impact of electrode misplacement due to brain shift using preop- and 
postop- imaging data, such analysis using preop- and intraop- imaging data via biophysical 
modeling has not been conducted. This work presents a preliminary study that applies a 
multi-physics analysis framework using finite element biomechanical and bioelectric models 
to examine the impact of realistic intraoperative shift on neural pathways determined by 
tractography. Approach. The study examined six patients who had undergone interventional 
magnetic resonance (iMR)-guided DBS surgery. The modeling framework utilized a 
biomechanical approach to update preoperative MR to reflect shift-induced anatomical 
changes. Using this anatomically deformed image and its undeformed counterpart, bioelectric 
effects from shifting electrode leads could be simulated and neural activation differences 
were approximated. Specifically, for each configuration, volume of tissue activation (VTA) 
was computed and subsequently used for tractography estimation. Total tract volume and 
overlapping volume with motor regions as well as connectivity profile were compared. In 
addition, volumetric overlap between different fiber bundles among configurations was 
computed and correlated to estimated shift. Main result. The study found deformation-
induced differences in tract volume, motor region overlap, and connectivity behavior, 
suggesting the impact of shift. There is a strong correlation (R=-0.83) between shift from 
intended target and intended neural pathway recruitment, where at threshold of ~2.94 mm, 
intended recruitment completely degrades. The determined threshold is consistent with and 
provides quantitative support to prior observations and literature that deviations of 2-3 mm 
are detrimental. Significance. The findings support and advance prior studies and 
understanding to illustrate the need to account for shift in DBS and the potentiality of 
computational modeling for estimating influence of shift on neural activation. 
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1. Introduction

Deep brain stimulation (DBS) presents an adjustable and 
reversible surgical treatment option for symptom relief in 
patients with movement disorders. One particularly impactful 
application of DBS is the treatment of Parkinson’s Disease 
(PD), especially those with medically refractory tremor 
(Collins et al., 2010). PD impacts 0.1-0.2% of the population 
and 1% of the population over the age of 60 (Bratsos et al., 
2018). While there is a wealth of literature reports illustrating 
the effectiveness of DBS therapy, in a comprehensive recent 
review by Bratsos et al., 8 randomized controlled trials (RCTs) 
were analyzed comparing outcome measures between DBS 
and best medical therapy (BMT) (Bratsos et al., 2018). Overall 
the study found in a total of 1,189 patients (with sample sizes 
ranging 19-366 in 8 different studies), DBS was determined to 
significantly improve the total Unified Parkinson’s Disease 
Rating Scale (UPDRS), including all sub-scores (I-IV), as well 
as Parkinson's Disease Questionnaire (PDQ-39) while 
decrease levodopa equivalent dose (LED) (Bratsos et al., 
2018). While highly effective in providing better motor 
control and functionality for patients, the quality of DBS 
therapy may be compromised, i.e. dissatisfactory outcome or 
adverse events, by misplacement of DBS electrodes. 

To probe the scope of the impact of suboptimal electrode 
placement on surgical outcome, Rolston et al. performed an 
analysis to examine data on over 28,000 cases of DBS 
procedures from the Centers for Medicare and Medicaid 
Services (CMS) and the National Surgical Quality 
Improvement Program (NSQIP) databases, and reported that 
revision or removal occurred in 15.2% and 34.0% from CMS 
and NSQIP, respectively (Rolston et al., 2016). The study 
speculated that ~ 48.5% of these revisions or removals was 
likely due to poor positioning of the electrode or inadequate 
clinical outcome and noted that this result is similar to 
previous analyses on failed DBS treatment where 46% of 
revisions were due to suboptimal placement of electrodes 
(Rolston et al., 2016). 

One contributing factor to the misplacement of electrodes 
is brain shift that ensues after burr hole and dural opening in 
DBS surgery. In a report by (Luo et al., 2020), a summary of 
various studies using preop- and postop- imaging data to 
gauge shift in DBS was provided, where shift at deep brain 
structures ranges from 1.5 to up to 4 mm .  For example, Elias 
et al. found anterior commissure (AC) shift above 2 mm in 
7.6% of patients and above 1.5 mm in 13.6% (n=66) (Elias et 
al., 2007). When preop- and intraop- imaging data were used 
to assess brain shift, Ivan et al. found deep brain structure shift 
above 2 mm in 9% of the study population and 1-2 mm in 20% 
(n=44); additionally, cortical surface shift up to 10 mm was 
observed (Ivan et al., 2014). From Elias et al. and Ivan et al., 
it is apparent that brain shift during DBS burr hole surgery 

occurs in a considerable population of patients (Elias et al., 
2007; Ivan et al., 2014). Addressing brain shift may reduce the 
incidents of revision or removal due to poorly positioned 
electrodes as stated in (Rolston et al., 2016), which would lead 
to better patient experience, reduce further potential surgical 
risk, enhance short- and long- term therapy outcome, and 
improve overall and longitudinal cost-effectiveness of DBS 
therapy. To date, the deviation threshold from an intended 
target has been based on clinical observations and 
speculations, and varies among studies as summarized in (Luo 
et al., 2020): e.g. 3 mm is mentioned in Balachandran et al., 
Anderson et al. and McClelland et al.; while 2 mm is 
suggested in Ivan et al. and Kremer et al. (Balachandran et al., 
2009; Anderson et al., 2018; McClelland et al., 2005; Ivan et 
al., 2014; Kremer et al., 2019). Developing a computational 
model based on soft tissue mechanics and bioelectric transport 
to estimate modulation effect changes would be highly 
desirable.  

There are several groups that have developed sophisticated 
computational bioelectric models to better understand the 
biophysics of neuromodulation, where the models compute (i) 
tractography due to volume of tissue activation (VTA); and/or 
(ii) activation of specific fiber pathways (Chaturvedi et al., 
2010; Butson et al., 2007; Astrom et al., 2015).  

A few studies have attempted to examine and address the 
impact of brain shift on tractography. In Choi et al., shift was 
measured by anatomical control points using preop- and 
postop- imaging data in subcallosal cingulate (SCC) DBS 
surgeries; the impact of electrode displacement was analyzed 
and found to alter pathway activation patterns (Choi et al., 
2018). In Horn et al. outlining a DBS post-processing pipeline 
named Lead-DBS, brain shift correction capability was 
introduced to account for the misalignment between preop- 
and postop- imaging data (Horn et al., 2019). 

While these efforts to understand and/or correct for the 
impact of brain shift on potential treatment outcome are 
encouraging advances, these studies represented analyses that 
employed shift measurements from preop- and postop- 
imaging data. This study aims to advance the understanding of 
the effect of electrode misplacement with realistic 
intraoperative shift derived from the gold standard 
measurement provided by interventional magnetic resonance 
(iMR). Specifically, the impact of brain shift on functional 
response predicted by tractography via neural pathway 
recruitment is assessed. To achieve, the work presented here 
utilizes a multi-physics analysis framework, i.e. 
biomechanical and bioelectric finite element (FE) models. 
Subsequently this analysis framework is applied to six patients 
who had undergone iMR-guided DBS procedures. Based on 
the preliminary framework first reported in Luo et al. (Luo et 
al., 2019), the methodology in this study has been expanded 
and then employed to analyze a six-case series of patients that 
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experienced significant intraoperative brain shift during DBS 
implant.

The objective of this study is to provide qualitative and 
quantitative support linking the effects of shift-induced 
electrode misplacement to the degradation of targeted neural 
pathway recruitment. The work also provides valuable 
theoretical support toward a critical target deviation threshold 
whereby treatment quality significantly degrades. Lastly, the 
work establishes the potential utility and power of multi-
physics modeling frameworks to help guide DBS treatments 
in the presence of intraoperative brain deformations. 

2. Methodology 

2.1 Overview

The overall analysis framework used for the study is shown 
in figure 1, which consists of a multi-physics patient-specific 
biomechanical and bioelectric FE models. 

The biomechanical model (black block in figure 1) aims to 
provide realistic data-driven intraoperative brain shift 
predictions from intracranial changes in soft tissue mechanics 
due to burr hole and dural opening during DBS surgery. 
Specifically, a sparse-data constrained biomechanical model 
is used to estimate volumetric shift to better reflect 
intraoperative patient neuroanatomy. During surgery, the 
deployment of such model could allow for the accurate 
mapping of preoperative MR (pMR) targets to intraoperative 
physical space in the form of patient updated MR (uMR) to 
improve surgical navigation and targeting. 

The bioelectric model (blue blocks in figure 1) aims to 
provide the spatial distribution of electric potential due to 
neuromodulation with and without shift adjustment. 

Subsequently, VTA and associated neural pathway 
recruitment via tractography (orange block in figure 1) can be 
estimated and employed to establish a better understanding for 
functional impact of DBS therapy as well as potentially 
degrading events such as brain shift. 

Figure 1.  A predictive multi-physics FE modeling framework for brain shift 
prediction via biomechanical model (left—black block), electric potential 
computation via bioelectric model (middle—blue block), with subsequent 
analysis of VTA estimation and tractography (right—orange block). 

2.2 Data

The study population consists of n=6 patients, who had 
undergone iMR-guided DBS electrode implantation through a 
burr hole targeting the subthalamic nucleus (STN) and 
experienced detectable shift observed from iMR. Imaging 
volumes of the patients were acquired with consent and IRB 
approval. The surgical details can be found in (Ivan et al., 
2014). MR image specifications such as voxel spacing of 
imaging data (pMR and iMR) are described in (Luo et al., 
2020). Briefly, pMRs and iMRs in this study were acquired 
using a 1.5T MR scanner; the voxel spacing for pMR ranges 
from 1.00 to 2.00 mm, and for iMR ranges from 1.02 to 1.50 
mm. An example of the acquired data is shown in figure 2, 
where brain shift due to burr hole procedure is demonstrated 
both on the surface as well as subsurface (indicated by 
corresponding crosshairs at the lateral ventricle). The imaging 
artifacts due to DBS electrode leads are illustrated by red 
arrows. 

Figure 2.  An example of imaging data in this study: demonstration of the 
impact of brain shift during DBS burr hole surgery on the surface as well as 
subsurface (corresponding crosshairs at the lateral ventricle). Red arrows 
indicate the imaging artifacts resulted from implanted electrode leads. 
 

2.3 Brain shift estimation via biomechanical model

To account and estimate for shift during DBS electrode 
placement through a burr hole (small cranial opening), an 
inverse problem approach rooted in a biphasic biomechanical 
model was employed. This modeling approach accounts for 
biophysical phenomenon such as CSF drainage, gravity, 
pneumocephalus, and stiffness considerations of different 
brain components (Luo et al., 2020). The complete work 
regarding the implementation details of the biomechanical 
modeling method such as boundary condition assignment is 
described in (Luo et al., 2020). 

Briefly, patient pMR was utilized to construct a volumetric 
patient-specific FE mesh (Sullivan et al., 1997). This mesh 
was then placed under varying surgical conditions, such as 
permutations of displacement and pressure conditions. Under 
each unique surgical condition, a biphasic biomechanical 
model was employed to compute the volumetric shift profile 
(Miga, 1998). The collection of volumetric deformations from 
the distribution of boundary and forcing conditions is 
assembled into a ‘deformation atlas’ (Dumpuri et al., 2007; 
Chen et al., 2011; Narasimhan et al., 2020). Specifically, the 
modeling approach leveraged here intends to capture the effect 
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of CSF loss, gravity and pneumocephalus. In particular, the 
impact of CSF loss and gravity are accounted for as CSF loss 
reduces buoyancy, therefore introducing tissue sag. Within the 
aforementioned deformation atlas, different extents of CSF 
loss were simulated to contribute and ensure the fair 
distribution required to account for different intraoperative 
surgical conditions.  

To estimate volumetric brain shift during surgery, sparse 
shift measurements (surface and subsurface) derived from 
iMR were determined by matching corresponding tissue 
landmarks (Luo et al., 2020). Using these data, an inverse 
problem approach was employed whereby a linear 
combination of potential brain shift solutions is determined to 
best match the aforementioned measurements in a constrained 
least-squared error manner (Luo et al., 2017; Luo et al., 2020). 
The model-predicted volumetric shift was then used to update 
pMR to better reflect intraoperative patient anatomy, as well 
as to estimate shift at target region for DBS therapy. 

Finally, as an additional layer of rigor to the analysis, 
Advanced Normalization Tools (ANTs, employed as a state-
of-the-art and robust nonrigid image-to-image registration 
utility) (Avants et al., 2011) were utilized to co-register pMR 
and iMR to produce a displacement field to independently 
estimate deep brain target shift for a comparative evaluation 
to the model-based analysis (Luo et al., 2020).

2.4 Potential distribution via bioelectric model

To compute electric potential distribution, a bioelectric FE 
model based on the Poisson equation using standard 
conductive biophysics was constructed: 

        ∇ ∙ ( ―𝜎∇𝑉𝑒) = 𝐼
where Ve is the electric potential (Volts), σ is the conductivity 
tensor (Siemens/meter), and I is the injected current from a 
source such as an electrode contact. Here the conductivity 
tensor was incorporated to model tissue heterogeneity and 
anisotropy. To achieve, the linear relationship described by 
(Tuch et al., 2001) was used that relates diffusion tensor to the 
electrical conductivity tensor: 

σ =
𝜎𝑒

𝑑𝑒
𝐷

where 𝝈 is the electrical conductivity tensor (Siemens/meter), 
D is the diffusion tensor (meters2/seconds), 𝝈e is the effective 
extracellular electrical conductivity (Siemens/meter), de is the 
effective extracellular diffusivity (meters2/seconds) (Tuch et 
al., 2001; Astrom et al., 2012). Here in this experiment, 𝝈e/de 
was set to 0.844 as empirically determined by (Tuch et al., 
2001). Limitations regarding this linear assumption will be 
further discussed later. 

The performance and analysis of tractography were 
conducted in MNI (Montreal Neurological Institute) space 
(Fonov et al., 2011). The limitation of data availability here, 
specifically only pMR and iMR, necessitated the need of these 
evaluations in MNI space, where a number of atlases are 
available and can be leveraged for this investigation. 

To facilitate this process, essential information from 
previous section (shown in the top panel in figure 3, 
corresponding to the biomechanical modeling block in black 
on the left in figure 1) was transformed from patient data to 
MNI space. Specifically, the displacement 3D fields 
determined by model- and ANTs- predictions (Dmodel and 
DANTs in figure 3), as well as positions of DBS leads (end point 
and trajectory, shown as PANTs and Pmodel in figure 3) were 
mapped to MNI space. For the latter, briefly, the end point of 
the electrode path visible on iMR was determined and a 
second point along the electrode path (such as indicated via 
red arrows on figure 2) was identified to establish trajectory. 
The transformation of this information was achieved by 
registering segmented brains of patient and ICBM 152 
(International Consortium for Brain Mapping) T1 weighted 
images (voxel spacing: 1×1×1 mm; image dimension: 
193×229×193), the latter is associated with the HCP 1021 
template (Human Connectome Project) available in DSI 
Studio (http://dsi-studio.labsolver.org/) via ANTs, shown in 
green arrows in figure 3 (Yeh et al., 2013; Fonov et al., 2011).

Once the displacement profiles were mapped to MNI space, 
a volumetric brain mesh reflecting the transformed model-
predicted displacement profile was constructed and served as 
the basis of the computational domain of the bioelectric model 
(blue block in figure 3). In summary, as patient-specific DTI 
(diffusion tensor imaging) data were not available in this 
retrospective cohort, the process in figure 3 was specifically 
designed to estimate that data using an atlas DTI (HCP 1065 
template, voxel spacing: 1×1×1 mm; image dimension: 
182×218×182) available via FSL (Smith et al., 2004; 
Woolrich et al., 2009; Jenkinson et al., 2012; Glasser et al., 
2013; Sotiropoulos et al., 2013). 

Figure 3. A flowchart of the study: accounting for different shift 
considerations (model- and ANTs- predictions in black block) within the 
bioelectric model (blue block) for VTA estimations in HCP 1021 template 
(grey block), for subsequent examination of tractography (orange block). 
Overall analysis and modeling are performed in MNI space achieved by co-
registration of T1 weighted images via ANTs (represented in green arrows).
 Once mapped, the effects of anisotropic and heterogenous 
conductive modeling environments are incorporated. While a 
limitation, as utilization of the atlas does not allow for a 
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patient-specific assessment of change, this does allow for a 
realistic and reasonable approximation of that change.

Figure 4. A patient-specific bioelectric model representing deformed patient 
anatomy (noting asymmetric shift in the left frontal lobe) with reconstructed 
electrode leads incorporated. Contact 1 is shown as the active contact in red, 
while other contacts are shown in black. 

To complete the computational domain, DBS leads were 
reconstructed: the transformed end point and trajectory (PANTs 
and Pmodel) were used in addition to the known manufacturer 
specifications of Medtronic 3389 (Medtronic Inc., 
Minneapolis, MN, USA). DBS electrodes were reconstructed 
and incorporated into the model above. In addition, to account 
for tissue encapsulation effect, another sub-domain around the 
electrode contact with the thickness of 0.5 mm was introduced 
and assigned a conductivity of 0.1 S/m (Butson et al., 2006; 
Butson and McIntyre, 2008). For mesh generation, a Free 
Tetrahedral operation was performed using COMSOL 
Multiphysics (version. 5.4, COMSOL AB, Stockholm, 
Sweden). Specifically, the element size for the brain domain 
was calibrated for general physics with predefined size of 
normal; electrode contacts and the encapsulation layer were 
given the element size of extra fine. Furthermore, an 
additional mesh refinement was performed for the domains 
around electrode contacts where the number of refinements 
was set to two. The node number for the 18 meshes generated 
(2 deformation possibilities and 1 undeformed state for 6 
patients) is ~ 66,654 ± 12,991.  

An example of the constructed bioelectric finite element 
mesh model representing deformed patient anatomy (with 
asymmetric shift in the left frontal lobe) with reconstructed 
electrode leads (active contact 1 is shown as red and other 
contacts are shown in black) is demonstrated in figure 4 and is 
represented in the blue block in figure 1 and figure 3. 

Lastly, with transformed displacement profiles via model 
and ANTs, locations of reconstructed electrode leads could be 
adjusted accordingly within the bioelectric model for 
simulation.

2.5 Volume of tissue activation and tractography

To better understand the bioelectrical behavior near the 

electrode contacts, a regular grid of 20 × 20 × 20 mm 
(Anderson et al., 2018; Anderson et al., 2019) was defined 
with the active contact (here contact 1 was active while the 
brain surface served as the ground) as the centroid. Along each 
dimension of the grid, 200 evenly distributed grid points were 
examined for a total of 8,000,000 points. The stimulation 
configuration in this study was monopolar current stimulation 
at 3 mA (Butson and McIntyre, 2005). The electric potential 
profile from the bioelectric model was then used to estimate 
the VTA, which was based on an isolevel of 0.2 V/mm 
(Astrom et al., 2015; Alonso et al., 2018). Subsequently 
deterministic tractography as well as fiber trimming were 
performed in DSI Studio (Yeh et al., 2013) with the estimated 
VTA as the ROI (region of interest). Here the parameters used 
were default quantitative anisotropy (qa) threshold, angular 
threshold of 60°, step size 0.5 mm, smoothing parameter 0.2, 
length 20.0–200.0 mm, and fiber count of 5,000 with an 
additional termination consideration of seed count of 500,000 
(Luo et al., 2019; Yeh et al., 2013). 

The estimation of VTA and tractography were completed 
in three different configurations of lead reconstructions as 
noted in the previous section: without shift consideration, with 
shift consideration via model prediction, and with shift 
consideration via ANTs prediction.

2.6 Assessing shift impact on neural pathway

Once tractography was estimated in each of the three 
configurations described in the previous section, tract volume 
outputted by DSI Studio was directly compared as well as in 
terms of relative percent change in an effort to assess the 
differences due to brain shift. 

Furthermore, to probe potential impacts on motor functions, 
volumetric overlap between predicted fiber bundles and 
regions associated with motor functions (i.e. precentral and 
postcentral gyri, available through AAL2 (Rolls et al., 2015) 
provided in DSI Studio) was computed. The differences due 
to brain shift were calculated using the configuration of 
without shift as the baseline and were related to estimated shift 
measurements. 

Connectivity matrix was obtained using the parcellation 
atlas of AAL2 (Rolls et al., 2015) counting the number of 
tracts that end in defined regions with the default threshold. 
Using the connectivity profile without shift consideration as 
the baseline, comparative changes in each shift-considered 
connectivity matrix were calculated and further examined. 

In order to correlate target region shift or bulk tissue 
movement at deep brain target reported in (Luo et al., 2020) 
with changes in neural pathway prediction, the fiber bundles 
were converted into a binary mask image and transformed to 
patient space. To compute the similarity between two fiber 
bundles, specifically with and without shift consideration 
(recall for comparison, shift consideration is provided via two 
configurations: model prediction or ANTs prediction), the 
Jaccard index (Kosub, 2019), or Intersection over Union 
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(IoU), was used as a metric. Jaccard index is defined as 
follows (Kosub, 2019):

         J(A,B) = 𝑑𝑒𝑓
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

where A and B are two finite sets, or here the mask images 
representing the predicted fiber bundles of interest, and J is the 
Jaccard index. In this study, the Jaccard index is also referred 
to as the volumetric overlap as it measures similarity between 
two sets of fiber bundle of interest: ranging from 0 to 100%, 
higher percentage presents a greater degree of similarity 
between two sets. It should be noted that while metrics were 
examined within the context of each shift prediction method, 
i.e. model and ANTs, the results were also combined to assess 
the overall impact of reasonable shift estimations provided by 
two distinct methods. 

3. Results

3.1 Estimated shift at deep brain target

Estimated brain shifts using the biophysics-based model 
approach and ANTs are reproduced from (Luo et al., 2020) in 
table 1. The results in table 1 represent an understanding of 
bulk tissue movement at deep brain target region and are 
leveraged later as a variable in the correlation study where the 
impact of brain shift on recruited pathway is assessed. 

Overall, the average bulk tissue movement at deep brain 
target region predicted by the model is 1.2 ± 0.9 mm and 
ANTs is 1.4 ± 0.7 mm. The findings in (Luo et al., 2020)  
stated that with respect to model and ANT prediction 
comparisons in areas with high feature image contrast, ANTs 
outperformed the model-based approach at designated tissue 
feature targets. However, this result was expected given the 
distinct difference in the density of data driving the two 
registration methods (i.e. ANTs uses full volumetric intensity 
data, while the model uses a sparse set of surface and 
subsurface points). With respect to deep brain targets, the 
improved performance was not nearly as certain as tissue 
feature intensity contrast is not as profound  (Luo et al., 2020). 
Nevertheless, despite differences, the previous study revealed 
that each provided a viable shift at the deep brain target region, 
which provides credence to estimating the impact of these 
shifts on neural pathway recruitment analyzed herein. 
 Table 1. Estimated shift at deep brain target region. 

Right Implant (mm) Left Implant (mm)

Case # Model ANTs Model ANTs

1 3.2 2.5 * *

2 0.4 0.5 2.0 1.2

3 1.1 1.1 0.3 1.4

4 0.2 0.6 1.6 2.7

5 1.8 1.3 0.5 1.0

6 0.5 1.2 1.8 1.6

Average 1.2 ± 1.1 1.2 ± 0.7 1.2 ± 0.8 1.6 ± 0.7

*indicates a unilateral implant

3.2 VTA estimation 

VTA estimation (in purple) is illustrated in figure 5, using 
contact 1 shown in red superimposed with patient MR in the 
HCP 1021 template space with zoomed perspective. 

Figure 5. (a) VTA estimation (purple) superimposed with patient 
MR in HCP 1021 template space. VTA is due to activation of 
contact 1 (shown in red). (b) Zoomed perspective. 
 

3.3 Tractography prediction 

An example of predicted tractography due to estimated 
VTAs resulted from activation of both implants is shown in 
figure 6(a). An example of the difference in predicted 
tractography due to different reconstructed DBS leads as a 
result of shift consideration is shown in figure 6(b), where blue 
represents tractography due to reconstructed electrode leads 
without shift consideration, and red represents leads with 
model-predicted shift consideration. 

An examination of tract volume outputted by DSI Studio 
illustrates the potential impact of shift, which is reported in 
table 2 (columns 2 and 3). Furthermore, percent change from 
shift-considered tracts to their counterparts without shift 
consideration was computed, shown in table 2 (columns 4 and 
5). 

Analyzing changes in tract volume further, figure 7(a) 
demonstrates its strong relation with estimated shift: (1) 
Pearson correlation coefficient (CC) was computed where R = 
0.70, 0.83 and 0.67 for absolute difference in tract volume for 
model prediction, ANTs prediction, and combined data, 
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respectively; (2) for thoroughness, similarly Spearman’s rank 
CC was also computed where 𝝆 = 0.91, 0.60 and 0.80, 
respectively for model, ANTs, and combined data, thus both 
indicating the strong correlative impact of shift. 

Figure 6. (a) Predicted tractography due to estimated VTAs from 
neuromodulation of left and right implants. (b) Comparison of tracts 
without shift consideration (red) and with model-predicted shift 
consideration (blue).
 Since one objective of this study is to assess a possible 
threshold where tractography output (e.g. tract volume) may 
be impacted considerably by brain shift, here the combined 
data points in figure 7(a) were partitioned into 2 regions to 
determine such delineation. Specifically, the data points were 
divided into 2 cluster regions via k-means, shown in figure 
7(b) in pink and blue; interestingly the partition occurred as 
shift approached ~2 mm and change in volume approached 
~2485 mm3. 

Figure 7. Absolute difference in tract volume vs. estimated shift at deep 
brain target region. (a) Data points associated with model prediction shown 
in black and ANTs in red. Pearson and Spearman’s CCs for configurations 
of model, ANTs, and combined data are also shown, all indicting the 
impact of shift on tract statistics from baseline without shift consideration. 
(b) The same data points in (a) are partitioned into two cluster regions via 
k-means shown in blue and pink, indicating two distinct clusters as shift 
approaches ~ 2 mm and change in volume approaches ~2485 mm3.

Table 2. Tract volume for right and left implants for each case with 
reconstructed electrode leads under different shift considerations.

Tract volume (mm3)

Without shift considered
With model shift considered
With ANTs shift considered

Tract volume
percent change (%)

Model
ANTs

Case # Right 
Implant

Left 
implant

Right 
implant

Left 
implant

1
10320
14058
13265

* 26.59
22.20 *

2
10194
8327
9818

616
8611
1855

22.42
3.83

92.85
66.79

3
9253
10037
10177

10160
9850
10353

7.81
9.08

3.15
1.86

4
10624
10515
10482

9938
7895
6543

1.04
1.35

25.88
51.89

5
10963
7342
8996

7385
7141
8256

49.32
21.87

3.42
10.55

6
10374
10978
8442

9857
7012
9249

5.50
22.89

40.57
6.57

Average - - 18.78
13.54

33.17
27.53

*indicates a unilateral implant

In addition to tract volume, the volumetric overlap between 
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predicted fiber bundles and regions associated with motor 
functions, specifically precentral (in orange) and postcentral 
gyri (in cyan) shown in figure 8(a), was examined. Here the 
absolute difference in volumetric overlap of two different 
configurations (no shift vs. model-predicted shift, and no shift 
vs. ANTs-predicted shift) were computed and summarized in 
table 3. Figure 8(b) correlates the combined data of the 
absolute differences in motor ROI volumetric overlap with 
estimate target shift in table 1. The results suggest the 
correlative impact of shift on change of fiber bundles’ overlap 
associated with motor regions (via Pearson CC as R = 0.53). 
Table 3. Absolute change in volume overlap between predicted fiber 
bundles and motor regions of precentral and postcentral gyri.

Overlapping volume difference (mm3)

No shift vs. model-predicted shift
No shift vs. ANTs-predicted shift

Case # Right 
implant

Left
implant

1 208
421 *

2 235
115

151
151

3 115
206

87
374

4 0
0

372
397

5 847
246

17
278

6 190
75

212
392

*indicates a unilateral implant

3.4 Volumetric overlap (Jaccard Index) 

For each patient, the recruited pathway due to implants 
without shift consideration and its counterpart with shift 
consideration (model or ANTs) are compared for similarity 
via the Jaccard index or volumetric overlap. Here, when 
comparing two fiber bundles/sets in table 4, the combined set 
of two bundles is considered at 100%, and (i) the subset that 
is unique to the pathway from without shift consideration is 
labeled as “Unshifted-unique volume fraction” in table 4. (ii) 
Similarly, the subset that is unique to the pathway with shift 
consideration is labeled as “Shifted-unique volume fraction.” 
(iii) Lastly, the shared component of the two sets is labeled as 
“Volumetric overlap,” effectively representing the Jaccard 
index. This relationship of the three components of interest is 
further illustrated in the Venn diagram in table 4. 

Results for each patient are summarize in table 4, where 
volumetric overlap (Jaccard index) is shown in column 5 
(model) and column 8 (ANTs), recall differences in 
displacement profile for model and ANTs predictions. 
Moreover, the volumetric overlap is plotted with 
corresponding shift estimation in figure 9. A linear regression 
was performed with Pearson CC (in figure 9), with model-
prediction (red) and ANTs-prediction (blue) separately 
considered, as well as together. 

Here the Pearson CCs were R=-0.88, -0.78 and -0.83 for 
volumetric overlap resulted from model-prediction, ANTs 
prediction and combined data, respectively. Moreover, the 
thresholds at which the estimated volumetric overlap became 
0%, i.e. the inverse of the slope in the linear regression shown 
in figure 9 are 3.02, 2.87, and 2.94 mm, respectively for 
model-prediction, ANTs prediction and combined data.

Figure 8. (a) Predicted fiber tracts shown with precentral (orange) and 
postcentral (cyan) gyri. (b) Absolute change in volumetric overlap with 
motor regions (no-shift consideration as the baseline) analyzed with 
estimated shift at target region, suggesting the impact of brain shift, i.e. 
deviation from surgical plan. 
 

3.5 Connectivity profile

Using the multi-physics models and fiber tract recruitment 
strategies in the previous sections, a connectivity matrix can 
be determined via DSI Studio with respect to precentral and 
postcentral gyri, considered to contribute to motor response in 
DBS (Accolla et al., 2016; Younce et al., 2019). Structural 
connectivity change within the context of model- and ANTs- 
based predictions was computed. This connectivity profile 
that represents changes from baseline to its shifted counterpart 
normalized in a connectogram (Kassebaum, Retrieved March 

Page 8 of 13AUTHOR SUBMITTED MANUSCRIPT - JNE-104111.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX Author et al 

9

22, 2020.  ) is illustrated in figure 10.  The width of the line 
represents the strength of change. The details describing 
regions in the parcellation atlas of AAL2 in figure 10 can be 
found in (Rolls et al., 2015).

Figure 9. Volumetric overlap vs. estimated shift at deep brain target region. 
Prediction via model-based approach in red; prediction via ANTs in blue. 
Linear regression is performed with Pearson CC for model (red), ANTs 
(blue) and combined data (black). 
 

4. Discussion

An analysis on the impact of intraoperative brain shift, 
derived from pMR and iMR imaging data, on fiber tract 
recruitment was conducted using a multi- physics FE 
modeling approach. When this framework was applied to 6 

patients with pMR and iMR data, a critical threshold was 
characterized where deviation from the intended target could 
potentially result in sharp decreases in efficacy. It was 
determined that a strong linear relation exists between the 
deviation from intended target and changes in intended neural 
pathway activation with Pearson CC of -0.83. With respect to 
the degradation of activation, figure 9 predicts that at a target 
error of ~2.94 mm, all intended activation would be affected. 
This threshold, determined via realistic shift estimated from 
two different shift prediction methods (biophysics-modeling 
and ANTs), provides quantitative evidence supporting 

Table 4. Volumetric distribution of fiber bundles: overlap, and with shift considered (i.e. shifted-unique volume fraction) via model or ANTs and without shift 
consideration (i.e. unshifted-unique volume fraction). A Venn diagram is provided to further illustrate the three components of interest summarized in table 4 
and their relations. 

With model-predicted shift profile With ANTs-predicted shift profile

Case # Implant 
description

Shifted-unique 
volume fraction 

(%)

Unshifted-
unique volume 

fraction (%)

Volumetric 
overlap

(%)

Shifted-unique 
volume fraction 

(%)

Unshifted-
unique volume 

fraction (%)

Volumetric 
overlap 

(%)

1
Right implant 33.04 50.49 16.48 38.00 52.28 9.72
Left implant * * * * * *

2
Right implant 23.80 5.56 70.64 6.86 3.59 89.55
Left implant 9.35 90.62 0.03 30.43 68.08 1.49

3
Right implant 9.67 17.53 72.80 5.95 15.94 78.11
Left implant 13.07 8.52 78.41 26.74 26.14 47.12

4
Right implant 0.69 0.06 99.24 1.12 0.04 98.84
Left implant 38.98 21.30 39.72 56.58 31.77 11.65

5
Right implant 40.92 10.63 48.45 31.66 21.53 46.81
Left implant 6.46 3.41 90.13 8.37 16.30 75.32

6
Right implant 6.76 11.35 81.89 21.17 9.29 69.54
Left implant 45.61 20.47 33.92 25.58 18.89 55.54

*indicates a unilateral implant

Figure 10. Connectivity change of shift-considered connectivity 
matrices from without shift consideration with respect to precentral 
and postcentral gyri, where line width represents the extent of change. 
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previous observations that deviation/misplacement of ~2-3 
mm may introduce inadequate treatment or poor outcome. 
While these conventional thresholds have been noted, to our 
knowledge the linear relationship found in figure 9 is quite 
profound in that it estimates an approximate 34% degradation 
in intended intentional functional activation per 1 mm of 
targeting error in electrode positioning. It should also be noted 
that in data not reported here, activation of remaining contacts 
(i.e. contact 0, 2 and 3) were also examined and yielded similar 
trends to that of contact 1. As a comparator, equivalent 
Pearson CCs of -0.82, -0.92 and -0.94 were calculated for 
active contacts 0, 2 and 3, respectively. In addition, the 
estimated threshold at which intended activation degrades to 
0%, was 3.10, 2.75 and 2.61 mm for active contacts 0, 2 and 
3, respectively. Given limitations and errors associated with 
data processing and modeling that will be discussed later, this 
estimation ranging from 2.61 to 3.10 mm at which intended 
neural pathway recruitment is lost is remarkably consistent 
with experiences in the literature. For example, in Kremer et 
al., an intraoperative CT (iCT) system was employed to verify 
lead placement, lead repositioning was deemed necessary if 
misplacement error of greater than 2 mm from intended target 
was detected (Kremer et al., 2019). 

In addition to the volumetric overlap metric, it is important 
to note the changes induced by brain shift on other metrics: (i) 
For tract volume in table 2, the average relative change of tract 
volume can be up to 33.2%. Furthermore, when correlation 
between absolute difference in volume and estimated deep 
brain target region shift was examined among conditions 
without and with shift considerations, correlative impact of 
shift on tract volume was observed and is shown in figure 7. 
For tract volume, specifically for Pearson CC, R = 0.67 for the 
combined data points and for Spearman’s rank CC, 𝝆 = 0.80. 
(ii) For overlapping volume with motor regions in table 3, 
correlative impact of shift on changes of the overlapping 
volume was examined and a moderate Pearson CC of R = 0.53 
was determined in figure 8. (iii) Moreover, figure 10 illustrates 
the changes in connectivity profile due to shift (model and 
ANTs) with respect to precentral and postcentral gyri. A 
notable connection alteration between configurations with and 
without shift consideration is the cerebellum. Recent studies 
have shown that in addition to basal ganglia (including STN), 
cerebellum may have functional implications on 
pathophysiology of PD such as motor learning (Marcelino et 
al., 2019; Wu and Hallett, 2013; Sweet et al., 2014). Such 
connectivity alteration to cerebellum with its potential 
therapeutic implications further illustrate the need to account 
for brain shift in electrode placement and stimulation. 

However, it is important to note several limitations of the 
study. First, additional considerations for stimulation 
modeling are desired. While considering nature of the medium 
with current or voltage input, the model here only evaluates 
purely conductive medium without considering frequency-
dependency of both the capacitive effects in the medium and 
stimulus waveform utilized clinically. As noted by Butson et 

al., the approach taken here may overestimate VTA where 
error may be attributed to stimulation pulse width and 
electrode capacitance (Butson et al., 2005). Fourier FEM 
(finite element modeling) should be considered in the future 
to account for frequency-dependence of stimulus waveform as 
well as capacitive effects of the computational medium 
(Butson et al., 2005; Howell and McIntyre, 2016b). Lastly, we 
would like to acknowledge that the simple linear relation used 
for obtaining conductivity properties from diffusion tensor can 
be improved. Studies (Wu et al., 2018; Nordin et al., 2021) 
have observed some impacts/deficiencies in the relation 
derived by (Tuch et al., 2001): e.g. (Wu et al., 2018) noted that 
it is based on effective medium theory and does not directly 
and adequately account for the impact of the structures and 
natures of the brain tissues. Therefore, more sophisticated 
methods such as in (Howell and McIntyre, 2016a; Schmidt 
and Rienen, 2012) relating diffusion tensor to the conductivity 
tensor can further improve and refine the establishment of the 
anisotropic and heterogenous medium. Nevertheless, while 
important, as the purpose of this study was to demonstrate 
relative changes, the work reported has considerable 
independent value. 

A second limitation is with respect to the estimation of 
VTA. A number of methods reviewed in Gunalan et al. have 
been proposed to obtain VTA or to estimate neural responses 
due to stimulation (Gunalan et al., 2018). The VTA estimation 
similar to Astrom et al. and Alonso et al. (Astrom et al., 2015; 
Alonso et al., 2018) was selected here for its computational 
efficiency in this initial analysis. However, it is recognized 
that VTA-based method has limitations noted by (Gunalan et 
al., 2018), particularly with bipolar and multipolar stimulation 
conditions (Duffley et al., 2019). Field-cable (FC) model, i.e. 
multi-compartment cable models of axons in the NEURON 
modeling environment, considered the gold standard, would 
provide better estimation of neural activation (Gunalan et al., 
2018; McNeal, 1976; McIntyre and Foutz, 2013; Sweet et al., 
2016; Howell and McIntyre, 2016b; McIntyre, 2018). In 
particular, impact and sensitivity of fiber orientation on 
functional outcome of DBS therapy could be further 
considered, similar to in (Lehto et al., 2017; Slopsema et al., 
2021) where functional MRI (fMRI) was leveraged. The 
approach of leveraging NEURON modeling environment as 
well as accounting for fiber orientation where pathway 
activation percentage can be assessed should be a part of 
further retrospective analysis on the impact of shift on neural 
pathway recruitment (Gunalan et al., 2018; Duffley et al., 
2019; Anderson et al., 2019; Lehto et al., 2017; Slopsema et 
al., 2021). 

Another limitation of the study is the lack of patient-
specific diffusion weighted imaging (DWI) data, which 
necessitated a number of registrations performed here to the 
population-averaged template space (indicated by the green 
arrows in figure 3), which could contribute to potential 
registration bias. Specifically, given the pathology of the 
patients in this study, they may deviate from healthy DWI on 
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a patient level due to possible atrophy from disease duration. 
However, a recent report examined the connectivity analysis 
via patient specific information vs. normative atlases, the latter 
being the approach taken in this work, and found that while 
not interchangeable, the connectivity profiles produced by 
each method can yield similar conclusions with respect to 
clinical outcome (Wang et al., 2020). This does provide some 
credence to the overall conclusions drawn in this study with 
the use of the population-averaged template. Nevertheless, 
this comparison report described above (Wang et al., 2020) 
does note that, while results are not statistically significant, 
patient-specific information may lead to slightly better 
prediction of clinical outcomes. Therefore, future work will 
involve the acquisition of patient-specific DWI and conduct a 
similar comparison study to extend the findings of this study.

Moreover, for future directions, there are two possibilities 
to consider: (1) for shift assessment, a better understanding 
with final lead position via postop imaging data could provide 
further data points, in addition to intraoperative brain shift, of 
the impact of shift on clinical outcome in a longitudinal 
manner, similar to a promising study recently conducted by 
(Goransson et al.); (2) clinical effects, instead of simulated 
tractography, would be preferred and desired. 

Despite the limitations outlined above, the experimental 
design reported provides a consistent and identical modeling 
environment for all simulations within this comparison study.   
In this context, similar estimation errors and limitations (i.e. 
registration, localization, shift measurements, etc.) are present 
and expected among all groups; thus, the overall conclusions 
regarding the impact of brain shift on neural pathway 
recruitment, while not absolute, do become informative rather 
than definitive.

5. Conclusion

A retrospective analysis was performed to assess the impact 
of brain shift on DBS functional outcome as evaluated by 
tractography. The analysis leverages a multi-physics 
biomechanical and bioelectric modeling framework. The 
former provides realistic intraoperative brain shift estimation, 
and the latter is used to predict electric potential. The potential 
solution profile is subsequently used to estimate VTA and 
predict the recruitment of neural pathways. With the 
application of this analysis framework to the preop- and 
intraop- imaging data of six patients, shift consideration at 
deep brain target region is demonstrated to introduce 
differences in tract volume, motor ROI volumetric overlap, as 
well as connectivity profile. A strongly negative correlation is 
found between deviation from intended target and recruitment 
of neural pathways, where a threshold average of ~2.85 mm 
across all lead electrodes is determined to critically degrade 
intended neural pathway recruitment. In addition, an estimate 
of the rate of intended neural pathway recruitment degradation 
as a function of target error was determined, i.e. an 
approximate 34% degradation in neural recruitment for every 

1 mm in electrode positioning error. This finding provides 
quantitative evidence to support literature reports that 
deviations of 2-3 mm from intended target produces poor or 
inadequate clinical outcomes. This is important as such 
deviations can result in lead position revision or removal 
altogether. Finally, while the framework provided has served 
as an analysis tool for data taken intraoperatively, the fidelity 
of the results does provide an exciting prospect for the use of 
multi-physics models as an inexpensive planning, guidance, 
and delivery platform for DBS therapy.
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