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Highlights

• Hybrid deformation compensation method for lung nodule
localization during VATS.

• Two Cone-beam CT (CBCT) images acquired during
surgery: before and after pneumothorax (lung collapse).

• Lung deformation process decomposed into (i) change of
patient pose deformation and (ii) pneumothorax deforma-
tion.

• Image-based registration served to estimate boundary con-
ditions for a biomechanical poroelastic lung model.

• Retrospective validation study on 5 VATS clinical cases.
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A B S T R A C T

The resection of small, low-dense or deep lung nodules during video-assisted thora-
coscopic surgery (VATS) is surgically challenging. Nodule localization methods in clin-
ical practice typically rely on the preoperative placement of markers, which may lead
to clinical complications. We propose a markerless lung nodule localization framework
for VATS based on a hybrid method combining intraoperative cone-beam CT (CBCT)
imaging, free-form deformation image registration, and a poroelastic lung model with
allowance for air evacuation. The difficult problem of estimating intraoperative lung
deformations is decomposed into two more tractable sub-problems: (i) estimating the
deformation due the change of patient pose from preoperative CT (supine) to intraoper-
ative CBCT (lateral decubitus); and (ii) estimating the pneumothorax deformation, i.e. a
collapse of the lung within the thoracic cage. We were able to demonstrate the feasi-
bility of our localization framework with a retrospective validation study on 5 VATS
clinical cases. Average initial errors in the range of 22 to 38 mm were reduced to the
range of 4 to 14 mm, corresponding to an error correction in the range of 63 to 85%.
To our knowledge, this is the first markerless lung deformation compensation method
dedicated to VATS and validated on actual clinical data.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Lung cancer is the leading cause of cancer death among both
men and women, making up more than 18% of all cancer deaths
(Bray et al., 2018). The high mortality of lung cancer is asso-
ciated with its asymptomatic nature that hinders its early detec-
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tion, diagnosis and treatment. However, the advent of screening
programs with low-dose computed tomography (CT) have sig-
nificantly increased patient survival (Henschke et al., 1999; Na-
tional Lung Screening Trial Research Team et al., 2011). Sur-
gical resection is considered one of the best curative treatments
for patients with early-stage lung cancer. Historically, lung
lobectomy (i.e. the removal of entire lung lobes) through open
thoracotomy was the chosen protocol. Within the last decades,
clinical practice has evolved towards less invasive, better tissue
preserving techniques. For instance, minimally-invasive video-
assisted thoracoscopic surgery (VATS) has proven to yield
equivalent clinical outcomes while improving patient care, and
decreasing both the length of hospitalization and post-operative
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complications (Falcoz et al., 2016). In parallel, the interest
for smaller, non-anatomical resections (wedge resections) has
arisen for small nodules as a substitute to lung lobectomy. Al-
though no consensus has been reached yet, studies suggest that
the use of appropriate negative margins during wedge resec-
tions could provide patient outcomes equivalent to those of
traditional lobectomies (Mohiuddin et al., 2014; Wolf et al.,
2017). However, this shift from lung lobectomy to wedge re-
section through minimally-invasive VATS has introduced new
surgical challenges. For instance, thoracic incisions to insert
surgical instrument break the pressure equilibrium in the in-
trapleural space and cause air to flow into the thoracic cage.
This abnormal air inflow, known as a pneumothorax, induces
very large tissue deformation by collapsing the lung. While
this voluntary induced pneumothorax is required to create sur-
gical workspace, it significantly impairs the intraoperative lo-
calization of lung nodules, especially for small nodules that are
generally not visible to the naked eye nor palpable through tho-
racoscopic instruments (Chao et al., 2018). Failing to localize
lung nodules during VATS may ultimately result in unplanned
surgical conversion to open thoracotomy, with a conversion rate
as high as 54% reported in some studies (Suzuki et al., 1999).
Therefore, several nodule localization strategies are commonly
used in clinical practice. The main approach consists in plac-
ing fiducial markers in the nodule to facilitate its intraoperative
localization. This nodule marking generally requires an addi-
tional preoperative procedure, before surgery, for the placement
of hookwires, micro-coils, or dyes under fluoroscopy guidance
(Keating and Singhal, 2016). Despite the high success rates
reported for these nodule localization techniques (Chao et al.,
2018), the risk of marker migration is still non negligible and
the patient is subject to additional radiation exposure. Further-
more, the optimal coordination of the two procedures (i.e. pre-
operative localization and surgical resection) may become a lo-
gistic burden, while the patient is at risk during the transfer from
the CT suite to the operating room.

To overcome the problems associated with preoperative lo-
calization procedures, intraoperative nodule localization has
been proposed. This strategy relies on intraoperative imaging
to guide nodule-marker placement immediately before surgery,
generally in a hybrid operating room. For instance, Gill et al.
(2015) have introduced the iVATS system that uses a C-arm
to localize nodules placing metal fiducial markers under flu-
oroscopy guidance. Other groups have implemented similar
approaches combining intraoperative CT guidance with either
hook-wire (Zhao et al., 2016), dye (Yang et al., 2016), or double
nodule marking (Chao et al., 2019). Chao et al. (2018) showed
that these intraoperative localization techniques were associated
with decreased time at risk but increased time in the operating
room, without any significant difference in clinical outcomes
with respect to preoperative localization.

Another intraoperative localization paradigm consists in
markerless approaches. The idea is to use intraoperative imag-
ing on the patient under operating conditions, namely, after the
insertion of surgical ports and the induction of pneumothorax.
This allows to localize the nodule immediately before its sur-
gical resection. Several authors have proposed to use intraop-

erative ultrasound for the localization of lung nodules (Kondo
et al., 2009; Rocco et al., 2011; Wada et al., 2016). In these
images, nodules can be identified as hyperechoic regions with
hypoechoic shadows (Kondo et al., 2009). However, this strat-
egy is highly expert-dependent and requires a fully deflated
lung, which is in many cases unfeasible. Another method has
been introduced by Rouzé et al. (2016) in a hybrid operating
room. A Cone Beam CT (CBCT) image of the semi-deflated
lung is used for the localization and delineation of the nod-
ule. This delineation is then registered to intraoperative fluo-
roscopic images that are used for guidance. A clinical study
performed on 8 patients demonstrated the feasibility of this ap-
proach. While promising, all these intraoperative markerless
approaches rely entirely on the nodule visibility in the images,
which may be limited in many cases by the reduced quality and
contrast of intraoperative images. For instance, the fuzzy bor-
ders and low-density of ground glass opacity (GGO) nodules
could make them indistinguishable from normal parenchyma in
a low-contrast CBCT or US image. To overcome this limita-
tion, we believe that image registration techniques can be used
to bring preoperative surgical planning information into the in-
traoperative setting.

Image registration has been previously used to compensate
for lung deformation to improve the efficiency of medical lung
imaging in the diagnosis, treatment-planning, and guided in-
tervention of lung diseases (McClelland et al., 2013). Several
registration methods have been proposed based on image inten-
sity (Murphy et al., 2011), biomechanical models (Al-Mayah
et al., 2010; Seyfi Noferest et al., 2018), or a combination of
both (Han et al., 2017). The applicability of these methods is
currently restricted to lung breathing motion, mainly for confor-
mational radiation therapy. However, lung deformation is con-
siderably larger during VATS (Alvarez et al., 2018) which in-
creases the difficulty of the registration problem. To our knowl-
edge, only a handful of works have addressed the problem of
lung nodule localization during VATS through image registra-
tion (Alvarez et al., 2019a; Uneri et al., 2013; ?). This paper
presents a novel method to address this problem, evaluated for
the first time on actual VATS clinical cases.

The contributions of this work can be summarized as follows:
(i) we propose a markerless approach for lung nodule localiza-
tion during VATS that is based on intraoperative CBCT imaging
and image registration techniques; (ii) we propose a hybrid reg-
istration method combining intensity-based and biomechanics-
based image registration; (iii) we specifically take into account
lung deformation resulting from the patient’s change of pose,
the pneumothorax, the diaphragm movements, and the hilum
deformation during the surgical procedure; and (iv) we evalu-
ate our method on 5 retrospective clinical cases of patients that
underwent wedge resection through VATS.

The remaining of this document is organized as follows:
Sec. 2 presents an overview of existing methods for lung defor-
mation estimation. Sec. 3 provides an overview of our proposed
approach. Sec. 4 describes the lung biomechanical model used,
then Secs. 5, 6, and 7 describe the processing steps of our reg-
istration method. Results are reported in Sec. 8 and discussed
in Sec. 9, and Sec. 10 provides final concluding remarks.
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2. Related works

The lung is a very soft, highly deformable organ in con-
stant deformation due to breathing, heart beats, and body
movements. A wide variety of image registration techniques
based on image intensity, biomechanical models, or hybrid ap-
proaches have been developed to compensate for such deforma-
tion. These techniques were proposed mainly in the context of
breathing motion, with CT images typically acquired by pairs at
the end of inhalation and exhalation, or during the entire breath-
ing cycle through 4DCT. In this study, our interest is the com-
pensation of lung deformation during VATS using intraopera-
tive CBCT imaging. Breathing deformation and VATS defor-
mation have different causes and orders of magnitude, the latter
being significantly larger. During normal breathing, lung defor-
mation results from the contraction and relaxation of respiratory
muscles that induce volumetric changes. The lung parenchyma
can slide against the thoracic cage thanks to the lubricating liq-
uid that separates these structures. During VATS, lung defor-
mation results mostly from a change of patient pose, the inser-
tion of surgical ports, and the general anesthesia. The insertion
of surgical ports induces a pneumothorax that deflates the lung
parenchyma and deforms the hilum. General anesthesia also
relaxes the diaphragm muscle that consequently moves towards
the apex, pushed by the weight of abdominal organs. The com-
bination of these factors with the reduced quality of intraopera-
tive CBCT images make the compensation of lung deformation
for nodule localization during VATS a real challenge.

2.1. Intensity-based image registration methods for lung defor-
mation compensation

Besides large lung deformation, sliding motion against the
thoracic cage is widely known to be one of the major chal-
lenges encountered when dealing with intensity-based elastic
registration of the lung parenchyma. Anatomically, the defor-
mation of the lung and surrounding structures are constrained at
the interface in the normal direction, but move almost freely in
the tangential direction. However, most transformation models
used in medical image registration assume a continuous defor-
mation field that can not model this sliding effect (Maintz and
Viergever, 1998; Sotiras et al., 2012).

Several authors have introduced methods for taking into ac-
count sliding interfaces for lung registration. Anatomical seg-
mentations can be used to independently register the structures
at the interface (Rietzel and Chen, 2006). With this technique,
classical image registration algorithms can be used with little or
no modification. However, gaps or overlaps may appear at the
interface as a result of the independent registration. One solu-
tion consists in using a boundary-matching penalty method so
that the interfaces are tied together. Wu et al. (2008) proposed
to dilate the segmentations after a masking procedure to enforce
the alignment of the interface. Another strategy is based on de-
composing the deformation field at the interface into normal
and tangential components. Sliding motion can be preserved
by applying regularization on the normal component (Schmidt-
Richberg et al., 2012), or by using a composite transforma-
tion with a shared normal component but independent tangen-
tial components (Delmon et al., 2013). The main drawback of

these methods is the need for anatomical segmentations. In-
deed, these segmentations are time-consuming to extract manu-
ally or may be inaccurate if extracted automatically, especially
for pathological lungs or low contrast images. To overcome
this issue, other works have proposed methods without prior
anatomical segmentations. Ruan et al. (2009) presented a reg-
ularization strategy that discriminates the divergence and the
curl of the deformation field separately. Sliding motion is pre-
served by allowing large shearing while penalizing other forms
of non-smooth deformation. Another technique consists in us-
ing several layers of supervoxels (i.e. groups of neighboring
voxels with similar intensities) connected using minimum span-
ning trees (Heinrich et al., 2016). The deformation field is en-
forced to be smooth across edge connections via regularization.
However, non-connected supervoxels are allowed to be regis-
tered independently, hence preserving sliding motion.

In a previous preliminary study, we applied the method pro-
posed by Wu et al. (2008) to register two intraoperative CBCT
images of the undeformed and deformed lung acquired during
a VATS intervention (Alvarez et al., 2019b). We managed to
obtain reasonable alignment of the lung surface, but insufficient
alignment of the internal structures. To our knowledge, no other
study has addressed the same problem using intensity-based im-
age registration only.

2.2. Biomechanical model-based methods for lung deformation
compensation

Another approach for lung deformation compensation is the
use of biomechanical models describing the lung’s behavior.
The Finite Element Method (FEM) is commonly used to obtain
numerical solutions to the underlying equations. For instance,
Zhang et al. (2004) proposed a Finite Element (FE) deformable
model of the lung reconstructed at the end of exhalation to sim-
ulate lung expansion motion. The thoracic cage surface at the
end of inhalation was included in the formulation as friction-
less contact conditions that constrained lung expansion. A uni-
formly distributed negative surface pressure was applied to the
deformable model until it filled the thoracic cage. A similar ap-
proach to lung expansion motion was proposed by Werner et al.
(2009). The authors performed a study on 12 lung tumor pa-
tients and evaluated how changing tissue parameters affect the
estimated deformations. The results suggested that if tissue ho-
mogeneity was considered, changing tissue parameters could
only produce marginal perturbations in lung deformation, since
it was mainly dictated by the limiting geometry of the thoracic
cage. Another study investigated the effect of tissue hetero-
geneity while modeling lung expansion (Ilegbusi et al., 2014).
The elasticity modulus was estimated locally using an inverse
non-invasive method. In average, the obtained values decreased
with proximity to the diaphragm. The authors showed that the
history of deformation as well as its spatial distribution were
different when considering heterogeneous versus homogeneous
material properties. Other authors have also investigated the
use of non-constant, non-uniformly distributed negative surface
pressures to produce lung expansion. Eom et al. (2010) com-
puted negative pressure values from patient-specific Pressure-
Volume (P-V) curves calculated from 4DCT data. The FE de-
formation predictions for the whole breathing cycle were more
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accurate than simple linear interpolation between end expira-
tion and end inspiration deformations. Fuerst et al. (2015) au-
tomatically divided the lung surface in disjoint contact zones.
The negative pressure applied at the surface was then differ-
entiated for each contact zone, the specific values being found
through an inverse problem formulation. Although the authors
used homogeneous material properties, the results suggested an
improvement of the deformation estimation thanks to the het-
erogeneous surface pressures.

Several works have also approached lung deformation esti-
mation during breathing as a contraction motion. Al-Mayah
et al. (2008) proposed a deformable model of the lung and sur-
rounding structures reconstructed at the end of inhalation. Sur-
face displacements from the end inhalation to the end exhala-
tion phases were found using a mesh morphing method. These
displacements were imposed as boundary conditions on the in-
ner surface of the thoracic cage, which is in direct contact with
the deformable lung model. Interactions between the lung and
thoracic cage were modeled via frictionless contact, which al-
lowed the integration of lung sliding. This study was further ex-
tended to investigate the effects of contact friction (Al-Mayah
et al., 2009) or heterogeneous material properties (Al-Mayah
et al., 2010), as well as the influence of linear and non-linear
elasticity constitutive laws (Al-Mayah et al., 2011).

All the methods reported above model the lung parenchyma
as a single elastic continuum. In reality, the volume occupied
by the lung is composed of not only the parenchyma but also a
great quantity of air stored inside the airways and alveoli. Ex-
ternal forces exerted by the respiratory muscles allow the in-
halation or exhalation of air from the lung, ultimately resulting
in tissue deformation. Following this interpretation, the lung
can be modeled as a porous medium composed of two coexist-
ing physical domains: a solid domain (i.e. the parenchyma) and
a fluid domain (i.e. the air flowing inside the lung). Physical
laws governing the behavior of such porous medium constitute
the theory of poroelasticity, which has been previously used
to model breathing deformation. For instance, Ilegbusi et al.
(2012) proposed a poroelastic model to simulate lung deforma-
tion for a complete breathing cycle. Boundary conditions for
the fluid and solid domains consisted in a time varying positive
pressure and a fixed support, respectively. The authors reported
realistic deformations including a hysteresis deformation effect
when accounting for heterogeneous material properties. Grav-
ity was later added in the loads which improved the accuracy of
the predicted deformation (Seyfi Noferest et al., 2018). Berger
et al. (2016) also proposed a dynamic poroelastic model of the
lung tightly coupled with an airway network modeling the air-
ways. Physiologically realistic global measurements were re-
ported for normal and physiological breathing, using varying
airflow resistance and local elasticity.

To our knowledge, a single study has been very recently pro-
posed by ? to simulate lung deflation during a pneumothorax. A
hyperelastic model is constrained by external pressure, reduc-
ing the model volume until matching the observed deflated lung
volume. However, two CT images of the whole lung in supine
position are used in this study which provides much more in-
formation than what can be available during VATS. In terms of

modeling, a limit could be to estimate the deformation by large
tissue strain only while the loss of air can be preeminent for a
pneumothorax during VATS. A poroelastic model could instead
be better suited to separate the deformation of the two different
media, to model the air-tissue coupling in a macro-scale and
cost-effective manner, as well as to simulate air loss from the
fluid domain.

2.3. Hybrid methods for lung deformation compensation

Both image intensity-based and biomechanical-based meth-
ods have advantages and disadvantages. Intensity-based meth-
ods are limited by the intrinsic quality of intraoperative images
and the need for complex regularization strategies for realis-
tic motion estimation. On the other hand, good results can
be obtained on a voxel-by-voxel basis, especially for internal
structures, provided that images of adequate quality are avail-
able. Biomechanical models are limited by the uncertainties in
boundary conditions needed for realistic lung motion simula-
tions, the large variability in tissue parameters that could be dif-
ficult to estimate accurately, or the compliance of their compu-
tational needs with clinical practice. However, when compared
with intensity-based methods, biomechanical models can work
with less data as the underlying biophysical representation nat-
urally constrains the solution space. In addition, these models
are boundary-valued problems, which are compatible with envi-
ronments where primarily only surface information is available.
Also, approaches that use modeled physical and physiological
phenomena may provide insight into understanding disease and
its effects on lung behavior. The hypothesis of hybrid methods
is that combining the two strategies allows to compensate for
their individual limitations.

Hybrid methods have already been investigated for lung de-
formation estimation. Li et al. (2008) used intensity-based im-
age registration to estimate a deformation field from end of
exhalation to end of inhalation breathing phases. Dirichlet
boundary conditions (i.e. imposed displacements) were then
computed by interpolating the deformation field on the surface
nodes of a deformable FE lung mesh. A similar approach was
employed by Tehrani et al. (2015), who used Demons image
registration to estimate surface displacement boundary condi-
tions at several moments of the breathing cycle. In addition, the
authors studied the effects of tissue parameters and non-linear
elasticity laws on tumor displacement estimation accuracy, re-
porting best results under non-linear elasticity assumptions.

Other studies have used intensity-based image registration to
reduce residual errors resulting from biomechanical model mo-
tion estimation. For example, Samavati et al. (2015) used a
elasticity lung model to estimate lung contraction between end
of inhalation and end of exhalation. The estimated deforma-
tion was then refined using intensity-based registration, which
improved their estimation accuracy. Han et al. (2017) applied
the same methodology to lung expansion deformation estima-
tion during breathing. The authors compared their approach to
only intensity-based or only biomechanical-model based regis-
tration, and also evaluated the influence of tissue parameters,
contact friction and tissue heterogeneity. Their results show a
better performance of the hybrid approach, similar to that of
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intensity-based approaches that account for sliding motion. The
uncertainty of model parameters was accounted for by the re-
finement image-intensity step, allowing the use of simplified as-
sumptions for the biomechanical models in hybrid approaches.

Finally, Uneri et al. (2013) carried out a preliminary study us-
ing CBCT images of an inflated and deflated ex-vivo pig lung.
Although the authors did not use biomechanical modeling, a hy-
brid approach was implemented combining surface morphing
and nonrigid intensity-based image registration. The reported
results were promising, but the applicability of their method
to clinical practice remains to be determined, since the quality
of intraoperative VATS images is potentially lower than that of
the images used by the authors. Nakao et al. (2019) proposed
a surface-based shape model of lung deflation validated on
Beagle lungs, and more recently incorporated manually placed
landmarks to help with their estimation (?). However, valida-
tion results were reported only for surface landmarks, and the
applicability to internal lung deformation remains to be inves-
tigated. To our knowledge, these are to date the only studies
within the VATS context, but are limited to animal specimens
in non-clinical conditions.

In a preliminary study, we recently proposed a hybrid ap-
proach to account for pneumothorax related lung deformations
(Alvarez et al., 2019a). This method was evaluated on a ret-
rospective clinical case of needle biopsy with pneumothorax
complication, using a preoperative CT of the inflated lung and
a postoperative low-dose CT of the deflated lung. The present
work complements our deformation compensation approach
and propose its adaption to actual intraoperative CBCT images
acquired during VATS interventions.

3. Method Overview

From the preoperative, routinely acquired structural chest CT
image to the intraoperative surgical conditions, the lung under-
goes very large deformation. This deformation may be under-
stood as a combination of two main factors: (i) a change of the
patient pose from supine to lateral decubitus, which changes
the orientation of the body and hence the influence of gravity
on internal structures; and (ii) the pneumothorax, which induces
lung and hilum deformation. Accounting for these two sources
of deformation at once is a nontrivial task. To reduce the com-
plexity of this challenge, we thus introduced a functional ap-
proach that treats each source of deformation independently in
two sequential phases. The lung deformation caused by the
change of patient pose was first estimated, followed by the one
resulting from the pneumothorax. Intraoperative CBCT images
at each phase provided structural information of the deformed
lung, which was integrated into our hybrid nonrigid registra-
tion framework. In total, three anatomical images were used in
this study: a preoperative CT image containing the whole lung
of the patient in supine position (CT), and two intraoperative
CBCT images of the patient in lateral decubitus position. The
CBCT images provide a partial view of the inflated lung before
pneumothorax (CBCTin f ) and the deflated lung after pneumoth-
orax (CBCTde f ), respectively. It should be noted that only the
CT image is used in the clinical protocol of a VATS interven-
tion. Figure 1 shows the three images for one clinical case.

Fig. 1. Left: preoperative CT image with the patient in supine position.
Right: intraoperative CBCT images of the inflated (CBCTin f ) and deflated
(CBCTde f ) lung with the patient in lateral decubitus position. Middle: su-
perposition of the preoperative CT image rigidly registered to the intra-
operative CBCTde f image. The FOV of the CBCTde f image (outlined in
yellow) only provides a partial view of the lung. The nodule is encircled in
the preoperative CT image and is visible in all other images.

The overall methodology proposed in this work is depicted
in Fig. 2. A patient-specific biomechanical lung model was first
built from the preoperative CT image. As a first approximation,
we considered the lung as a single unified structure. The three
or two lobes of a right or left lung, respectively, were then not
modeled separately. A poroelastic constitutive law was chosen
to represent the parenchyma and the air flow within the lung.

The first stage of our process, later referred as Phase 1, esti-
mates the deformation associated to the patient change of pose.
Nonrigid intensity-based image registration was performed be-
tween the CT and CBCTin f images to compute the deforma-
tion within the field of view (FOV) of the CBCTin f image. The
biomechanical model was then used extrapolate this deforma-
tion to the whole extent of the lung, including portions that are
not visible in CBCTin f . This estimation of the whole lung ge-
ometry will allow defining proper boundary conditions in the
next phase, which would not be possible with only the lung por-
tion included in the CBCTin f FOV. After this Phase 1, that will
be detailed in Sec. 6, the complete intraoperative lung geometry
before pneumothorax is thus estimated.

The second stage of our method, Phase 2, estimates the de-
formation induced by the pneumothorax. Surface information
of the deflated lung was first extracted from the CBCTde f im-
age, while also evaluating the associated deformation of the
hilum. An inverse problem was then iteratively solved, us-
ing biomechanical simulations, to identify the model param-
eters that minimize a distance between the lung model and the
CBCTde f inputs. At the end of this process the final pneumotho-
rax deformation is applied to the preoperative CT image, which
provides an estimation of the intraoperative lung nodule posi-
tion. Phase 2 of our methodology will be described in Sec. 7.

4. Poroelastic model of the lung

The physical laws governing the poroelastic material used in
this work were first introduced in Biot’s theory of 3D soil con-
solidation (Biot, 1941, 1955). The total stress in the porous ma-
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Fig. 2. Overview of the proposed nodule localization framework. The pro-
cess is split into two stages, Phase 1 and Phase 2, that respectively estimate
the change of pose deformation then the pneumothorax deformation.

terial is carried partly by the fluid and partly by the solid struc-
ture. The hydrostatic pressure of the fluid inside the pores gen-
erates tensile/compressive stresses that cause deformation of the
whole medium. It is assumed that the total stress on the porous
medium can be decomposed as the sum of the stress carried by
the solid structure and the stress carried by the fluid (Verruijt,
2013). This is known as the principle of effective stress and is
described by the expression

σt = σe − αpI (1)

where σt and σe are the stress tensors for the total and effective
stresses, p is the hydrostatic pore pressure and I is the second-
order identity tensor. The parameter α is the Biot-Willis coef-
ficient that describes the amount of bulk volume change that is
explained by a pore pressure change under constant stress.

The definition of the effective stress tensor σe depends upon
the mechanical behavior assumed for the solid medium. In this
work, we used a first order approximation and adopted the the-
ory of linear elasticity. We hypothesized that most of the defor-
mation is caused by the fluid medium, thus, the solid medium
was assumed linearly elastic (i.e. undergoing small deforma-
tion). The solid medium was also considered isotropic. It
should be noted that more elaborate fluid-solid interaction non-
linear models are possible and this work represents a lineariza-
tion of considerably complex physics as a first step in under-
standing the potential of a model-based approach. Following
these assumptions, the effective stress σe is related to the defor-
mation tensor ε by the Hooke’s constitutive equation

σe = λ tr(ε)I + 2µε (2)

where λ and µ are the Lamé constants that characterize the tis-
sue’s response to stress. These Lamé constants can also be writ-

ten in terms of the Young’s Modulus E and Poisson’s ratio ν
through the relations

λ =
Eν

(1 + ν)(1 − 2ν)
µ =

E
2(1 + ν)

(3)

The strain tensor ε of Eq. (2) is defined in terms of tissue
displacements u as

ε =
1
2

(∇u + ∇uT ) (4)

This corresponds to the definition of the infinitesimal strain
tensor, where second-order terms are neglected. This is a first-
order geometrical approximation of tissue deformation.

Mechanical equilibrium is reached when stresses within the
porous medium are in balance with external loads. If inertial
forces are not considered and the only external force is grav-
ity, the total stress tensor σt must then satisfy the equilibrium
equation

∇ · σt + ρg = 0 (5)

where ρ is the density of the porous medium and g is the grav-
itational acceleration vector. Since the porous medium is com-
posed of two phases, its density may also be defined in terms of
its constituent densities as

ρ = ρs(1 − φ) + ρ f φ (6)

where ρs and ρ f are the densities of the solid and fluid media,
respectively, and φ is the porosity of the whole medium.

An additional equation is needed in order to complete the
description of the continuum. In Biot’s theory of consolidation,
the fluid flows through the pores according to Darcy’s law. This
law proposes a relationship between the instantaneous flow rate
q of an incompressible fluid through a porous medium, which
is expressed by the equation

q = − κ

µ f
∇p (7)

where κ is the intrinsic permeability of the porous medium and
µ f the dynamic viscosity of the fluid. The conservation of fluid
and solid mass is expressed by the storage equation

∇ · q + S
∂p
∂t

= −α∂ε
∂t

(8)

where S is the storativity parameter and ε = ∂ux/∂x+∂uy/∂y+

∂uz/∂z = ∇ · u is the volumetric strain.
The term to the right hand of Eq. (8) expresses the time rate

of change of dilatation/contraction of the solid matrix and how
that affects the nature of fluid mass transport. For instance, if
we consider the pores to be totally saturated with fluid, a nega-
tive rate of volumetric strain will shrink the porous material and
immediately squeeze fluid out of the pores by means of rais-
ing interstitial pressure. Such fully saturated porous medium is
modeled by choosing the parameters α = 1 and S = 0. On the
contrary, if the pores are not fully saturated with fluid, the rate
of volumetric strain does not have an instantaneous effect on the
distribution of pore pressure. This is represented by the second
term of Eq. (8) being nonzero, which results in a delay on the
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transferal of volumetric strain to net fluid flow. The storativity
parameter S is also understood as the amount of fluid that can
be forced into the porous medium while maintaining a constant
bulk volume. Eq. (8) is in essence a mass conservation law
that relates changes in volumetric strain of the solid medium to
changes in hydration level.

Animal studies were carried out by Miga et al. in order to
evaluate the applicability of a poroelastic model to brain shift
deformation compensation. The authors extracted in vivo mea-
surements of displacement and interstitial pressure of interstitial
fluid within the context of two separate deformations sources,
an expanding mass represented by a balloon catheter (Paulsen
et al., 1999), and a temporal piston-delivery system (Miga et al.,
2000). The objective was to determine the accuracy of the
poroelastic model to compensate for the main bulk brain defor-
mation under surgically realistic loads. The results reported in
those studies in conjunction with more recent follow-up studies
(Narasimhan et al., 2018) suggest that deformation and inter-
stitial pressure gradients measured from tissue can be predicted
reasonably well using relatively simple boundary conditions on
the poroelastic model. Another finding in the human environ-
ment was that sources of brain deformation were identified that
involved significant fluid exchange with the parenchymal space
as a result of hyperosmotic agents (Chen et al., 2011). This ex-
change is very similar to the evacuation of air occurring in the
collapsing lung. Based on that work, an additional source term
was incorporated into Eq. (8) to represent this fluid evacuation
dynamic, so that the storage equation is rewritten as

∇ · q + S
∂p
∂t

= −α∂ε
∂t
− κb(p − pc) (9)

with −κb(p − pc) being the source term allowing for fluid evac-
uation. The parameter κb represents intrabronchi permeability.
The parameter pc represents the pressure at the interior of the
anatomical structures that allow fluid evacuation. In this present
work, pc corresponds to intrabronchi pressure. It can be seen
from Eq. (9) that fluid evacuation (i.e. fluid sinking) occurs
for positive values of κb(p − pc). This modified version of the
poroelastic equations was used to estimate brain shift deforma-
tion (Dumpuri et al., 2007; Kay Sun et al., 2014), and more re-
cently yielded promising results to estimate lung pneumothorax
deformation (Alvarez et al., 2019a).

Finally, Eqs. (5) and (9) fully describe the dynamic be-
haviour of a poroelastic material with allowance for fluid evacu-
ation. However, computing the transition from the undeformed
configuration to the equilibrium configuration is not necessary
in our context. Instead, we only seek to estimate the deforma-
tion once the lung has settled after the pneumothorax. Conse-
quently, computing only the equilibrium configuration is suf-
ficient. We then implemented the steady-state version of the
poroelastic equations previously presented, simplified as:

∇ · σe − α∇p + ρg = 0 (10)

−∇ ·
(
κ

µ f
∇p

)
+ κb(p − pc) = 0 (11)

The solution to these equations was computed using a FEM
formulation implemented on the open source library GetFEM

(http://getfem.org/). The tissue parameters and boundary
conditions used for each simulation are described in Sec. 7.2.

5. Preprocessing of the CBCT images

CBCT scanners produce image reconstruction artifacts as
any other conventional CT scanner. However, the acquisition
of the CT and CBCT images differ on the projection data used,
namely 1D for the CT (fan-beam) and 2D for the CBCT (cone
beam). The 2D projection strategy relies on larger detectors that
allow the CBCT scanner to have a better spatial resolution and
reduced irradiation dose (Kalender and Kyriakou, 2007). These
are desirable features that make the CBCT scanner portable and
OR-compatible. However, the benefits come in detriment of
the image quality, since the larger detector suffers from higher
image intensity scattering (Schulze et al., 2011), and the par-
ticular mechanics of the acquisition process introduce cupping,
aliasing and truncation artifacts (Kalender and Kyriakou, 2007;
Schulze et al., 2011). The presence of these artifacts will un-
dermine the performance of any processing algorithm based on
Hounsfield unit (HU) values. We thus proposed to pre-process
CBCT images before applying our registration method.

Two artifacts affect HU values: the truncation artifact that
appears when the imaged object is larger than the scanner FOV
(Lehr, 1983), and the cupping artifact due to scatter radiation.
As a result, the reconstructed images present an overestimation
of HU values near the circular border of the FOV and an un-
derestimation of HU values towards the center of the FOV. In
this work, we assumed the reconstructed image to be the sum of
real HU values and artifact effects. We modeled these artifact
effects via a piece-wise linear function that is circular symmet-
ric with respect to the cranio-caudal axis (i.e. the rotation axis
of the CBCT scanner) and constant across axial slices. The
shape of this function was designed empirically by observing
CBCT images. The artifact-corrected images were obtained by
subtracting the modeled artifacts to the reconstructed images.

In addition to HU artifacts, reconstruction errors are also
present at the superior and inferior borders of the FOV, in the
cranio-caudal direction. These errors are caused by projection
data missing in several projections of the whole gantry rotation,
as well as beam scattering and aliasing. As a consequence,
the reconstructed image is severely distorted in these regions,
where structural information is almost completely lost. We ob-
served that this effect is present in the axial slices of the first and
last 12 mm of the image approximately. For all the processing
algorithms described in subsequent sections, we did not take
into account the information contained in these slices.

6. Phase 1: Estimation of the change of pose deformation

This section describes the Phase 1 processes of the general
workflow presented in Fig. 2. The aim is to estimate the com-
plete geometry of the lung in intraoperative conditions from
the CBCTin f image, before the pneumothorax is induced. A
schema of these Phase 1 processes is presented in Fig. 3.

First, a deformation field was computed between the preoper-
ative CT and intraoperative CBCTin f images via intensity-based
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Fig. 3. Schematic diagram of the Phase 1 process to estimate the change of pose deformation. The top block illustrates the image-based registration of
the preoperative CT and intraoperative CBCTin f images. After rigidly registering the spine, an elastic registration based on anatomical segmentations of
the lung is carried out. The bottom block concerns the estimation of the complete lung geometry after the change of pose deformation. The previously
computed deformation field is transferred as imposed displacements boundary conditions on a FEM model. This model extrapolates the deformation to
the whole extent of the lung, including regions that are not within the FOV of the CBCTin f image.

image registration. The computed deformation field then de-
fined imposed displacement boundary conditions for a biome-
chanical model, to extrapolate the deformation to the entire
lung.

6.1. Image-based change of pose estimation

The intensity-based change of pose estimation consists in
an initial rigid registration of the spine followed by a sub-
anatomical elastic registration approach as proposed by Wu
et al. (2008). This approach independently registers slid-
ing structures by selectively masking image intensities with
anatomical segmentations. Thus, a segmentation of lung
parenchyma is necessary for each image. While this can be
performed automatically in the CT image, it is much more chal-
lenging in the CBCTin f image due to artifacts, noise, and lung
deformation after the change of pose.

Therefore, a multi-step method was implemented as follows:
(i) alignment using rigid registration over the spine; (ii) lung
segmentation in the CT image; (iii) initial elastic registration
with the CT lung segmentation; (iv) lung segmentation of the
CBCT image using the obtained deformation field, followed
by a sub-anatomical elastic registration with both segmenta-
tions. The three registration processes were performed with the
Elastix toolbox (Klein et al., 2010).

6.1.1. Rigid registration of the spine
The CT and CBCTin f images are defined in non-overlapping

reference frames, as they were acquired by distinct scanners
with the patient in a different pose. An initial rigid transforma-
tion between the two images is thus necessary before consid-
ering any local deformations. In this study, we used the spine

for the rigid registration process, as it is the only structure that
remains relatively rigid between the two images. Only small
changes of curvature were observed, which were later captured
with the elastic registration steps.

The spine was semi-automatically segmented in the CBCTin f

image. First, a line profile crossing the spine was computed.
Then, a minimal Region of Interest (ROI) containing the whole
spine was determined using the spatial derivative of intensi-
ties on the line profile. After thresholding the image intensities
within the ROI, connected component analysis and morpholog-
ical operations yielded the final spine segmentation.

The rigid registration process was carried out with the preop-
erative CT as the moving image and the intraoperative CBCTin f

as the fixed image. A Normalized Correlation Coefficient
(NCC) similarity metric was computed over a series of 2000
image points randomly pooled from the spine segmentation.
Since vertebrae resemble significantly one another, one spine
landmark was manually selected to initialize the transformation
and avoid shifting in the spine’s direction.

6.1.2. Segmentation of the lung parenchyma in the CT image
The lung parenchyma was segmented in the preoperative CT

image using our customized version of Chest Imaging Platform
(https://chestimagingplatform.org/), an open source
library for image processing and analysis of chest CTs. First,
Otsu’s thresholding method was used to generate an initial seg-
mentation containing both lungs and the airways. A point inside
the trachea was then automatically detected using connected
component analysis on an axial slice at 40 mm from the top
of this segmentation. This point was used as the starting seed of
a 3D region growing algorithm that segmented the trachea and
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the first airway branches. The resulting airways segmentation
was removed from the initial segmentation, which allowed the
separation of the lungs. The segmentation of the operated lung
was manually adjusted to include areas that remained poorly-
segmented, notably near the hilum. Finally, morphological
closing was used to fill in the remaining holes and to smooth
out any sharp contours. With respect to the original method in
Chest Imaging Platform, our implementation detects automati-
cally the seed point for the 3D region growing algorithm, and
uses heuristics based on segmented volume ratios to avoid leak-
age during region growing.

6.1.3. Initial elastic registration
An initial elastic registration step was carried out, where the

NCC similarity metric was computed from voxels inside the
rigidly registered CT lung segmentation. Large deformations
were accounted for using a multi-resolution Free Form Defor-
mation (FFD) approach, with a B-Splines transformation model
parameterized on a regular grid in the fixed image domain (i.e.
CBCTin f ). A total of 5 incremental grid resolutions were used,
with increments being computed by factors of two. The finest
resolution had a regular grid size of 16 mm.

6.1.4. Sub-anatomical elastic registration
After the initial elastic registration, the CT lung segmenta-

tion was warped with the resulting deformation field to pro-
vide an estimation of the lung parenchyma segmentation in the
CBCTin f image. The resulting segmentation was manually ad-
justed to correct for poorly-segmented regions.

Finally, following Wu et al. (2008), both images were masked
with the lung segmentations. Voxels outside the segmentations
were replaced with a constant HU value below the range of pos-
sible parenchyma values (i.e. below -1000 HU, corresponding
to air). The lung segmentation in the intraoperative CBCTin f

image was extended by 5 mm using morphological dilation,
and elastic registration was performed again as described be-
fore (Sec. 6.1.3) but using the masked volumes and this ex-
tended segmentation. Using this approach, points lying outside
the lung in the fixed image are registered to the same intensity
values in the moving image, which also lie outside the lung. In
addition, matching outside points has no cost in terms of the
similarity metric, which results in the registration process to be
guided mostly by the information within the lung. As a result,
this process minimizes the misalignment error of the internal
lung structures while allowing sliding at the lung interface.

The resulting deformation field maps all points from the fixed
image (CBCTin f ) domain to the moving image (rigidly regis-
tered CT) domain. Thanks to the multi-grid, multi-resolution
transformation model, the spatial Jacobian of the deformation
field is positive throughout the whole domain (Yongchoel Choi
and Seungyong Lee, 1999). This ensures the invertibility of the
deformation field, which was important to later compute im-
posed displacement boundary conditions.

6.2. Extrapolation of the deformation to the entire lung
The deformation field obtained in the previous step provides

a first estimation of the change of pose deformation, but is lim-
ited to the FOV of the CBCTin f image. A FEM model was then

used to extrapolate this deformation to the entire lung, espe-
cially in the lung apex and/or the diaphragm area that are usu-
ally at least partially not visible.The hypothesis is that the un-
known deformation in these regions can be estimated by means
of mechanical forces that emerge to counter external loads ap-
plied in the middle of the lung (i.e. inside the FOV). In other
words, deformation in unknown regions is estimated by finding
a state of mechanical equilibrium after imposing the partially
known deformation. Note that we did not try to simulate the
very complex mechanisms of the patient change of pose; we
have so far no means of estimating the actual external and body
loads of this complex phenomenon. Instead, we tried to esti-
mate the entire lung deformation for the practical purposes of
intraoperative surgical guidance.

The following subsections describe the FE extrapolation pro-
cess as illustrated at the bottom of Fig. 3.

6.2.1. FE mesh generation
The geometry of the lung was meshed from the preoperative

lung segmentation using CGAL library (https://www.cgal.
org/). This FE mesh consisted of approximately 27000 first
order tetrahedral elements with an average size of 8 mm.

6.2.2. Computation of imposed displacements
The FEM boundary conditions were computed from the rigid

transformation and the deformation field described previously
in Sec. 6.1. First, the patient-specific preoperative FE mesh
was rigidly registered to the intraoperative setting using the
rigid transformation parameters. Then, we calculated the de-
formation associated to every node of the mesh lying within
the bounds of the change of pose deformation field. The de-
formation field at every node position was inverted using the
iterative algorithm proposed by Crum et al. (2007), to define
the displacement from the rigidly registered CT domain to the
CBCTin f domain. As a result, we obtained a set of displace-
ment vectors that can be used as nodal boundary conditions in a
FE simulation. In the following, we will refer to these boundary
conditions as imposed displacements.

6.2.3. FE estimation of the change of pose
The lung was modeled as a homogeneous and isotropic

medium, governed by the laws described by Eqs. (10) and (11).
We hypothesized that the change of pose deformation is mostly
caused by gravity and contacts between the lung and its sur-
rounding structures. Thus, effects of the fluid domain were as-
sumed to be negligible at this stage, which implies fluid mass
conservation with no flow throughout the whole domain.

For the fluid domain, we prescribed homogeneous Dirichlet
boundary conditions of pressure at the whole lung surface, with
the intrabronchi permeability parameter κb set to zero to ensure
mass conservation. For the solid domain, imposed displace-
ments were applied to surface and internal nodes using Dirich-
let boundary conditions and Lagrange multipliers, respectively.
The remaining nodes were left unconstrained.

Since imposed displacements boundary conditions enforce
the final deformation, tissue parameters have little influence on
the final equilibrium state. Thus, we simply used the parameters
of the pneumothorax estimation phase described in Sec. 7.2.4.
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7. Phase 2: Estimation of the pneumothorax deformation

This section describes the second stage of the general work-
flow presented in Fig. 2. The pneumothorax deformation was
estimated using a pipeline based on an inverse formulation, as
illustrated in Fig. 4. This inverse formulation fitted the lung
biomechanical model to the real intraoperative deflated state ob-
served in the CBCTde f image. The nodule position was then up-
dated by warping the preoperative CT with the change of pose
deformation and then the simulated pneumothorax deformation.

7.1. Intraoperative data processing
The intraoperative CBCTin f and CBCTde f images can be in

misalignment, because the patient may had to be moved be-
tween the two scans so that the surgeon could better perform
the thoracic incisions. We thus rigidly registered these images
using the spine as before (Sec. 6.1.1). The resulting transfor-
mation served to align the FE extrapolated lung model with the
CBCTde f image. Afterwards, this image was processed to ex-
tract the surface of the deflated lung and to estimate the hilum
deformation after pneumothorax.

7.1.1. Segmentation of the deflated lung surface
The lung deflation causes the complete collapse of some air-

way branches and alveoli. This condition, known as atelectasis,
locally increases the density of the lung parenchyma, making its
boundary with other soft tissues barely distinguishable in some
regions. Therefore, automatically segmenting the deflated lung
is extremely challenging. Since providing an automatic method
was out of the scope of this paper, we decided to segment this
surface manually. In this study, only the external surface of the
deflated lung is considered.

A set of about 300 points were manually placed over the
CBCTde f image along the surface of the deflated lung. The
distance between points varied with the local curvature of the
deflated surface, ranging roughly from 10 mm to 30 mm. Mesh-
Lab (Cignoni et al., 2008) was used to reconstruct a triangu-
lar surface from these points. First, the convex-hull of the
point cloud provided an initial estimation of the surface. Then,
a high resolution cloud of evenly spaced points was sampled
from this initial surface using the Poisson disk sampling algo-
rithm (Corsini et al., 2012). Finally, the ball-pivoting algorithm
(Bernardini et al., 1999) was used to reconstruct a surface from
the sampled point cloud. This latter algorithm forms triangles
each time a ball of a predefined radius touches three points
without containing any other point. This complete procedure
allowed the reconstruction of a refined surface of triangles from
a sparse cloud of manually placed points. It is worth noting that
because of the convex-hull algorithm, all concave details from
the initial point cloud (such as lobe sliding and fissure open-
ing) were not reconstructed. However, this goes in accordance
with our single structure assumption for representing the lung
anatomy.

7.1.2. Estimation of the hilum deformation
During pneumothorax, the hilum deforms in the same direc-

tion that the lung deflates. The extent of this deformation is

intervention-dependent and unknown a priori. In addition, re-
gions of the lung parenchyma closest to the hilum are often to-
tally collapsed by the pneumothorax. The image intensity of
the hilum and the collapsed parenchyma become nearly indis-
tinguishable. For these reasons, in this study, we used the de-
formation of the main airways as a surrogate for the hilum de-
formation. We estimated this airways deformation by means of
intensity-based image registration. First, the three main level
airways were semi-automatically segmented from the CBCTde f

image. This segmentation was extended by 5 mm using mor-
phological dilation in order to ensure the inclusion of airway
contours (see purple contours on Fig. 4). Elastic registration be-
tween the rigidly registered CBCTin f and the CBCTde f images
was then performed using the NCC similarity metric computed
over the airways segmentation. The resulting deformation field
was used as an estimation of the hilum deformation.

7.2. Simulation of the pneumothorax
Alveoli have a strong tendency to collapse caused by the in-

ward recoil of their distended walls. These forces are present
in varying degree at every moment during normal breathing.
The reason why the lung does not collapse is because it gets
pulled outwards by the chest wall and diaphragm, whose forces
act on the lung surface thanks to the negative pressure in the
pleural cavity. This outward pull corresponds to the transmural
pressure, which is defined as the pressure gradient between the
interior of the lung and the pleural cavity. At the end of expira-
tion, these intrapleural and transmural pressures are estimated
to -5 cm H2O and to 5 cm H2O, respectively (Levitzky, 2007).

During pneumothorax, the rupture of the chest wall result-
ing from surgical thoracic incisions creates a direct connection
of the pleural cavity with the atmosphere. This increases the
intrapleural pressure as air rushes in, until it becomes equal to
the atmospheric pressure. This in turn decreases the transmu-
ral pressure that normally holds the lung open, which causes
alveolar walls to collapse and squeeze air out of the lung. As il-
lustrated in Fig. 5, the lung deflation during pneumothorax then
occurs because the alveoli recoil forces become unopposed af-
ter the “disappearance” of outward-pulling forces at the surface
of the lung. In addition, the deflating lung sags downwards un-
der the effect of gravity.

A fully detailed modeling of the lung and pneumothorax phe-
nomenon would require a stress-free model of the deflated lung
loaded with all forces and pressures until equilibrium, which
would be very complex. Therefore, we opted for a simpler
functional approach in which the inflated lung at the end of
expiration is considered stress-free, and the disappearance of
the transmural pressure is approximated with a hydrostatic air
pressure of the same amount (5 cm H2O). This fixed pressure
is applied as Dirichlet boundary conditions for the fluid do-
main at all surface nodes of the FE mesh. In combination with
the fluid evacuation term κb(p − pc) of Eq. (9), this setup al-
lows for pressure gradients to develop within the lung. Thanks
to the effective-stress principle (Eq. (1)), these gradients in-
duce shrinking internal forces similar to alveoli recoil. In other
words, this approach produces lung deflation via compressive
body forces at every material point, rather than normal forces
applied at the lung surface.
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Fig. 4. Schematic diagram of the Phase 2 stage to estimate the pneumothorax deformation. Intraoperative images are processed to segment the surface of
the deflated lung, and to compute a deformation field approximating the hilum deformation between CBCTin f and CBCTde f . An inverse problem based
on FE simulations estimated the pneumothorax deformation. Tissue parameters were optimized until the simulated model best fits the intraoperative data.
Finally, the intraoperative nodule position is obtained by warping the undeformed position with the simulated pneumothorax deformation.

Fig. 5. Schematic representation of the pneumothorax phenomenon. Left,
at end of expiration the lung is in equilibrium and there is no airflow. Right,
the rupture in the chest wall causes an increase of the intrapleural pressure
and a decrease of the transmural pressure. The chest wall no longer pulls
the surface of the lung outwards. The lung collapses due to alveoli inward
recoil and gravity. The flow of air is indicated with black arrows.

7.2.1. Boundary conditions and loads

For the fluid domain, a fixed hydrostatic pressure of
5 cm H2O was prescribed to all surface nodes through Dirich-
let boundary conditions, whereas the remaining nodes were
left with the natural no-flux boundary condition. As for the
solid domain, nodes inside the main airways were constrained
with imposed displacements coming from the estimation of the
hilum deformation. Remaining nodes were left with the natu-
ral stress-free boundary condition. Finally, a gravitational load
was applied to the whole porous medium in the lateral to medial
direction (horizontal axis in the CBCTde f image).

7.2.2. Contact with the thoracic cage
Frictionless contact conditions were used to simulate the de-

forming lung sliding along the parietal pleura, i.e. the inner
surface of the thoracic cage. This surface corresponds to the
outer surface of the initial FE lung mesh, before simulation,
that was re-sampled with a coarser mean triangle size of ap-
proximately 20 mm. This re-sampled surface, later referred as
the contact surface, was assumed rigid throughout the simu-
lations. Node-to-node frictionless contact conditions were pre-
scribed on all surface nodes of the FE lung model, excluding the
nodes with imposed displacement boundary conditions. These
contact conditions restrict the deformation of the lung, and can
be expressed using the following inequality constraints:

g(x) ≥ 0 (12)
σn(x) ≤ 0 (13)

g(x)σn(x) = 0 (14)

where g(x) is the gap distance between the contact surface and
the deformable surface at the material point x; and σn(x) is the
applied normal contact force at the material point x.

The gap distance is calculated as g(x) = g0(x) + u(x) · v,
where v is the inward pointing normal of the contact surface,
g0(x) is the initial gap distance before deformation, and u(x)
is the displacement vector. The distance g(x) is thus negative
when there is penetration of the deformable surface into the
contact surface. The term σn(x) is a shorthand notation for
(σ(x) n) · n, the projection of the Cauchy traction at the ma-
terial point x onto the outward pointing normal n.

The Eqs. (12) to (14) correspond to the Signorini’s condi-
tions. The expression in Eq. (12) represents impenetrability,
while Eq. (13) states that the contact forces must always be
compressive. The complementary condition in Eq. (14) allows
contact forces to be generated only during contact.
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7.2.3. Contact with the upward moving diaphragm
During surgery, the use of curare (a muscle relaxant) relieves

tension in the diaphragm that then deforms under the pressure
from abdominal organs. This deformation is transferred to the
lung parenchyma which moves upwards towards the apex. Al-
though this phenomenon is clinically observed for all patients,
those with higher indices of obesity undergo larger diaphragm
displacement.

During intraoperative imaging, the position of the diaphragm
is not always in the FOV of the CBCT images. We thus intro-
duced an additional contact surface representing the diaphragm
that can push the lung model upwards during the FE simula-
tions. This diaphragm contact surface was initialized as the
lower surface of the initial FE lung mesh, before simulation,
that was re-sampled with a coarser mean triangle size of approx-
imately 20 mm. Since the position of this diaphragm surface
was unknown in the intraoperative CBCT images, we defined
its position with an additional parameter ddiaph. The surface
is allowed to move towards the apex along the principal axis of
the lung’s geometry, which was computed using Principal Com-
ponent Analysis (PCA) on the mesh nodes. ddiaph represent the
distance, along the vertical axis, between the current diaphragm
position and its initial position. This displacement was included
in the parameters to be optimized by our inverse problem for-
mulation, with a minimum value of 15 mm defined empirically
by clinical observation.

7.2.4. Material properties
The lung tissue was considered as an isotropic and homo-

geneous poroelastic continuum. An important characteristic of
our pneumothorax modeling approach is the allowance of air
evacuation. We hypothesized that during pneumothorax air ex-
changes happen at the level of small bronchi, resulting in air
being transported out of the porous medium through the air-
ways. These exchange effects were approximated by an organ-
wide distributed term κb(p − pc) that allowed the simulation
of air evacuation (Eq. (9)). In addition, we hypothesized that
tissue porosity may change from patient to patient according
to his/her response to general anesthesia and mechanical ven-
tilation, and the amount of atelectasis. The values for tissue
porosity and intrabronchi permeability are unknown for every
particular surgery, and were then included in the parameters to
be optimized by our inverse problem formulation. For the re-
maining material properties, values and ranges reported in pre-
vious studies were chosen (Alvarez et al., 2019a; Kay Sun et al.,
2014; Seyfi Noferest et al., 2018). Table 1 collects the values
used during the pneumothorax simulations.

7.3. Inverse problem formulation

The amount of pneumothorax deformation observed during a
VATS intervention is patient and intervention dependent. This
difference in deformation can be translated as different values
for specific model parameters. Since these values are unknown
in advance, we proposed to estimate them using an inverse
problem formulation. The goal was to simulate several pneu-
mothorax deformations and to optimize the parameters until the
model best reproduces the observed intraoperative deformation.

Table 1. Material properties and their values during pneumothorax simu-
lations. The last three parameters are patient and intervention specific and
varied within the reported range during an optimization process.

Parameter Value Units
E 550 Pa
ν 0.35 -
α 1.0 -
ρs 700 kg / m3

ρ f 1.205 kg / m3

κ 2.75 × 10−17 m2

µ f 1.83 × 10−5 Pa·s
pc 0 Pa
g 9.81 m / s2

φ [0.00 , 0.93] -
κb [1.0 × 10−14 , 1.0 × 10−4] 1 / Pa·s

ddiaph [15 × 10−3 , 40 × 10−3] m

The trust-region non-linear optimization method was used to
solve the inverse problem. The cost function was defined as a
surface-to-surface distance between the lung deflated surface,
segmented from the CBCTde f image (c.f. Sec. 7.1.1), and the
simulated lung deformed surface. Formally, we solved the fol-
lowing problem:

arg min
θ

Ω(θ) =
1
N

N∑

i=1

‖pi − qi(θ)‖2 (15)

where θ is a set of tissue parameters and Ω the surface-to-
surface distance. N is the total number of nodes in the target
surface segmented in CBCTde f , pi is an indexed node of that
surface and qi(θ) is its corresponding closest node on the sur-
face of the deformed FE mesh.

Since the optimization may be highly sensitive to initializa-
tion, we repeated the process three times with a different ini-
tialization parameter vector θ0. Values were each time ran-
domly generated from realizations of uniform distributions with
empirically-defined ranges (see Table 1). In this study all three
simulations were always consistent, and only the first simula-
tion results were reported in the results section.

7.4. Nodule localization
Tissue parameters (θ) that solve the optimization problem de-

fined in Eq. (15) produce the lung deformation that more closely
approaches the intraoperative observed lung surface. The asso-
ciated deformation field is defined on a spatial domain bounded
by the FE mesh, and can be computed at any point by means of
barycentric interpolation. This interpolation was used to warp
the preoperative CT, which provided an estimation of the nod-
ule position after pneumothorax.

8. Results

This section presents and comments on the quantitative and
qualitative findings from this study. The clinical dataset used
for validation is first described, followed by the evaluation of
the deformation estimated after the change of pose (Phase 1)
and pneumothorax (Phase 2).
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Table 2. Study characteristics for each clinical case. The pneumothorax
was controlled following two techniques: mechanical control of air inflow
into the lung through the intubation tube; or pressurized insufflation of
CO2 into the thoracic cage through airtight trocars. The number of vali-
dation landmarks depends on the visibility of lung structures in the images.

Case Operated lung Pneumothorax # landmarks
1 Left Air 27
2 Right Air 40
3 Right Air 46
4 Right Air 23
5 Left CO2 23

8.1. Clinical dataset

Our retrospective study included five patients with single pul-
monary nodules detected by CT examination. All were en-
rolled for a VATS wedge resection guided by intraoperative
CBCT imaging. Our experimental protocol is an extension of
the original work introduced by Rouzé et al. (2016), with two
CBCT acquisitions instead of one, one before and one after
induction of the pneumothorax. This study was performed at
Rennes University Hospital (France) with the approval of the
local ethics committee (2016-A01353-48 35RC16 9838). All
patients signed an informed consent before surgery.

The preoperative CT is the standard diagnostic image. This
image was acquired under breath-hold at end-of-inhalation and
with the patient in supine position. During surgery, all pa-
tients were anesthetized and intubated with a double lumen
tube (Bronchocath, Mansfield, MA, USA) that allows inde-
pendent ventilation of the operated and non-operated lungs.
Both CBCT images were acquired with a C-arm system (Ar-
tis Zeego, Siemens Healthcare, Germany) after general anes-
thesia and mechanical ventilation, with the patient in lateral
decubitus position. The first CBCT image (CBCTin f ) was ac-
quired before the creation of surgical incisions, with the op-
erated lung still inflated; ventilation was momentarily stopped
at the end of expiration. The second CBCT image (CBCTde f )
was acquired after pneumothorax, with the operated lung de-
flated. The amount of lung deflation was controlled to provide
sufficient space for maneuvering during surgery while avoiding
total lung collapse. This was achieved by means of two mecha-
nisms. For the first mechanism, patients were put under single-
lung ventilation (breathing through the non-operated lung only)
and air entered naturally into the pleural cavity through the tho-
racic incisions. The amount of deflation was controlled by in-
sufflating oxygen into the operated lung through the lumen of
the tube. For the second mechanism, airtight trocars were used
and CO2 was insufflated into the pleural cavity with the pa-
tient under double-lung ventilation. The amount of deflation
was controlled by modulating the CO2 pressure.

For validation purposes, paired anatomical landmarks were
manually placed on the CT, CBCTin f and CBCTde f images.
This was performed by a single rater, the expert thoracic sur-
geon who performed all the VATS interventions. A total of
23 to 45 landmarks were placed for each patient. These land-
marks were distributed among vessel and airway bifurcations
in the most complex image, i.e. the CBCTde f image, and then
were localized in the CBCTin f and CT images. The validation

Fig. 6. Spatial distribution of anatomical landmarks within the lung FE
mesh reconstructed from the preoperative CT image.

was based on Target Registration Errors (TRE) computed as
the distance between corresponding landmarks after deforma-
tion compensation. Differences among TRE distributions were
tested with the non parametric Wilcoxon signed rank test, with
a confidence level of 5%. The study characteristics for each
clinical case are detailed in Table 2.

Landmark positions are illustrated in two representative cases
in Fig. 6. Since these anatomical landmarks are used for val-
idation, their positions should be distributed inside the lung
parenchyma as homogeneously as possible. However, the re-
strictions of the image quality were difficult to surpass and re-
duced the spatial distribution of these landmarks in some cases.
Notably, structures of medium-size and below that are clearly
visible in the preoperative CT image were impossible to locate
in the CBCTde f image. It is clear from Fig. 6 that validation can
only be performed for regions of the lung inside the FOV of the
CBCT scans. Notably, regions of the apex and diaphragm do
not contain any landmarks.

8.2. Results: Phase 1, estimation of the change of pose

The change of pose deformation estimation relies heavily on
the computation of a deformation field through intensity based
image registration. The accuracy of this deformation field was
evaluated with TRE distributions computed from the landmarks
of the preoperative CT and intraoperative CBCTin f images.
Figure 7 depicts the obtained TRE distributions for all clinical
cases. First, rigid registration provided an insight on the amount
of deformation induced by the change of patient pose. We could
observe large deformations, with the main structures in ma-
jor miss-alignment. We obtained mean (± standard deviation)
TREs of 6.8 mm (±1.9 mm), 12.1 mm (±4.1 mm), 13.5 mm
(±3.2 mm), 25.8 mm (±5.0 mm), and 18.0 mm (±7.1 mm) for
cases 1 to 5, respectively. These errors are even larger than
those reported for respiratory motion in the lung registration
literature (e.g. a mean error of 8.4 mm reported by Delmon
et al. (2013)). After elastic registration, TREs were signifi-
cantly reduced to mean values of 1.5 mm (±1.4 mm), 1.0 mm
(±0.5 mm), 1.6 mm (±1.4 mm), 2.7 mm (±2.7 mm), 1.6 mm
(±1.4 mm), respectively. This registration accuracy is compa-
rable to the one reported in studies for lung breathing motion
compensation (Murphy et al., 2011).
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Fig. 7. TRE distributions for rigid and elastic registration between the pre-
operative CT and intraoperative CBCTin f (Phase 1, change of pose).

Fig. 8 depicts the results obtained after rigid and elastic reg-
istration. Coronal slices of the registered CT and intraoperative
CBCTin f images were superposed to show the quality of regis-
tration on two representative clinical cases. It can be observed
that internal structures were within reasonable alignment, as
suggested by the obtained TRE distributions. Also, lung con-
tours were well aligned thanks to the masking approach used
during registration. However, we found poorly-registered re-
gions near the rim of the CBCTin f images, where the lung is in-
complete because of the limited FOV of the scanner and where
reconstruction artefacts were present (e.g. Case 1). Further-
more, localized atelectasis also reduced the registration quality,
since voxel intensities drastically differed between images in
the affected regions (e.g. Case 4). These registration errors may
be under-represented in the TRE distributions of Fig. 7 given
the difficult landmark placement in these regions. However, we
consider that the achieved registration accuracy is sufficient for
the purpose of estimating the complete lung geometry after the
change of pose.

Due to the lack of landmarks outside the FOV of the CBCT
images, it was not possible to directly evaluate the quality of the
complete lung geometry after FEM extrapolation. Nonetheless,
the benefit of this extrapolation approach was assessed in com-
parison to a baseline rigid registration approach, and the results
are presented later in Sec. 8.4.

8.3. Results: Phase 2, estimation of the pneumothorax

The solution to the inverse problem formulation was used
to warp the CBCTin f landmarks with barycentric interpolation.
The TRE distributions were computed using these deformed
landmarks and the ground truth CBCTde f landmarks. To illus-
trate our contribution, the errors that would be obtained with-
out a deformation compensation method were also estimated in
two ways. First, TREs between the rigidly registered CT and
CBCTde f images were computed. This corresponds to the er-
rors expected when the CBCTin f image is not available and only
a rigid transformation of the preoperative data to the intraopera-
tive setting is possible. Second, TREs were computed between

Fig. 8. Qualitative results of rigid and elastic registration between the
preoperative CT (green) and intraoperative CBCTin f (magenta) images.
Coronal slices are shown for two representative cases. The target CBCTin f
image in gray-scale is shown in the far right column.

the rigidly registered CBCTin f and CBCTde f images. These
would be the expected errors when estimating the nodule po-
sition directly from the CBCTin f image, without compensating
for the pneumothorax deformation. These TRE distributions
are presented for all clinical cases in Fig. 9.

Figure 9 first puts in evidence the large lung deformation
that occurs during a VATS procedure. After rigid registration
of the preoperative CT and intraoperative CBCTde f images,
we obtained mean TREs of 33.8 mm (±10.1 mm), 34.1 mm
(±3.7 mm), 22.0 mm (±8.9 mm), 34.4 mm (±4.6 mm), and
37.9 mm (±8.2 mm) for cases 1 to 5, respectively. Like-
wise, mean TREs after rigid registration of the CBCTin f

and CBCTde f images were 28.7 mm (±11.6 mm), 24.6 mm
(±4.0 mm), 19.5 mm (±4.0 mm), 25.9 mm (±6.8 mm), and
37.7 mm (±8.8 mm). This deformation is considerably larger
than both breathing and change of pose deformations. Except
for Case 5, larger deformations were obtained from rigidly reg-
istering the preoperative CT image instead of the CBCTin f im-
age (maximum p = .018). This result corroborates that the
change of patient pose does have an influence in lung deforma-
tion during VATS. Also, it is clear from Fig. 9 that our defor-
mation compensation framework is able to account for a con-
siderable amount of this intraoperative deformation. Indeed,
mean TREs were reduced to 4.9 mm (±2.2 mm), 10.3 mm
(±5.2 mm), 7.5 mm (±3.3 mm), 11.2 mm (±4.9 mm), and
14.3 mm (±7.5 mm), respectively, which corresponds to a cor-
rection of 85%, 70%, 68%, 68%, and 63% (71% in mean) of
the initial error without compensation. Specifically, the nodule
localization errors were 8.4 mm, 13.4 mm, 9.9 mm, 11.6 mm
and 10.2 mm, respectively.

Figure 10 illustrates quantitative results for two clinical
cases. It can be observed that the surfaces of the deformed
FE meshes were close to the intraoperative deflated surfaces
without fitting them perfectly. This is a consequence of the
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Fig. 9. TRE distributions for our complete deformation compensation
framework, alongside the errors expected without deformation compen-
sation. These latter distributions correspond to rigidly registering the pre-
operative CT with the CBCTin f and CBCTde f images, respectively.

Table 3. Tissue parameters estimated from our inverse problem optimiza-
tion approach: intrabronchi permeability (κb), tissue porosity (φ), and di-
aphragm upward displacement (ddiaph).

Case κb (1 / Pa s) φ (unitless) ddiaph (m)
1 14.44 × 10−9 0.56 20.41 × 10−3

2 95.31 × 10−9 0.79 15.00 × 10−3

3 2.61 × 10−9 0.82 15.00 × 10−3

4 1.23 × 10−9 0.37 15.00 × 10−3

5 37.29 × 10−9 0.64 15.00 × 10−3

chosen simplified approach to model the complex lung defor-
mation. For instance, the constant fluid pressure boundary con-
ditions generated highly symmetrical and homogeneous lung
deformation, given that the contribution of the fluid medium
to total stress is purely volumetric. This symmetry was only
constrained by the shape of the estimated lung geometry (i.e.
the deformable FE mesh and contact surfaces) and the direction
of gravity, which may be oversimplifying. For Case 2, lobes
also deform very independently from each other, which is cur-
rently not taken into account for modeling pneumothorax de-
formation. Finally, it can also be observed in Fig. 10 that the
landmarks with the lowest registration errors were those clos-
est to the hilum. These better results in the hilum area can be
explained by the hilum deformation estimation step, which was
based on intensity-based registration of the main airways.

The tissue parameters obtained from our inverse problem for-
mulation are listed in Table 3. The optimization process re-
sulted in values for the intrabronchi permeability (κb) and tis-
sue porosity (φ) that were consistent with a previous study (Al-
varez et al., 2019a). As for the diaphragm upward displace-
ment (ddiaph), we could observe that besides Case 1, a value of
15 mm was found for all clinical cases. This value corresponds
to the lower bound of the range specified during optimization,
meaning that a higher diaphragm displacement only increased
the distance from the FE deformed mesh and the target intraop-
erative deflated lung surface in these clinical cases.

The complete deformation compensation framework allows
the warping of the preoperative CT image with the FE deformed
meshes issued from Phase 1 and Phase 2. This warped CT
image is shown in Fig. 11 along with the preoperative CT,
CBCTin f and CBCTde f images, for two representative cases.
Color contours are used to illustrate the changing shape of the
FE lung mesh through the deformation compensation stages:
before change of pose (cyan), after change of pose (orange),
and after change of pose and pneumothorax (purple). It can be
observed that the diaphragm is completely out of the FOV of
both CBCT images for Case 1, and is only barely visible in the
CBCTde f image for Case 2. Also, the cranio-caudal misalign-
ment between both CBCTs can be very important, as seen for
Case 2, reducing significantly the overlap between the intraop-
erative images. In terms of deformation compensation, it can
be observed for Case 1 that the estimated deflated lung surface
is well aligned with the CBCTde f deflated surface. Also, the
cranio-caudal height of the oblique fissure fits well with its ac-
tual position. These results are consistent with the mean TRE
measured below 5 mm. For Case 2, however, the estimated
deformation is clearly poorer. In this highly complex case,
the lung lobes deformed independently during pneumothorax,
resulting in the opening of both fissures and a highly hetero-
geneous lung deflation. Furthermore, the lower lobe deflated
more than the other two lobes, causing a significant amount of
atelectasis. While the mean TRE is reduced from 34 mm to
10 mm, the estimated deformed lung is too regular in compar-
ison with its actual shape. While our compensation framework
seems promising for several cases, further investigations will be
necessary for such complex deformations.

8.4. Variants of the method

The relevance of the main components of our deformation
compensation framework was investigated using variant imple-
mentations presented in this section.

8.4.1. Influence of the change of pose and hilum estimation
Three variants of our method were implemented to assess the

influence of the change of pose and hilum deformation estima-
tion processing steps:

(A) No change of pose: neither the change of pose defor-
mation nor the hilum deformation between the CBCTin f

and CBCTde f images were taken into account. The pre-
operative CT image was simply rigidly registered to the
CBCTde f image using the spine as the reference, as in
Sec. 6.1.1. The transformed lung segmentation was used
to generate the lung FE mesh and to define contact sur-
faces. Boundary conditions were prescribed as in Sec. 7.2,
with the exception of the imposed displacements in the air-
way inlet that were replaced with fixed boundary condi-
tions (u = 0).

(B) No hilum deformation: the change of pose deformation
was taken into account but the hilum deformation between
both CBCT images was not compensated. Since no defor-
mation field mapping the airways before and after pneu-
mothorax was available, fixed boundary conditions were
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Fig. 10. Qualitative results of our deformation compensation framework for two clinical cases. Left: final deformed lung FE mesh superposed over the
extracted deflated lung surface (in green). Middle: Registered landmark errors, deformed FE lung mesh and thoracic cage contact surface. Right: Initial
nodule position (wireframe, black surface), ground truth nodule position (wireframe, green surface) and predicted nodule position (solid, purple surface).
Results for all cases are available in the online supplementary materials.

Fig. 11. Qualitative results of our deformation compensation framework
for two representative cases. The CT and CBCTin f images are rigidly reg-
istered to the CBCTde f image. Coronal slices of exactly the same region of
interest are shown for all images. The color contours illustrate the position
of the FE mesh at the beginning of Phase 1 (cyan) and Phase 2 (orange), as
well as at the end of Phase 2 (purple). Results for all cases are available in
the online supplementary materials.

applied at the airway inlet (u = 0). The remaining bound-
ary conditions, introperative geometry and contact condi-
tions were applied as described in Sec. 7.2.

(C) Complete framework: This variant corresponds to the im-
plementation of all the methods described in Sec. 7.2.

The TRE distributions of each variant are presented in
Fig. 12. With the exception of Case 2, a significant improve-
ment can be observed of variant (B) over (A) across cases (max-
imum p = .006). Likewise, variant (C) provided better results
than variant (B) (maximum p = .019), except for Case 4. These
results suggest that all processing steps of the complete defor-
mation compensation framework are important. Even though

Fig. 12. TRE distributions for three variants of the proposed lung defor-
mation compensation method.

the amount of change of pose and hilum deformation varies
among cases, taking these deformations into account allows for
a better final estimation.

8.4.2. Influence of the moving diaphragm
Another important element of our deformation compensation

framework is the modeling of the diaphragm movement. Its in-
fluence was evaluated by comparing the results of the complete
framework with and without nullifying the diaphragm move-
ment, i.e. fixing ddiaph = 0 mm. The results are shown in
Fig. 13. Modeling the diaphragm upward movement signif-
icantly reduced TREs for Cases 1, 3, and 4 (maximum p <
.001). However, the estimation accuracy remained unchanged
for Case 5 and actually decreased for Case 2 (p = .002). For
this complex case, the estimated diaphragm position after the
change of pose compensation roughly matched the actual di-
aphragm position barely visible in the CBCTde f image (see
Fig. 11). Therefore, any positive displacement of the diaphragm
(ddiaph) would worsen estimation accuracy.
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Fig. 13. TRE distributions for our deformation compensation framework
with and without including the upward diaphragm movement.

It should be noted that for all clinical cases except Case 1, the
displacement ddiaph of the optimal solution was 15 mm, namely
the minimum value allowed during the optimization process.
However, an observation of the predicted landmark positions
with respect to the ground truth landmarks suggests that de-
formation compensation errors may be partially explained by a
miss-prediction of this diaphragm movement. An explanation
could reside in the antagonism between a diaphragm upward
movement and the cost function of the optimization problem:
moving the diaphragm upwards tends to enlarge the lung out-
wards, in the opposite direction of lung deflation, therefore in-
creasing the surface-to-surface cost function distance.

While the effects of our diaphragm model are still limited
in several cases, our results suggest that accounting for the di-
aphragm movement, even empirically, could allow for a better
estimation of the intraoperative deflated lung shape.

9. Discussion

Advantages, limits, and perspectives of the main components
of the proposed method are discussed in this section.

9.1. Hybrid approach to deformation estimation

In this study, we used intensity-based image registration to
estimate displacement boundary conditions for FEM lung simu-
lations of change of pose and pneumothorax deformation. This
hybrid approach was crucial for the estimation of complex lung
deformation that would have been more difficult, if not impossi-
ble, using purely intensity-based or FEM strategies. For Phase
1, we estimated the change of pose deformation between the
preoperative CT and the intraoperative CBCTin f images with
an algorithm that accounts for sliding at the lung interface (Wu
et al., 2008). We found the magnitude of this deformation
to be consistent with values reported in a previous study (Al-
varez et al., 2018). For Phase 2, the hilum deformation was
approximated by registering the main airways of the intraop-
erative CBCTin f and CBCTde f images. Final results suggest
that even though approximative, this approach provides better

estimations than alternatives not taking into account hilum de-
formation. To go further, it will be necessary to better cap-
ture the non-homogeneous variations of the hilum deformation.
This is quite challenging due to the occurrence, to date unpre-
dictable, of very localized atelectasis after pneumothorax. This
collapsing of the airways results in severe intensity and textu-
ral discrepancies of the CBCT images before and after pneu-
mothorax, which are difficult to cope with using traditional seg-
mentation and registration methods. We believe, however, that
these challenges may be overcome thanks to the efforts recently
put forward by the community, with registration algorithms not
requiring prior segmentation (Heinrich et al., 2016) and/or re-
lying on salient keypoints rather than image intensity (Ruhaak
et al., 2017). Incorporating such approaches into our framework
could lead to substantial improvements that will be studied in
future work.

9.2. Modeling choices

For the pneumothorax simulations, we used a poroelastic
model of the lung with allowance for air evacuation. This
approach follows the principle of effective stress that decom-
poses the total stress into fluid and solid stresses. This princi-
ple permits the macro-scale simulation of airflow-parenchyma
interaction in a cost-effective manner. We hypothesized that
the solid medium behaves as a homogeneous, linearly-elastic
material undergoing small deformations. This assumption was
supported by noting that pneumothorax deformation during our
simulations was mainly caused by the stress generated from the
fluid phase. Also, this simplified model is in principle compu-
tationally efficient, which would be important in the future to
comply with the time restrictions of clinical practice. However,
despite promising preliminary results, the lung deformation can
be underestimated, for which several improvements can be in-
vestigated. For instance, we envision other constitutive laws for
the solid medium, such as the Saint Venant-Kirchhoff model
that does not linearize the strain tensor to allow for large dis-
placements (Seyfi Noferest et al., 2018), or more complex hy-
perelastic non-linear stress-strain relations (Berger et al., 2016).
We will also assess the use of heterogeneous material properties
estimated from measured lung deformation (Hasse et al., 2018).

In parallel to more adequate constitutive laws and tissue
parameters, a major improvement would be expected with a
multiple-lobes lung model as opposed to a single-structure lung
model. As observed for Case 2, lobes can slide against each
other, the fissures can open widely, or a combination of the two.
Modeling such effects will be challenging, as not only they are
technically difficult but also very unpredictable.

9.3. Inverse formulation approach

The inverse problem formulation based on the poroelas-
tic lung model allowed the compensation of patient-specific
and intervention-specific pneumothorax deformation. This was
achieved by fitting the deformable lung model to the observed
intraoperative surface of the deflated lung, changing tissue
porosity (φ) and intrabronchi permeability (κb) parameters, as
well as simulating the upward movement of the diaphragm
(ddiaph). It should be acknowledged that our inverse problem
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formulation did not take into account internal lung structural in-
formation, which had a clear impact on the correct estimation of
the upward moving diaphragm, and possibly the complete lung
parenchyma. With improved processing of the CBCT images,
it should be possible to include internal lung structures such as
vessels (Cazoulat et al., 2016), salient keypoints (Ruhaak et al.,
2017), or even the lobe boundaries, in the inverse problem for-
mulation.

Finally, the inverse problem formulation currently minimizes
the surface-to-surface distance between the deformable lung
model and the intraoperative data in a least-squares sense. Since
the proposed model has few degrees of freedom, the deformed
lung surface does not exactly fit the intraoperative data. An al-
ternative to this approach would be to use Lagrange multipliers
to constrain the deformation so that surface nodes of the FE
mesh fit local surface data (Morin et al., 2017).

9.4. Diaphragm movement

Clinically, it is known that the diaphragm tends to move up-
wards due to the surgical setup. This phenomenon was con-
sistently observed on all cases, based on inner-lung landmark
measurements. Therefore, a functional approach to model the
diaphragm movement was introduced, with the ddiaph param-
eter as part of the optimization process. However, as shown
in Sec. 8.4.2, a meaningful estimation of diaphragm movement
could be obtained for one case only. Although several factors
may be affecting this issue, we believe the definition of the cost
function (Eq. (15)) to be among the most important. Indeed,
currently, it relies on surface data only, which may not be well
suited to compensate for longitudinal deformation. Improve-
ments could consist in extracting the diaphragm surface when
it is partially visible in the CBCT images (e.g. cases 4 and 2),
and to include sub-surface information in the computation of
the cost function, as mentioned above.

9.5. Towards clinical practice: practicability and accuracy

Since the aim of this study was to evaluate the capacity to
compensate for lung deformation during VATS, we did not pri-
marily focused on the clinical practicality. Therefore, several
processes required manual interactions: the initialization of reg-
istration or segmentation algorithms, the refinement of segmen-
tation masks, and the extraction of the CBCTde f deflated lung
surface. In total, these interactions may take a considerable
amount of time (more than 60 minutes for some cases), but we
are confident that most of them can be replaced by dedicated
image processing methods. Another important factor will be
the computational efficiency. Although our intensity-based im-
age registration steps are relatively efficient (10 to 15 minutes
per case), our inverse problem formulation is computationally
intensive (4 to 6 hours per case). This situation is expected
to worsen when considering the methodological improvements
discussed previously, since these may introduce further com-
putations. Therefore, it will be necessary to find a trade-off

between accuracy and efficiency, for which deformation atlas
(Kay Sun et al., 2014) or learning-based FEM (Mendizabal
et al., 2020) approaches will be investigated.

Finally, no standard criteria stand to date regarding the re-
quired accuracy for an intraoperative nodule localization algo-
rithm. It is thus not straightforward to evaluate the significance
of our current results. Nodules indicated for surgical resection
are at least 8 mm in length, and small wedge resections are
approximatively 3 × 4 cm. Considering these minimum sizes
and our current nodule localization errors of 8 to 13 mm, these
nodules should always be within the resection, at least partially,
which is sufficient for diagnostic purpose. However, maximum
errors could still be too large to guarantee the localization for
every patient. A long-term objective, defined by our clinical
partners, will be to achieve mean errors around 5 mm with max-
imum errors below 10 mm. This would also ensure sufficient
negative margins of 15 mm as suggested by Wolf et al. (2017).
Intraoperative process time should be kept under 15 minutes.

10. Conclusion

To our best knowledge, this is the first study to propose an
intraoperative markerless lung nodule localization framework
for VATS, which relies on a hybrid method combining intraop-
erative CBCT imaging, intensity-based image registration, and
biomechanical modeling techniques. We proposed to decouple
the very challenging problem of intraoperative deformation es-
timation into two more tractable sub-problems: estimating the
change of pose deformation (Phase 1) and then estimating the
pneumothorax deformation (Phase 2). We were able to demon-
strate the feasibility of our deformation compensation frame-
work on 5 retrospective clinical cases of patients who under-
went a VATS intervention. Average initial errors in the range of
22 to 38 mm were reduced to the range of 4 to 14 mm, which
corresponds to a correction of 63 to 85% of the error without
compensation (71% in mean).

To improve the methods towards errors consistently under
the 5 mm objective, future works will be mostly focused on al-
lowing for lobes separation within the model and taking into
account sub-surface lung information to drive the simulations.
Another challenge will be to acquire a single CBCT scan in-
stead of two (only CBCTde f after lung deflation) to simplify
the procedure and limit the radiation dose. Finally, our over-
all objective aims at overlaying the simulated deformed lung
and the nodule position over the CBCT image, and ultimately
in real time in the endoscopic view. By removing the need for
a preoperative nodule marking localization procedures and its
associated risks, and increasing the resection accuracy, the pro-
posed method could significantly benefit the clinical practice in
thoracoscopic surgery.
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INBS-0006) and VATSop (ANR-20-CE19-0015); and the Na-
tional Institutes of Health - NINDS grant R01NS049251.

                  



Pablo Alvarez et al. / Medical Image Analysis (2021) 19

References

Al-Mayah, A., Moseley, J., Brock, K.K., 2008. Contact surface and material
nonlinearity modeling of human lungs. Phys Med Biol 53, 305–317.

Al-Mayah, A., Moseley, J., Velec, M., Brock, K., 2011. Toward efficient
biomechanical-based deformable image registration of lungs for image-
guided radiotherapy. Phys Med Biol 56, 4701–4713.

Al-Mayah, A., Moseley, J., Velec, M., Brock, K.K., 2009. Sliding characteristic
and material compressibility of human lung: Parametric study and verifica-
tion. Med Phys 36, 4625–4633.

Al-Mayah, A., Moseley, J., Velec, M., Hunter, S., Brock, K., 2010. Deformable
image registration of heterogeneous human lung incorporating the bronchial
tree. Med Phys 37, 4560–4571.
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Alvarez, P., Narasimhan, S., Rouzé, S., Dillenseger, J.L., Payan, Y., Miga,
M.I., Chabanas, M., 2019a. Biphasic model of lung deformations for video-
assisted thoracoscopic surgery (VATS), in: 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), IEEE, Venice, Italy. pp.
1367–1371.
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