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Abstract. In this work, a preliminary effort toward a novel multi-physics model-
ing framework is presented that combines computational approaches in soft-tis-
sue biomechanics, and bioelectric/bioheat transport to create a patient-specific, 
image-data driven guidance platform to improve localization and predict thermal 
dose extent for microwave ablation.  More specifically, a finite element modeling 
and optimization approach for microwave ablation delivery is driven by sparse 
intra-procedural geometric digitization, and pre-procedural imaging data for 
providing image-to-physical registration, and dielectric property estimates, re-
spectively.  In a series of mock liver phantom experiments, the framework is ex-
plored herein.  Results indicate superior localization using our non-rigid registra-
tion approach, and accurate prediction of lesion formation using our image-data-
driven approach to ablation forecasting.  Results also provide insight on the im-
pact of localization and material property inaccuracies with respect to therapy 
delivery and show systematic and considerable degradation of lesion-to-target 
overlap.   

Keywords: Image Guidance, Microwave Ablation, Finite Element, Registra-
tion, Modeling, Deformation. 

1 Introduction 

1.1 Clinical Background 

Hepatic tumors are a major U.S. and worldwide health care concern with the rate of 
primary liver cancer (HCC) continuing to rise [1].  Along with hepatocellular carci-
noma, many primary neoplasms also metastasize to the liver.  With respect to treatment, 
resection and transplant are the best options but eligibility, and scarcity still limit can-
didacy, respectively.  For example, based on one study involving 2400 subjects, only 
20% of patients were eligible for surgical resection due to risk [2].  When faced with 
these challenges or extensive multi-focal disease, procedures become multimodal and 
dynamic, e.g. physicians are exploring with staging and then among those stages com-
bining approaches to include resection, loco-regional ablative, arterial, and conven-
tional systemic therapies (e.g. resection combined with ablation, two-stage resection, 
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ablation, radio/chemo-embolic procedures, etc.).  This represents a movement toward 
a more chronic management viewpoint of disease with goals of facilitating surgery, 
bridge-to-transplant, and/or extending quality of life.  Microwave ablation (MWA) is 
certainly one of the more promising thermal ablative technologies for the locoregional 
control of liver cancer [3-6]. Some studies suggest a 5-year survival rate with MWA 
that is comparable to surgical resection [7].  Nevertheless, with ~80% of patients ineli-
gible for resection/transplant [8], increasing MWA efficacy is certainly warranted. 

1.2 Scientific Premise 

Building on the promise of MWA, the underpinning premise of the work reported here 
is that improving MWA therapy is intrinsically dependent on the precise localization 
and determination of dose extent in relation to spatially-encoded disease information, 
i.e. anatomically-annotated, disease-related biomarkers usually provided by imaging.  
Without the ability to accurately localize: analysis of outcomes for determining proce-
dural efficacy, understanding the morphology of recurrence, comparing therapeutic ap-
proaches, evaluating technique improvements, and investigating the impact of imaging 
biomarkers to drive therapy decisions will remain ambiguous.   

 
With respect to localization specifically, in a recent n=176 patient study looking at 
long-term outcomes of MWA for liver malignancies, the investigators reported a 17.6% 
local recurrence rate with rates increasing with tumor size, i.e. recurrence rates span-
ning from 1%-33% for tumors sizes ranging from <1cm to >3cm, respectively [9].  
Clearly, outcomes are compromised with size but does the cause reside with the ability 
to localize delivery? or with the imaging information driving the ablation? or with soft-
tissue characteristics affecting plans (e.g. material properties, deformation, etc.)? or 
perhaps it resides in our understanding of tumor phenotype in large lesions?  The cause 
is likely a combination of factors.  Unfortunately however, studies specifically looking 
at the causes of recurrence are sparse and difficult to achieve in light of a lack of preci-
sion in localization.  Addressing this need is certainly a fundamental component for 
treatment quantification to better understand recurrence in human systems.  

 
With respect to the determination of dose extent, strategies in thermography are actively 
under investigation within the MR (e.g. [10]) and US (e.g. [11]) communities.  As a 
general statement, these sources of data are powerful but in the practical surgical/inter-
ventional suite are typically incomplete, cumbersome, and with varying degrees of re-
producibility.  Also, thermal ablation is a temporally and spatially evolving event.  
While thermal distributions could inform, they do not necessarily predict/protect 
against excessive damage to healthy liver, biliary ducts, or nearby organs.  In addition, 
it is also important to recognize that with a dose plan based on a preoperative organ 
configuration, to what degree intraoperative soft tissue changes affect that delivery dose 
plan is unknown.  From the literature, it is clear that evolving cumulative thermal dose 
during a hyperthermic ablative procedure is an important factor in determining tissue 
damage and coverage [12].  Accurate predictive dosing frameworks would allow for 
better control of the temporal and spatial evolution of MWA-induced thermal energy.  
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From that arises another question, how does one ‘tune’ a thermal dose to a particular 
patient?  Efforts toward this are quite sparse.  It is generally accepted that variability in 
dielectric and thermal properties persist in healthy and diseased tissue (e.g. fatty liver, 
fibrosis, and malignant tissue) and are affected by temperature as well.  Methods de-
signed to address these questions in the determination of MWA dose extent are a real 
clinical need.  

2 Methods 

In this paper, a multi-physics modeling approach has been adopted to address the un-
certainty in the delivery of MWA.  More specifically, a biomechanical model is used 
to non-rigidly correct for deformations occurring intra-procedurally, and a bioelec-
tric/bioheat transport model is used to estimate microwave thermal dose extent.  When 
coupled together, these create a comprehensive framework to accurately forecast ther-
apeutic delivery and extent.  In the below sections, we briefly describe our approach 
and our experimental evaluation. 

2.1 Correcting for Intra-procedural Deformations 

The methods employed in this work are specifically designed to using computational 
biophysical models for image-to-physical non-rigid liver registration using sparse data 
compatible with open surgery and interventional presentations [13, 14].  The method-
ology is an inverse boundary condition reconstruction approach designed to match 
shape change as defined between preoperative and intraoperative organ states.  Briefly, 
the methodology begins with the spatial designation of liver salient features (usually 
these are associated with ligament attachments and/or liver ridges) on both the subject’s 
images and the intraoperative physical space counterpart.  In the open surgery environ-
ment, the physical data can be provided by a tracked stylus being used to swab the organ 
surface (or with a laser scanner, stereo-camera, etc.).  In the interventional environment, 
often the entire surface of the liver can be extracted from a computed tomography scan.  
In either case, the physical salient features and their preoperatively imaged counterparts 
are acquired which is subsequently followed by a more general acquisition of areas of 
the organ surface that are not salient features.  This latter step captures additional intra-
procedural shape characteristics.  Once geometric data has been acquired, a two-step 
registration process begins, i.e. a rigid registration using salient features followed by 
non-rigid fitting process driven by all available sparse data.   In the non-rigid registra-
tion process, boundary condition nodes from the biomechanical finite element model 
are associated with active control surfaces which will be allowed to drive shape change.  
In the current realization for open surgery, typically the posterior liver surface is desig-
nated as the active control surface, and in the context of interventional work, the entire 
liver surface is employed. 

 
Going further, once the control surfaces are designated on the preoperative liver model, 
a preoperative computation phase begins where systematic perturbations to the active 
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control surfaces are performed with each perturbation providing a boundary condition 
set to a highly resolved biomechanical finite element model; and naturally, a series of 
solutions is produced among the perturbations.  These solutions provide an approxima-
tion to a Jacobian which is subsequently used within a least-squared sparse data/surface 
error minimization process.  We should note that each iteration has an additional dis-
tributed loading filter to create more natural deformations.  This completes the preoper-
ative computing phase.  With this determination of the Jacobian performed pre-proce-
durally, real time non-rigid fitting of preoperative liver images to intra-procedural 
sparse digitization data of the liver can ensue.  While investigations are continuing in 
this approach, the most recently published realization can be found in [15].  It should 
also be noted that a conventional linear elastic model is employed to reflect the defor-
mation behavior of the liver when subjected to intra-procedural forces.  This is repre-
sented by the partial differential equation of static mechanical equilibrium, ∇ ∙ 𝜎𝜎 = 0,  
where σ is the mechanical stress tensor.  In this description, the constitutive law that 
relates the mechanical stress to strain is associated with conventional linear theory (i.e. 
a Hookean solid) [16].  It should be noted that the non-rigid fitting phase involves both 
rigid and non-rigid components thus capturing some of the global rigid body motion 
while compensating for deformation.   

2.2 Forecasting Intra-procedural Microwave Thermal Dose 

The thermal dose to tissue was estimated using COMSOL Multiphysics (COMSOL Inc, 
Burlington, MA) modeling for simulating electromagnetic wave propagation and heat 
transfer. The development and absorption of electromagnetic waves radiating from the 
antenna within the phantom, when assuming no initial existing charge, is described by 
the electromagnetic wave equation (∇2 + 𝜔𝜔2𝜇𝜇𝜀𝜀𝑐𝑐)𝐸𝐸�⃑ = 0 where 𝜔𝜔 [rad/s] is the angular 
frequency of the electromagnetic wave, 𝜇𝜇 [H/m] is the permeability, 𝜀𝜀𝑐𝑐 is the complex 
permittivity, and 𝐸𝐸�⃑  [V/m] is the electric field strength. Heat transfer and the resulting 
temperature history were solved using Pennes’ bioheat equation 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=  ∇ ∙ 𝑘𝑘∇𝑇𝑇 +

𝑄𝑄 − 𝑄𝑄𝑝𝑝 + 𝑄𝑄𝑚𝑚 where 𝜌𝜌 [kg/m3] is mass density, c [J/kg·K] is specific heat capacity, k 
[W/m·K] is thermal conductivity, T [K] is temperature, Q [W/m3] is heat generation 
due to absorbed electromagnetic energy, Qp [W/m3] is heat loss due to perfusion, and 
Qm [W/m3] is metabolic heat generation. Metabolic heat generation (Qm) is typically 
neglected, perfusion (Qp) is modeled as 𝑚𝑚(𝑇𝑇 − 𝑇𝑇ℎ) with 𝑚𝑚 as thermal perfusion trans-
fer coefficient, and 𝑇𝑇ℎ as homeostatic temperature.  Heat generation from power depo-
sition by the applied electric field is calculated by 𝑄𝑄 =  1

2
𝜎𝜎‖𝐸𝐸‖2 𝑤𝑤here 𝜎𝜎 [S/m] is the 

electrical conductivity.  The antenna is modeled as a conventional conductive core sur-
rounded by dielectric material, surrounding catheter, with ring shaped slot cut on the 
outer conductor.  Conductive material is not specifically realized but represented by the 
boundary condition, 𝑛𝑛�⃑ × 𝐸𝐸�⃑ = 0.  The microwave source itself is modeled as a port 
boundary condition which relates the field to the square root of the time average power 
flow in the cable and is adopted from [17].  Boundary conditions reflect a first order 
electromagnetic scattering condition applied to the exterior of the phantom to eliminate 
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reflection of outgoing waves by simulating a transparent boundary.  Far-field bounda-
ries on exterior are set to homeostatic/outside-environment temperatures. Saline cool-
ing of the antenna was simulated as a convective heat flux condition along the inner 
boundary of the antenna.  Thermally-induced tissue damage is a function of both in-
stantaneous temperature and thermal history. For this work, a modified Arrhenius dam-
age integral is used to estimate the complete ablative zone (in the phantom work, pro-
tein denaturation is used as a proxy). The tissue integral takes the form of α =
∫ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �− 𝐸𝐸𝑎𝑎

𝑅𝑅𝑅𝑅(𝑡𝑡)
� 𝑑𝑑𝑑𝑑𝑡𝑡

0  where α is the degree of damage at a given time, A [1/s] is the 
frequency factor, 𝐸𝐸𝑎𝑎 [J/mol] is the activation energy required to damage the mock tis-
sue, R [J/mol·K] is the universal gas constant, and T(t) [K] is the temperature history of 
the tissue/mock-tissue. The fraction of damaged tissue was then determined by 𝜃𝜃𝑑𝑑 =
1 −  𝑒𝑒−𝛼𝛼 .   The current framework uses a 2-D axisymmetric model for simplicity.  Ad-
ditional detail can be found in [18]. 

2.3 Experimental Procedure 

With respect to the experimental framework, a custom deformable ablation phantom in 
the shape of a patient liver (a heat-sensitive gel phantom consisting of liquid egg whites, 
and agar gel) was created and deformations similar to those experienced between diag-
nostic, and intra-procedural presentation were applied.  With phantoms constructed, a 
Perseon ST (Perseon Medical, Salt Lake City, UT) microwave antenna was used to 
generate three separate ablations in each mock human liver and a hi-resolution MR 
image volume was obtained.  After the application of deformation, a repeat MR was 
performed.  This procedure was performed in n=3 phantoms with 4 different defor-
mation states.  From this data set, mock liver surfaces were extracted and used with our 
image-to-physical non-rigid registration approach in the context of open surgical 
(sparse anterior surface), and interventional procedures (full surface).  With each phan-
tom and each deformation, a total of 9 targets could be used to quantify localization 
error (3 antenna tip locations, 3 antenna insertion points, and 3 ablation centroids).  True 
ablation locations could be determined from the repeat MR imaging.  It should be noted 
that in work not reported here, mock gross pathology has been performed to confirm 
physical ablation sizes are represented accurately by our MR-measured estimates.  In 
addition, optimal dielectric properties matching the ablation predictions to measure-
ment were previously performed using controlled localization experiments over multi-
ple phantoms.  While this approach to determining dielectric properties is not amenable 
to a prospective ablation, i.e. the clinically translated counterpart, this limitation is ad-
dressed in the discussion.  Finally, given this experimental setup, a comparison study 
of lesion prediction to ground truth ablation was conducted.  In addition, to understand 
the impact of dielectric properties, forecasted lesions were compared between the opti-
mized properties and those estimated from volume fractions of components based on 
literature values.  The metric used for evaluating this work was the positive predictive 
value (PPV) calculated by 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑇𝑇𝑇𝑇

(𝑁𝑁𝑇𝑇𝑇𝑇+𝑁𝑁𝐹𝐹𝐹𝐹)
, where NTP is the volume of the model-

predicted ablation zone overlapping with the observed ablation zone, and NFP is the 
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volume of the model-predicted ablation zone which does not overlap with the true ab-
lation zone. 

3 Results 

With respect to localization, our biomechanically model-driven image-to-physical reg-
istration methodology to correct for deformation performed quite well.  In the case of 
partial surface availability for registration, the average target registration error was 6.0 
± 2.3 mm and 3.7 ± 1.4 mm for rigid and non-rigid registration over all phantoms, 
respectively.  When the full surface of the liver could be used, the average target regis-
tration error was 5.6 ± 2.3 mm and 2.5 ± 1.1 mm for rigid and non-rigid registration 
over all phantoms, respectively.  Similarly, when comparing the predicted ablation rel-
ative to ground truth, the volumetric overlap was 67.0 ± 11.8%, and 85.6 ± 5.0% for 
rigid and non-rigid registration, respectively.  Fig. 1 upper panel is an example analysis 
from our mock phantom experiments that compares the true ablation as documented by 
imaging (green) with the model-predicted ablation (red) within the context of conven-
tional rigid registration. In Fig. 1 lower panel, the analogous comparison is done, except 
in this case, our novel non-rigid registration has been employed for targeting the pre-
dicted ablation location (blue).  Fig. 2 is a comprehensive figure that shows the target 
error and PPV results over all n=3 phantoms with 4 deformations per phantom and 9 
targets per phantom.  On the x-axis, the figure illuminates the localization error using 
sparse anterior (open surgery setting) and full surface (interventional setting) surface 
data and among both conventional rigid and our novel non-rigid registration methodol-
ogies.  On the y-axis, the PPV for each ablation is reported which provides a sense of 
predicted-to-measured lesion overlap for all phantoms.  In addition, located on the y- 
  

 

        
Fig. 1 Ablation model prediction example following registration with full anterior surface data. Green 
represents ground truth ablation. The rigidly registered ablation model is presented in the top panels 
(red). The registered ablation model following deformation correction is presented in the lower panels 
(blue). Additionally, in each panel the registered ablation antenna indicated by lines with color corre-
sponding to the registration method. 
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axis in red, the maximum possible PPV is provided, i.e. this is a direct model-to-phys-
ical ablation comparison with controlled localization in an idealized setup.  Fig. 3 shows 
the results from Fig.2 with respect to optimized properties when the full surface is used 
for registration.  As a comparator, rather than using the optimized dielectric model 
properties, dielectric properties based on the volume fraction of components and liter-
ature values were utilized to compare the PPV under an educated ‘guess’ environment.   

 
Fig. 2. Positive predictive value is presented for each registered ablation as a function of average target 
registration of corresponding ablation antenna. MWA model maximum PPV assuming perfect localiza-
tion is in red.  
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Fig. 3. Positive predictive value is presented for each registered ablation as a function of average target 
registration of corresponding ablation antenna. Results of the rigid, and non-rigid registration method 
are presented in black, and blue using image-data-driven calibrated dielectric properties. The counterpart 
using volume fraction components and literature values used in green, and magenta, respectively.  MWA 
model maximum predictive power assuming perfect registration is in red.  
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4 Discussion 

Overall the results demonstrate that our non-rigid approach to registration reduced lo-
calization error.  It can also be seen that there is a difference in registration fidelity 
based on the level of sparsity, which is anticipated.  One interesting result is that our 
non-rigid registration result using only partial surface data outperformed the rigid reg-
istration result using the entire surface.  Another anticipated result confirmed was that 
as target error improved, the PPV of our MWA forecasted ablation also improved.  The 
result in Fig. 2 is quite interesting in that it essentially represents a model of PPV deg-
radation as a function of antenna localization error.  It suggests, at least in this idealized 
experiment, that with each 1 mm of antenna localization error, an approximate 5-6% 
degradation in PPV ensues.  While clearly this is an idealized experiment, it does pro-
vide some measure of uncertainty in therapeutic delivery which may be an important 
factor in designing advanced guidance protocols.  Fig. 3 is also interesting where it also 
demonstrates a PPV degradation but in this case as a function of the material properties 
in our bio-electric/heat transport model of the ablation process.  It demonstrates that 
even in cases of precise localization, it is possible that a mismatch in model dielectric 
properties could result in an under-prediction of lesion forecasting by a considerable 
amount.   

 
While the above is interesting, it must be put into context with respect to the limitations 
of the study.  This is a phantom study and while our phantom properties are similar to 
liver, ultimately, the phantom is not structurally similar.  For example, major vascula-
ture and perfusion effects are missing.  Another limitation is that this experimental setup 
was not achieved in a true targeting fashion.  More specifically, the ablation was per-
formed on the phantom in three locations and then imaged, and then subsequently it 
was deformed and re-imaged.  This allows the ablation itself to become essentially a 
therapeutically generated target.  The better experiment is to create a real physical target 
within the phantom itself detectable by imaging, image the phantom to find the target 
before the procedure, and then plan delivery, then apply deformation, and re-image to 
determine the organ shape in its deformed state (in addition, it provides true target lo-
cation within the intraoperative presentation). Once re-imaged, using the navigation 
system as intended (picking a registration method), navigate to target, ablate, and then 
compare to ground truth target imaged prior to ablation.  This would allow a much 
better and more therapeutically realistic comparison.  Lastly, another limitation is our 
use of linearized biophysics for our modeling efforts.  Conventional thought is that 
ablation is a nonlinear event and that constitutive properties will be sensitive to thermal 
changes among others.  Considering Fig. 3, changes in properties are quite important.  
The work presented here is essentially a linearized fit to a nonlinear problem.  It remains 
to be seen if a linearized forecasting approach is sufficient to provide therapeutic benefit 
when used within a planning system.  We should note however that the concept of using 
image-data-driven approach to estimate dielectric properties is not remote.  In work not 
reported here, we have performed phantom experiments similar to those above using a 
commercially available fat quantification sequence, mDixon Quant, to acquire images 
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of phantoms with varying fat content and demonstrated a relationship between fat con-
tent and dielectric and thermal material property changes such that a surrogate image-
based biomarker could establish appropriate values for the modeling framework in a 
prospective manner.  In those experiments, fat content in the phantom varied between 
0-10%, a range quite similar to that found in fatty liver disease, a condition on the rise 
in presentation and rapidly replacing viral- and alcohol-related liver disease as a major 
factor in HCC [19].  It is intriguing to consider imaging extending beyond anatomical 
information to a series of prospective image-based biomarker surrogates that could es-
tablish mechanical, electrical, thermal, and perfusion properties of liver tissue to create 
an accurate MWA forecasting computational environment. This does not necessarily 
answer the question as to the importance of nonlinear effects; however, the work here 
does represent first steps in being able to study this behavior. 

5 Conclusions 

This paper has demonstrated a complex multi-physics modeling approach to estimate 
MWA dose extent in liver.  The approach proposes to use imaging data and biomechan-
ical models as a means to enhance localization of MWA delivery.  The approach goes 
further by using imaging data as a comprehensive step in model initialization of a bio-
electric/heat model such that accurate MWA is forecast.  While presented here in a 
mock tissue environment, the quantitative results are quite encouraging. 
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