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While gliomas have been extensively modelled with a reaction–diffusion (RD)

type equation it is most likely an oversimplification. In this study, three

mathematical models of glioma growth are developed and systematically

investigated to establish a framework for accurate prediction of changes

in tumour volume as well as intra-tumoural heterogeneity. Tumour cell

movement was described by coupling movement to tissue stress, leading to

a mechanically coupled (MC) RD model. Intra-tumour heterogeneity was

described by including a voxel-specific carrying capacity (CC) to the RD

model. The MC and CC models were also combined in a third model.

To evaluate these models, rats (n ¼ 14) with C6 gliomas were imaged with

diffusion-weighted magnetic resonance imaging over 10 days to estimate

tumour cellularity. Model parameters were estimated from the first three ima-

ging time points and then used to predict tumour growth at the remaining

time points which were then directly compared to experimental data. The

results in this work demonstrate that mechanical–biological effects are a

necessary component of brain tissue tumour modelling efforts. The results

are suggestive that a variable tissue carrying capacity is a needed model com-

ponent to capture tumour heterogeneity. Lastly, the results advocate the need

for additional effort towards capturing tumour-to-tissue infiltration.
1. Introduction
A fundamental challenge in the care of cancer patients is the limitation of standard

radiographic measurements to accurately evaluate patient response and capture

tumour growth kinetics. Biophysical models that incorporate patient-specific

measurements may be able to address this challenge by providing accurate

predictions of tumour growth and treatment response through which clinical

care can be guided [1]. We [2–7] and others [8–12] have proposed that a practical

way forward is to initialize and constrain predictive models via imaging data that

can be acquired non-invasively, in three dimensions, and at numerous time

points. Examples of such data include magnetic resonance imaging (MRI) or

positron emission tomography measurements that are routinely available and

can characterize tumour vascularity and perfusion [13,14], tumour cellularity

[15], metabolism [16] and hypoxia [17]. Towards this effort we are developing

biophysical models that are parametrized from a subject’s own imaging

measurements and evaluating them in a pre-clinical model of glioma.

A common predictive model in the mathematical analysis of tumours is a

reaction–diffusion (RD) model which describes the proliferation (reaction)

and movement (diffusion) of tumour cells. Several groups have investigated
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neoplastic growth using variations of this model in several

organ sites (brain [2,8,10,11,18], breast [4,5] and pancreas

[19]). In the pre-clinical setting, we have previously used

MRI data collected at three time points to estimate rat-specific

diffusion and proliferation parameters which were then used

to predict the in vivo spatio-temporal evolution of the tumour.

These predictions were then directly compared to experimen-

tal MRI data collected at future time points. We previously

observed [2] the RD model incompletely described in vivo
C6 glioma growth at both the global (high error in tumour

volume, low agreement in tumour shape) and local (high

error in voxel cell number) levels. In this study, we seek to

modify the standard RD model to improve the accuracy of

predictions at both the global and local levels.

One possibility for the high global level errors is the assump-

tion that the diffusion coefficient is constant in time. In the RD

model, tumour growth is restricted only by the bounds of the

simulation domain (e.g. the skull in the case of a rat glioma)

and not inhibited by the surrounding brain tissue. However,

the force exerted by the surrounding tissue [20] during tumour

expansion is a critical biological interaction that can alter

both tumour expansion [21] and shape [22]. This mechanical–

biological interaction between the tumour mass and surrounding

tissue mass has been previously incorporated into modelling

brain [10,11,18,23], breast [4,5], kidney [24] and pancreatic

[9,19] cancer. Here, we apply it to modelling in vivo C6 glioma

growth using a mechanically coupled (MC) RD model.

Similarly, the high local level errors observed in vivo are a

result of fundamental limitations of the standard RD model

at describing intra-tumoural heterogeneity. More specifically,

with a temporally constant proliferation rate and carrying

capacity the cell number will saturate at steady state within

the tumour resulting in a homogeneous distribution of

tumour cells. The limitation of temporally constant prolifer-

ation can be addressed by incorporating additional equations

or terms into the RD model that result in cell death or alteration

of their proliferation status [25,26]. However, parametrizing

these models on a subject-specific basis is challenging as they

often have many free parameters that must be assigned in

some reasonable way. Heterogeneity in cell density can also

be obtained through spatially varying the carrying capacity

which may occur due to physical limitations (e.g. decrease in

available space to grow) and environmental limitations

(e.g. poorly perfused, low nutrient concentration). The physical

limitations on growth can be incorporated through the use of

imaging measurements which can provide estimates of the

vascular and extracellular–extravascular volume fractions

[27]. Similarly, models that incorporate vascular growth or

remodelling [28] can also account for these spatial variations

in carrying capacity. In this work, we investigate a simplified

alternative to these approaches to build in heterogeneity by

linking the physical and environmental limitations on carrying

capacity to a single lumped model parameter which can be

estimated throughout the tumour from data observations

(this model is termed the carrying capacity RD model, or CC).

In this contribution, we seek to evaluate the ability of the MC,

CC and MC–CC (the combination of the MC and CC models)

models to predict future tumour growth. Using serial diffusion-

weighted MRI (DW-MRI) data acquired in a murine glioma

model, we first estimate rat-specific model parameters to initialize

and constrain the RD, MC, CC and MC–CC models for predict-

ing the spatio-temporal tumour evolution. Model predictions are

then directly compared to the future MRI measurements.
2. Theory
2.1. Reaction – diffusion model
The RD model, equation (2.1), describes the change in the

distribution and number of tumour cells due to the random

movement of tumourcells (diffusion) and proliferation (reaction):

@Nð�x, tÞ
@t

¼ r � [Dð�xÞrNð�x, tÞ]þ kð�xÞNð�x, tÞ

� 1� Nð�x, tÞ
u

� �� �
, ð2:1Þ

where Nð�x, tÞ is the number of cells at three-dimensional

position �x and time t, Dð�xÞ is the cell diffusion coefficient at pos-

ition �x, u is the cellular carrying capacity (i.e. the maximum

number of cells a region can support), kð�xÞ is the tumour cell

proliferation rate, and �x indicates the three-dimensional Carte-

sian coordinates (x, y, z). Measurements from DW-MRI are

used to provide estimates of Nð�x, tÞ or Nmeasð�x, tÞ at several

time points [2,29]. These Nmeasð�x, tÞ are then used to solve an

inverse problem of estimating model parameters P for equation

(2.1). For the RD model P (PRD) includes voxel-wise values of

kð�xÞ and two global Dð�xÞ parameters, one for all voxels

within the white matter (Dw) and one for all voxels within the

grey matter (Dg). A three dimensions in space (Dx ¼ 250 mm,

Dy ¼ 250 mm, Dz ¼ 1000 mm), fully explicit in time (time

step ¼ 0.01 days) finite difference (FD) simulation is used to

solve the forward problem of equation (2.1) written in Matlab

(Mathworks, Natick, MA, USA). Nð�x, tÞ has no diffusive flux

at the brain tissue boundaries (Neumann boundary condition).

2.2. Mechanically coupled model
To address the high global level errors produced by the RD [2]

model, a MC RD model [4,5,18] will be used. The MC model is

based on observations that the growth of tumour spheroids

is inhibited as the stiffness of the embedded matrix increases [21].

Furthermore, as the tumour volume expands the tumour

induces significant mechanical stress on the surrounding tissue

[30] resulting in a mass effect. Thus, as the tumour expands

there is an increasing amount of mechanical stress which can

restrict further expansion by the tumour. These biophysical

effects are incorporated in the MC model by altering equation

(2.1) to incorporate a diffusion coefficient, equation (2.2), that is

spatially and temporally variant in response to local tissue stress:

Dð�x, tÞ ¼ D0 � e�l1�svmð�x, tÞ, ð2:2Þ

where D0 represents tumour cell diffusion in the absence of

mechanical restrictions, l1 is an empirically derived stress-

tumour cell diffusion coupling constant, and svmð�x, tÞ is the

von Mises stress [4,5,7,18]. A single value of D0 is used to

describe tumour cell diffusion in the absence of mechanical

restrictions. We assume that the mechanical environment (and

the variations in local mechanical properties) is what primarily

drives the local diffusion of tumour cells, and thus the variations

in tumour shape. As the local von Mises stress increases, tumour

cell movement will be inhibited by a decrease in the tumour cell

diffusion coefficient, Dð�x, tÞ. svmð�x, tÞ is determined by calculat-

ing the tissue displacement (uQ) caused by the growing tumour.

The following equation, which is the linear elastic isotropic

mechanical equilibrium equation with an expansion force

related to Nð�x, tÞ, is used to solve for uQ:

r � Gr uQ þr G
1� 2v

(r � uQ)� l2rNð�x, tÞ ¼ 0, ð2:3Þ
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Figure 1. The panels depict a single iteration of the MC tumour model. The
current values of Dð�x, tÞ, Nmodelð�x, tÞ and kð�xÞ are used in a finite difference
simulation, step 1, of equation (2.1). The updated Nmodelð�x, tÞ is then used to
calculaterNð�x, tÞ, step 2. Using G, n, l2 and rNð�x, tÞ equation (2.4) is
solved for uQ (step 3). uQ is then used to calculate the normal shear and stres-
ses, step 4, in order to calculate svmð�x, tÞ. Dð�x, tÞ is then updated, step 5,
using svmð�x, tÞ in equation (2.2). (Online version in colour.)
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where G is the shear modulus, n is Poisson’s ratio, and l2 rep-

resents a tumour cell force coupling constant. Equation (2.3)

is solved using the FD method. Briefly, equation (2.3) is re-

arranged into a matrix description of the system shown in

the following:

Mu ¼ l2rN, ð2:4Þ

where M represents the known FD coefficients from equation

(2.3), u is a vector representing the unknown tissue

displacement in the x-, y- and z-directions, and rN is a vector

containing the known gradient of N in the x-, y- and z-directions.

M is a square 3n � 3n coefficient matrix where n is the number of

nodes. This is solved using an iterative approach (Matlab’s

bicgstab function) using an incomplete LU decomposition of M
as a preconditioner. M is built once at the beginning of the simu-

lation, while rN is updated for each iteration. Boundary

conditions were prescribed with no tissue displacement in the

normal direction of the boundary, while tissue in the tangential

directions was free to move (i.e. slip condition). U is then used to

calculate the local normal and shear stresses (s) that are used to

calculate the three-dimensional spatial distribution of the Von

Mises stress, svmð�x, tÞ, using the following equation:

svm ¼
h

1
2ððsxx � syyÞ2 þ ðsxx � szzÞ2 þ ðszz � syyÞ2

þ 6ðs2
yx þ s2

yz þ s2
xzÞÞ
i1=2

: ð2:5Þ

The estimated parameter set, P, for the MC (PMC) model

includes voxel-wise kð�xÞ and one D0 value. PMC is estimated

using the same approach as for the RD model. Poisson’s ratio

was set at 0.45, while G was assigned region-wise (i.e.

cortex ¼ 418 Pa, corpus callosum ¼ 238 Pa, hippocampus ¼

466 Pa, thalamus ¼ 383 Pa, putamen¼ 275 Pa) [31,32]. l2

was assigned to 1. Figure 1 shows how the MC model,

equations (2.2)–(2.5), spatially and temporally adjusts

tumour cell diffusion. Starting with the current values of

Dð�x, tÞ, Nð�x, tÞ and kð�xÞ the FD implementation of equation

(2.1) is evolved a single time step. Tissue displacement (uQ) is

then calculated using the gradient of the latest distribution of

Nð�x, tÞ via equation (2.3). uQ is then used to calculate svmð�x, tÞ
via equation (2.5), within the simulation domain. The updated

svmð�x, tÞ is then used to calculate a new value of Dð�x, tÞ using

equation (2.2) before starting the next time-iteration.
2.3. Voxel-specific carrying capacity model
Another shortcoming of the RD model is that at steady state it

predicts a homogeneous distribution of tumour cells within the

tumour compared to the heterogeneous distribution observed

in vivo. The in vivo heterogeneous distribution may occur due to

several factors including local space limitations (e.g. variations

in local vascularity or extracellular swelling) and local viability

(e.g. distance to nearby vasculature, amount of available nutri-

ents). One way to incorporate the heterogeneity observed

in vivo is to allow the carrying capacity to vary spatially, effec-

tively lumping geometric and metabolic growth constraints

into a voxel-wise parameter describing the local carrying

capacity. Thus, we amend equation (2.1) to incorporate a

voxel-specific carrying capacity [33]:

@Nð�x, tÞ
@t

¼ r � umaxDð�x, tÞr Nð�x, tÞ
uð�xÞ

� �� �
þ kð�xÞNð�x, tÞ

� 1� Nð�x, tÞ
uð�xÞ

� �� �
, ð2:6Þ

where umax is the maximum number of cells a voxel can phys-

ically support. The voxel-specific carrying capacity, uð�xÞ, alters

both the movement (preferential movement to areas with a

lower packing fraction versus areas of lower cell number) and

proliferation (maximum cell number varies throughout the

tumour) of tumour cells. The estimated parameter set, P, for

the CC (PCC) model includes voxel-wise kð�xÞ, voxel-wise uð�xÞ
and two Dð�xÞ values; one for white matter and one for grey

matter. PCC is estimated using the same approach used for

the RD model. kð�xÞ and uð�xÞ are spatially, but not temporally,

variant. While it is likely that kð�xÞ and uð�xÞ have some temporal

variation as a tumour grows and some error will be incurred as a

consequence, in this preliminary realization, we have chosen to

assess the fidelity of our approach with the assumption of these

parameters being temporally invariant.

2.4. Combined model (MC – CC)
The fourth model amends the RD model to incorporate both

a spatially temporally variant Dð�x, tÞ coupled to local tissue

stress (MC) and a spatially variant uð�xÞ (CC). The estimated

parameter set, P, for the MC–CC (PMC – CC) model includes

voxel-wise kð�xÞ, voxel-wise uð�xÞ and one D0 value.
3. Material and methods
3.1. In vivo experiments
For all imaging and surgical procedures, rats were anaesthetized

with 2% isoflurane in 98% oxygen. Female Wistar rats (n ¼ 14,

236–268 g) were anaesthetized and inoculated intracranially

with C6 glioma cells (1 � 105) via stereotaxic injection. While the

C6 line may not recapitulate all the manifestations of human

glioma, it was selected for its widespread use in neuro-oncology,

pre-clinical evaluation of imaging methods, and mathematical

modelling, as well as its repeatable growth characteristics [34].

A jugular catheter was placed in each rat 8 days after the tumour

inoculation surgery for injection of an MRI contrast agent.

During each MRI procedure, rat body temperature was maintained

near 378C by a flow of warm air directed over the animal and

respiration was monitored using a pneumatic pillow. The first ima-

ging time point occurred 10 days after inoculation surgery. The

imaging measurement time points for each rat are reported in

table 1. DW-MRI, contrast-enhanced MRI (CE-MRI) and T1 maps

were acquired on a 9.4 T horizontal-bore magnet (Agilent, Santa

http://rsif.royalsocietypublishing.org/


Table 1. Animal imaging time points.

rat days post inoculation

1 – 4 10,12,14,15,16,18,20

5 – 6 10,12,14,15,18,20

7 – 9 10,12,14,15,16,18

10 – 13 10,12,14,15,16

14 10,12,14,15

days 10–14

Nmeas (x–, t)

Nmeas (x–, t)

days 14–20

assess
error

no

update P

1

2

3

4

5

yes

ADC

CE-MRI

FD simulation of model
using parameters (P)
from t = 10 to t = 14

are any of
the stopping
criteria met?

FD simulation of model
using parameters (P)
from t = 10 to t = 20

Figure 2. Flow chart for parameter optimization of the tumour models. ADC
values are used to calculate cell number within regions of interested ident-
ified in CE-MRI, step 1. A FD simulation, step 2, is then initialized with
Nmeasð�x, t ¼ 10Þ and an initial guess of P to simulate N at days 12 and
14 (Nmodelð�x, tÞ). The stopping criteria, step 3, are then evaluated. When
the stopping criteria are met, step 4, the optimized P is used in an additional
FD simulation to simulate Nð�x, tÞ at days 10 to 20, step 5, otherwise P is
updated and the optimization continues. (Online version in colour.)
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Clara, CA, USA) using a 38 mm diameter Litz quadrature coil

(Doty Scientific, Columbia, SC, USA). All MR images were

acquired over a 32 � 32 � 16 mm3 field of view sampled with a

128 � 128 � 16 matrix. From the beginning of the second through

the final imaging session, a mutual information based rigid regis-

tration algorithm was used to register the current imaging time

point to the initial imaging session.

DW-MRI was acquired using a pulsed fast spin echo diffusion

sequence with three orthogonal diffusion encoding directions

with b-values of 150, 500 and 1100 s mm22, and D/d ¼ 25/2 ms.

The apparent diffusion coefficient (ADC) was estimated on a

voxel basis using standard methods [35]. Nð�x, tÞwas then estimated

from ADC values [29,36,37] using the following equation:

Nð�x, tÞ ¼ umax
ADCw �ADC( �x, tÞ

ADCw �ADCmin

� �
, ð3:1Þ

where umax represents the maximum tumour cell carrying capacity

for an imaging voxel, ADCw is the ADC of free water at 378C (2.5�
1023 mm2 s21) [35], ADCð�x, tÞ is the ADC value at position �x and

time t, and ADCmin is the minimum ADC value observed within

the tumour regions-of-interest (ROIs) across all animals. We

assume that the ADCmin corresponds to the voxel with the largest

number of cells equal to umax which was calculated using the ima-

ging voxel dimensions, and assuming spherical tumour cells with

a packing density of 0.7405 [38] with an average cell volume of

908 mm3 [39]. In this work, we assume that all changes in ADC

are directly related to changes in tumour cellularity. However,

changes in ADC may also be a result of changes in cell size, cell

permeability, cell tortuosity; we return to this critical point in the

Discussion section.

Tissue T1 was measured using data from an inversion-

recovery snapshot experiment with TR/TE ¼ 5000/3 ms, TI

(inversion time) ¼ (8 TIs logarithmically spaced between 200 and

4000 ms), and two averaged excitations. CE-MRI was acquired

using a spoiled gradient echo sequence with TR/TE ¼ 45/

1.4 ms, two averaged excitations, and a flip angle ¼ 208 collected

before and after the injection of a 200 ml bolus (0.05 mmol kg21)

of Gado-DTPATM (BioPhysics Assay Lab, Worcester, MA, USA).

Tumour ROIs were identified using the difference of the pre-

and post-contrast agent images from CE-MRI. The measured

tumour cell distribution, Nmeasð�x, tÞ, was then calculated within

these ROIs from ADC measurements using equation (3.1). T1

maps were used to define general white and grey matter regions

and to identify the cortex, corpus callosum, hippocampus, thala-

mus and putamen.

3.2. Parameter estimation
The parameter estimation method is shown in figure 2. ADC maps

obtained from DW-MRI are used to provide estimates of Nmeasð�x, tÞ
at several time points (step 1). The optimal parameters were deter-

mined by minimizing the sum squared difference between the

measured and model estimated tumour cell (i.e. the objective func-

tion) using the Levenberg–Marquardt method (steps 2–4). The

optimization process terminated when one of the following
occurs: error in the objective function stagnated (less than 0.5%

change in value between successive iterations), iteration count

reaches 1000, or change in parameter values stagnated (less than

0.5% change in value between successive iterations). A 3 � 3

voxel Gaussian filter was applied to Nmeasð�x, tÞ prior to the start

of the parameter optimization to reduce the effects of noise

within individual voxels. The model parameters were constrained

from 0 to 10 day21 for kð�xÞ, 0:35� umaxð�xÞ to umaxð�xÞ for u, and

5000–500 000 mm2 day21 for Dw, Dg and D0. The estimated

model parameters were within these constraints and did not opti-

mize to the lower or upper constraints. Parameter constraints

were selected based on previous experience [2] and biologically

relevant ranges observed in the literature. The upper constraints

for the diffusion coefficients were used in a Von Neumann stability

analysis [40] to determine the maximum time step for FD simu-

lations to remain monotonic and stable. A single time step of 0.01

day was used for all simulations. kð�xÞ was estimated voxel-wise

within the tumour ROI and assigned 0 elsewhere. Similarly, for

the CC and MC–CC models, uð�xÞ was estimated voxel-wise

within the tumour ROI and assigned the maximum value else-

where. Single values for D0, Dg and Dw were estimated for the

whole brain.

An in silico study was performed for each model to evaluate the

robustness of the parameter optimization approach to measure-

ment noise. Briefly, for each model 250 noisy datasets were

generated by adding random noise from a normal distribution

with a standard deviation based on the repeatability of ADC

measurements [35] (as described in [2]). Model parameters were

then estimated from the noisy datasets and then compared with

the true model parameters used to grow the synthetic datasets.

Model parameter optimization used the Lonestar 5 Cluster at the

Texas Advanced Computing Center (TACC) of the University of

Texas at Austin.

3.3. Forward evaluation and error analysis
After optimization of P for each model, these values were then

used in an FD simulation initialized at day 10 and ‘grown’ to

each rat’s final imaging measurement (figure 2, step 5). The

simulated tumour growth (NRD, NMC, NCC, NMC2CC,) was then

sampled at time points corresponding to the experimentally

acquired imaging time points. As the tumour expanded into

regions where an estimate of kð�xÞ was not obtained, kð�xÞ was

assigned using a local average of available non-zero k’s within

a 3 � 3 � 3 voxel kernel. This approach results in a smooth

http://rsif.royalsocietypublishing.org/


Table 2. Synthetic dataset optimization results. Per cent absolute error in
model parameter means (95% CI).

model parameters RD CC

Dw 2.39 (0.18) 2.19 (0.20)

Dg 2.20 (0.16) 2.26 (0.21)

kð�xÞ 5.55 (0.60) 5.46 (0.62)

uð�xÞ n.a. 1.39 (0.13)

model parameters MC MC – CC

D0 0.74 (0.06) 3.36 (0.23)

kð�xÞ 1.48 (0.20) 6.92 (0.67)

uð�xÞ n.a. 3.44 (0.29)
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proliferation map outside of the estimated region with areas of

predominately high or low proliferation rates moving outwards

as the tumour grows.

Error between predicted and the measured tumour growth

(identified using CE-MRI data) was assessed at the global and

local levels. At the global level, error was assessed by calculating

the per cent error in tumour volume and the average surface dis-

tance (ASD). The ASD is the average minimum distance between

a voxel on the surface of the model predicted tumour volume

and a voxel on the surface of the measured tumour volume.

At the local level, error was assessed by calculating the average

per cent error in cell number, the Pearson correlation coefficient

(PCC), and the concordance correlation coefficient (CCC). Per

cent error in tumour volume was used to assess the error in

volume estimates, while the agreement between ROI shapes was

assessed using the ASD. The per cent error in tumour volume

was computed for each model by comparing the predicted

tumour volume to the measured tumour volume on days 15–20.

Similarly, the predicted tumour ROIs on days 15–20 were

compared to the measured tumour volume on the same days to

compute the ASD. The error at the local level was assessed at

days 15–20 by calculating at each voxel the per cent error between

Nmodelð�x, tÞ and Nmeasð�x, tÞ. The voxel-wise error is then averaged

to compute the average per cent error in cell number. The PCC

and CCC were also calculated to evaluate the correlation and

agreement between voxel-wise cell number and the observed

cell number. All results are presented as the mean and 95% CI

when appropriate.

A one-way analysis of variance (ANOVA) was used to evalu-

ate the differences in global and local errors between the RD,

MC, CC and MC–CC models. Tukey’s honest significant differ-

ence test was then used for pairwise comparisons. A p-value less

than 0.05 was considered significant. Models that had significant

differences at all 4 time points were considered to be highly sug-

gestive of a fundamental model requirement, while models with

significant differences at 3 time points were considered moder-

ately suggestive. No conclusions were made for models with

significant differences at 2 or fewer time points.
4. Results
4.1. Parameter optimization
Table 2 shows the results which evaluate the optimization pro-

cess for synthetic datasets for the RD, CC, MC and MC–CC

models. The absolute value of error in estimated para-

meter values ranged from 0.74% to 6.92% for all models and

model parameters.
4.2. Mechanically coupled model
Figure 3 shows the comparison at the global level of the RD and

MC model predictions for rat 7. The MC model resulted in

lower error in tumour volume relative to the RD model at

day 15. Increased error is observed for the RD compared to

the MC model at the final imaging time point (27.48% for the

RD and 7.89% for the MC model). (Note: for clarity, the CC

model is excluded from this figure as its contours overlap

with the RD model.) Figure 3d shows a steady increase in per

cent error in tumour volume for the RD model while the MC

model remains below 8%. Similarly, the MC model results

in a decreased ASD (0.22 mm for the MC and 0.33 mm for

the RD), which is most noticeable at the later time points.

4.3. Voxel-specific carrying capacity model
Figure 4 shows the local error analysis for the CC model from

the central tumour slice of rats 3, 7 and 10 on day 16. NRDð�x, tÞ,
figure 4b, results in a more uniform distribution of tumour cells

in comparison to what is observed in vivo, figure 4a. Elevated

errors are observed in areas corresponding to low Nmeasð�x, tÞ
for rats 3, 7 and 10 (13.27+0.87%, 8.46+0.70% and 23.10+
1.17%, respectively). Lower cellularity regions in Nmeasð�x, tÞ
are reflected in the fitted carrying capacity, figure 4d. The pre-

dictions of the CC model, figure 4e, resulted in less uniform

distributions of tumour cells compared to NRD. In particular,

rat 3 captures some of the low cellularity regions observed in

Nmeasð�x, tÞ. Rats 3, 7 and 10 showed reduced error (12.12+
0.90%, 5.08+0.68% and 6.27+0.51%, respectively) for the

CC model, figure 4f, compared to the RD model, figure 4c.

(Note: for clarity, the MC model is not included in this

figure as it does not improve the local level errors and results

in similar error maps as the RD model.)

Figure 5 compares the RD and CC models, along with

Nmeasð�x, tÞ at the local level. Rat 3 shows significant differences

( p , 0.05) between the RD and CC model (for Nmeasð�x, tÞ/u ,

0.95) with the RD model resulting in a mean increase in error of

7.87% over the CC model. For rat 7, the CC model resulted in a

mean decrease in errorof 6.29% compared to the RD model. Simi-

larly, significant differences ( p , 0.05) were observed between

the RD and CC models for rat 10, where the RD model also

resulted in a mean increase of 11.28% error compared with the

CC model (figure 5c). The cohort results display a similar trend

as the individual rats. Figure 5a–d shows increased difference

in per cent error between the RD and CC curves between 60

and 70%. For the cohort, the CC model resulted in a mean

decrease in error of 7.48% compared with the RD model,

figure 5d. The CC model more closely matches the in vivo
observed distribution (figure 5e, SSE¼ 1.32� 1022) compared

to the RD model (SSE¼ 2.83 � 1021). The RD model results in

a distribution of NRDð�x, tÞ with approximately 36% of its voxels

with values less than 90% of the carrying capacity, whereas

approximately 73% of the Nmeasð�x, tÞ and NCCð�x, tÞ voxels have

values less than 90% of the carrying capacity.

4.4. Combined model (MC – CC)
Figures 6–8 show the results of the global and local error analy-

sis for the MC–CC model. Figure 6 shows at day 20, the

RD and MC models (figure 6c,g, respectively) both fail to

capture the low cell-density regions seen within Nmeasð�x, tÞ
resulting in high local level error (15.95+0.89% and 17.01+
1.14%, respectively). Conversely, the CC and MC–CC
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models (figure 6e,i, respectively) capture some low cellularity

regions in Nmeasð�x, tÞ resulting in decreased local level errors

(7.96+0.79% and 9.05+0.96%, respectively). Increased

error in cell number is observed in the centre of the tumour

(greater than 40%) compared to the periphery (less than

10%). All four models have low global level errors at day 15

(less than 16%). At days 18 and 20, however, the RD and CC

models overestimate tumour growth (greater than 41%)

compared to the MC and MC–CC models (less than 6%). Visu-

ally, it is evident that the MC–CC model combines the benefits

of both the MC (low global level errors) and CC (low local level

errors) models in predicting future tumour growth.

Figure 7a–c shows global and local errors applied to the

complete tumour volume for rat 1, while figure 7d– f shows

the analogous results for the cohort. Less than 6% error in

tumour volume, figure 7a, was observed for the MC models

(MC and MC–CC) at all time points, whereas the non-MC

models (RD and CC) had errors in tumour volume ranging

from 13.42% to 84.12%. All models had low average surface

distances less than 0.31 mm, figure 7b, at days 15 and 16.
Conversely, on day 20 the RD and CC models had ASDs

greater than 0.89 mm compared with the MC and MC–CC

models which had ASDs less than 0.40 mm. The RD and MC

models both had increased error ranging from 16.13 to

30.12% in voxel cell number, figure 7c, compared to the CC

and MC–CC models which ranged from 9.55 to 17.75%.

Similar results are seen in the cohort (figure 7d– f ). The

non-MC models resulted in increasing volume error,

figure 7d, over time ranging from 16.08 to 50.37%, whereas

the MC models had less than 8% error in tumour volume esti-

mates. Similarly, figure 7e shows that the MC and MC–CC

models both have decreased average surface distances ran-

ging from 0.15 to 0.33 mm compared with the RD and CC

models which ranged from 0.19 to 0.60 mm. Models with a

voxel-specific carrying capacity (CC and MC–CC models)

reduced local level error, figure 7f, from greater than

19.92% error (RD and MC models) to less than 15.04% error

(CC and MC–CC models).

The results of the pairwise testing following statistically

significant ANOVA results ( p , 0.05) indicated that the MC
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and MC–CC models had significantly reduced error in tumour

volume at all time points compared to the RD model. Similarly,

the MC and MC–CC models had significantly reduced error in

tumour volume at days 16, 18 and 20 compared with the CC

model. For local level error (error in voxel cell number), the

CC and MC–CC models had significantly reduced error at

all time points compared to the RD model. Additionally, the

MC–CC model had reduced local error compared with the

MC model at days 15, 16 and 20. No significant differences

( p-values for F-test ranged from 0.053 to 0.193) were observed

between model values of ASD.

Figure 8 shows the PCC and CCC results for the RD and

MC–CC models. Figure 8a shows a reduction in correlation

and agreement between NRDð�x, tÞ and Nmeasð�x, tÞ from day 15

(PCC ¼ 0.87, CCC ¼ 0.70) to 20 (PCC ¼ 0.68, CCC¼ 0.46).

Figure 8b also shows decreased correlation and agreement

between NMC�CCð�x, tÞ and Nmeasð�x, tÞ from day 15 (PCC¼

0.92, CCC¼ 0.87) to 20 (PCC ¼ 0.86, CCC ¼ 0.72). The MC–

CC model resulted in an increased level of agreement and

correlation at all time points compared to the RD model.
5. Discussion
The results of the model analysis showed that global error can

be significantly improved by coupling local tissue stress to
tumour cell diffusion and that local error can be improved

by fitting for a voxel-specific carrying capacity. Global error

analysis showed that the MC models (MC, MC–CC) were

significantly more accurate in describing tumour volume

than the RD and CC models. Generally, global level error for

the MC models (MC, MC–CC) remained relatively constant

from days 15 to 20 compared to the non-MC models (RD,

CC) which grew from days 15 to 20. This suggests that the

MC model could potentially provide better global level predic-

tions past day 20 compared to the non-MC models. The local

level analysis showed that incorporating a voxel-specific carry-

ing capacity (CC, MC–CC) reduced local level error compared

with when a global value was used (RD, MC). The MC–CC

model benefits from both a reduced global level error (lower

error in tumour volume, lower ASD) provided by the MC com-

ponent of the model and reduced local level error (less error in

local cell number) provided by the CC component of the

model. Additionally, a strong level of agreement and corre-

lation, compared to the RD model, was observed between

the MC–CC model and measured cell number at the voxel

level. This work demonstrates that individualized model pre-

dictions can be made accurately using parameters estimated

from a subject’s own imaging measurements.

To evaluate the model-prediction framework we used a

pre-clinical model of glioma (the C6 line) injected orthotopically
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in rats. This experimental system provides a well-controlled

setting to perform imaging and modelling experiments (e.g.

repeatable growth characteristics, more frequent observation,

relatively easy to region to register). However, other cell lines

should also be investigated, especially those which more closely

mimic human gliomas such as patient-derived xenografts. We

would expect the estimated model parameters to implicitly

capture variations in tumour biology; however, additional

terms may need to be added to explicitly recapitulate unique

tumour features. In the present work, we focused primarily

on incorporating mechanical forces and intra-tumour hetero-

geneity, but it should be noted that other factors such as

tumour vascularization and the interaction with the surround-

ing microenvironment are likely to have a significant influence

on tumour growth and should be considered in future efforts.

Mechanical forces play a critical role in the growth of

tumours [20,21] and the interaction with these forces needs to

be considered in the development of accurate mathematical

models. Cancer development results in complex changes to

the mechanical microenvironment between a tumour and its

supporting stroma and is likely to affect the growth and inva-

sion of tumour growth [41–43]. We have focused on the

inhibitory role of local mechanical stress on gross tumour

growth [18]. Without mechanical coupling, error in predicted

tumour volume worsens over time (increasing approx. three-

fold from days 15 to 20). The results of this model analysis,

suggested that incorporating an MC tumour cell diffusion coef-

ficient is critical for accurately predicting gross tumour growth.
It results in significant decreases in global level error (per cent

error in tumour volume) when compared to the RD model.

Furthermore, the gross inhibitory effect of local tissue

stress observed modelled here accurately describes in vivo C6

glioma growth. One of the limitations of this current study is

that the shear modulus was uniquely assigned to only a few

identifiable regions based on literature values. While this

current approach still results in reduced global level errors

due to inhibitory effect of the MC model [21], a more tissue-

specific approach could potentially more accurately describe

glioma morphology [44]. More accurate assignment of these

tissue-specific properties (via, for example, magnetic resonance

elastography after tumour implantation [45]) may improve the

predictions of future tumour morphology. These results

suggest the importance of mechanical forces on accurate

tumour growth predictions. Other efforts have included the

influence of mechanical forces on prediction of breast [5],

pancreatic [46] and kidney [24] cancers. This model could be

adapted for other cell lines or human cancers using a different

degree of coupling by changing l1.

Mathematically modelling cell interactions at the local level

is a large field [28,47–50] with complexity ranging from a single

equation to models with several coupled equations. However,

parametrizing these models in a subject/tumour-specific

approach often would require highly invasive measurements

to accurately capture the in vivo behaviour. In this work, a

simple alteration of the RD model to include a voxel-specific

carrying capacity resulted in reduced local level errors. For

the RD and MC models, u is based on voxel dimension and

average tumour cell size. In the CC model, the voxel-specific

uð�xÞ is, in essence, a snapshot of the cumulative effects of

both physical restrictions and environmental limitations.

The analysis of the CC model suggests that it is significantly

better at describing in vivo C6 glioma behaviour. The CC

model allows for changes in existing low cell-density regions

to be more accurately described (figure 4). Furthermore, the

CC model is significantly more accurate in capturing the cell

number distribution (figure 5e) observed in vivo. The CC

model does, however, fail to capture expanding low cellularity

regions as seen in figure 6 which is one of the main limitations to

this model. Since uð�xÞ is temporally constant, which if it is truly

a function of physical and environmental limitations may not be

accurate, a higher error may be observed in future predictions if

necrotic regions develop. The CC model provides improved

local level error for voxels that are saturated in the RD model.

uð�xÞ calibrates the model to adjust the differences between

the calculated physical carrying capacity and the observed

cell density. In future work, we plan to investigate the sensi-

tivity of our model parameters to real change in cell density

versus experimental noise. At this time, we do not know what

degree of change in, for example, uð�xÞ represents a significant

change over the measurement noise. However, in voxels

where Nmeasð�x, tÞ is decreasing over time (potentially due to

necrosis) we would have worsening error as Nmeasð�x, tÞ con-

tinues to decrease. One potential solution is to develop a

more complicated and explicit relationship between u and

physical limitations (vasculature space [27,28], edema [51],

non-tumour cells [52]) and environmental limitations (avail-

ability of glucose and oxygen [47], acidity [52]) that could be

evolved temporally as these conditions change. However, it is

important to note that such modifications would likely require

additional model assumptions and parameters that need

additional data sources to define. A second limitation of the
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CC model is that it requires two sets of voxel-specific par-

ameters (kð�xÞ and uð�xÞ) and two global parameters (D for

white and grey matter) which may be challenging to accurately

estimate in a data limited situation. Model selection criteria

[53,54] that balance the goodness of fit and model complexity

should be used to determine whether a more complex model

is preferred for specific disease settings. Estimating a global car-

rying capacity may also provide some of the benefit of the

locally estimated carrying capacity to account for variations in

carrying capacity between disease settings. A spatial regulariz-

ation process to enforce local continuity (as nearby voxels are

likely to influence each other) may improve the convergence

and result in a more robust optimization. However, we elected

to use a data-driven approach to estimating model parameters

rather than constraining our approach with an unknown

correlation that is as of yet arbitrarily assigned.

The combined model, MC–CC, provides the best descrip-

tion of the in vivo C6 glioma growth by reducing both global

and local level errors. The MC–CC model also shows a very

high level of agreement and correlation to the in vivo observed

cell number. Furthermore, statistically significant differences

between the RD and MC–CC models were observed for both

the global and local level metrics. This model is not intended
(as-is) to be applied directly to clinical glioma cases which

would require additional modification of the model system

to account for patient-specific therapeutic interventions. How-

ever, our approach could be used as an accurate individualized

control against which novel treatments or treatment schedules

could be evaluated. In the pre-clinical setting, this model could

be used as the foundation for the inclusion of the effects of radi-

ation or chemotherapy that could be used to investigate novel

approaches to delivering these therapies. Depending on the

quantity of interest, the MC model may be sufficient to provide

estimates of tumour volume and location without adding

an additional spatially varying model parameter.

There are, however, some key underlying limitations for all

of the modelling approaches discussed in this work. First,

we use the measured ADC to estimate cellularity at the

voxel level. While several studies have shown a strong correla-

tion between histological estimates of cellularity in human

brain tumours [55] (r ¼ 0.77, p ¼ 0.007), breast cancer [56]

(r ¼ 0.54, p , 0.01), extracranial lesions [57] (r ¼ 0.73, p ,

0.001), small animal models of breast cancer [37] (r . 0.57,

p ¼ 0.03), and in vitro studies [36], there are other factors (cell

membrane permeability [58], cell size, tortuosity [59], oedema

[60] and necrosis [60]) which can also effect the measured
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ADC. Thus, this transformation (i.e. equation (3.1)) from ADC

to cellularity is a first-order approximation to the true tumour

cellularity. A second limitation of this work is the quantity of

imaging measurements that are needed to estimate model par-

ameters. In data limited settings (e.g. standard-of-care clinical

studies), our approach will not be tenable. A third limitation

of note is that our current model does not provide a means to

explicitly alter kð�xÞ and uð�xÞ as a function of time. It is important

for future work to explicitly alter kð�xÞ and uð�xÞ as a function of

time; however, developing a system of equations that can accu-

rately capture this dynamic process will be challenging. We are

currently working to address this fundamental shortcoming of

the model.
6. Conclusion
The standard RD model poorly predicts the spatio-temporal

evolution of in vivo C6 glioma growth in rats resulting in

high global and local level errors. Comparing across

figures 6c–i and 7, it is clear that mechanically coupling local

tissue stress to tumour cell movement is a fundamental require-

ment towards accurate tumour growth models. While more

subtle, figure 8f demonstrates that a voxel-specific carrying

capacity is likely a necessary ingredient for improving local

predictions of the cellular heterogeneity within tumours.

Lastly, even though these models lack the prediction of specific
tumour-to-tissue infiltrative shape as expressed by the average

surface distance, the MC–CC model can provide accurate

short- and long-term predictions on a rat-specific basis. The

MC–CC model provides a more complete description of

in vivo C6 glioma growth in rats compared with the standard

RD model.
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