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Purpose: Stereotactic radiosurgery (SRS) is used for local control treatment of patients with intracra-

nial metastases. As a result of SRS, some patients develop radiation-induced necrosis. Radiographi-

cally, radiation-induced necrosis can appear similar to tumor recurrence in magnetic resonance (MR)

T1-weighted contrast-enhanced imaging, T2-weighted MR imaging, and Fluid-Attenuated Inversion

Recovery (FLAIR) MR imaging. Radiographic ambiguities often necessitate invasive brain biopsies

to determine lesion etiology or cause delayed subsequent therapy initiation. We use a biomechani-

cally coupled tumor growth model to estimate patient-specific model parameters and model-derived

measures to noninvasively classify etiology of enhancing lesions in this patient population.

Methods: In this initial, preliminary retrospective study, we evaluated five patients with tumor recur-

rence and five with radiation-induced necrosis. Longitudinal patient-specific MR imaging data were

used in conjunction with the model to parameterize tumor cell proliferation rate and tumor cell diffu-

sion coefficient, and Dice correlation coefficients were used to quantify degree of correlation

between model-estimated mechanical stress fields and edema visualized from MR imaging.

Results: Results found four statistically relevant parameters which can differentiate tumor recurrence

and radiation-induced necrosis.

Conclusions: This preliminary investigation suggests potential of this framework to noninvasively

determine the etiology of enhancing lesions in patients who previously underwent SRS for intracra-

nial metastases. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/

mp.13461]
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1. INTRODUCTION

A common treatment option for intracranial metastases is

stereotactic radiosurgery (SRS). SRS helps establish local

control, but complications may arise; potential postradiation

treatment effects include pseudoprogression and radiation-

induced necrosis.1,2 Pseudoprogression occurs within

3 months of SRS, vs radiation-induced necrosis which usu-

ally appears around 3 months and later.1,2 Radiation-induced

necrosis is an adverse reaction to radiation treatment.3,4 Fol-

lowing SRS, up to 20% of patients exhibit radiation-induced

necrosis,4,5 which often appears as an enhancing lesion in

MR T1-weighted contrast-enhanced imaging with accompa-

nying T2-weighted and Fluid-Attenuated Inversion Recovery

(FLAIR) abnormalities.4,6,7 Accurate diagnosis presents enor-

mous clinical challenges as symptoms and radiographic find-

ings for recurrence and radiation-induced necrosis are often

indistinguishable.

Misidentification can have adverse clinical outcomes since

treatment and prognosis of radiation-induced necrosis and

tumor progression are different. Treatments for radiation-

induced necrosis include observation and corticosteroids,

with symptoms sometimes resolving independently.8 These

treatments could accelerate tumor progression. Repeat SRS

can treat recurrence, but would exacerbate radiation-induced

necrosis and expose patients to unnecessary radiation. Brain

biopsies are the diagnostic gold standard, but introduce risk

and are often not possible due to patient condition or lesion
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location. Indeterminate lesions are often followed with costly

follow-up imaging that can cause deleterious outcomes for

recurrent tumors with delayed subsequent therapy.4 Serial

examinations usually include conventional MR with T1-

weighted contrast-enhanced imaging and FLAIR imaging,

but are diagnostically confounded. Patients that undergo SRS

for intracranial metastases would benefit greatly from nonin-

vasive diagnosis.

There is a history of studies attempting to employ quanti-

tative imaging modalities to noninvasively distinguish the eti-

ologies,9 with reproducible results proving challenging.

Conventional MRI (magnetic resonance imaging) has been

studied with mixed interpretations.6,7 There have been studies

into mean fractional anisotropy,10,11 perfusion imaging,4,12

positron emission tomography,13 magnetic resonance spec-

troscopy,4,14 and diffusion weighted imaging.11,15 As an over-

all observation, there remains a lack of consensus in

quantitative imaging for diagnosis. Here, a novel framework

is introduced that utilizes medical imaging data combined

with biophysical models of tumor growth dynamics to nonin-

vasively distinguish between tumor recurrence and radiation-

induced necrosis in a binary classification of enhancing

lesion etiology. Congruent with clinical practice, we will not

sub-differentiate pseudoprogression and radiation-induced

necrosis, referring to both as radiation-induced necrosis.

There is support for patient-specific tumor growth modeling

in clinical settings.16,17 Development and use of tumor growth

models within the brain have been investigated,18–22 with work

often related to either accurate model development, or its use to

assess a potential clinical aspect.19,20,23 While these are con-

cerned with tumor progression, other work focused on the sur-

rounding environment and its influence. There have been

studies investigating the influence of surrounding mechanical

environment on tumor growth24,25 and using modeling to pre-

dict radiotherapy effect.22 In related work by our group, a

mechanically coupled reaction-diffusion model was used to

develop a predictive framework of breast cancer treated with

neoadjuvant chemotherapy.26–28 This demonstrated an ability

to predict patients’ responsiveness using early cycle treatment

changes.28 Building upon these, we use an image-data-driven

biophysical model of tumor growth as a tool to classify space-

occupying enhancing lesions in the brain following SRS.

In this investigation, we evaluate patient-specific model

parameters by fitting a biomechanically coupled tumor

growth model to longitudinal lesion changes observed from

MRI data following SRS for brain metastasis and calculate

model-derived measures. We hypothesize the biophysics of

the etiologies will result in differences in patient-specific

model parameters and model-derived measures allowing for

noninvasive classification.

2. MATERIALS AND METHODS

2.A. Patient data

Ten de-identified clinical datasets were obtained under the

Vanderbilt University Institutional Review Board approved

study to analyze retrospective MR imaging data. Datasets

were collected after patients were treated with SRS, ensuring

we are modeling effects of recurrent enhancing lesions fol-

lowing SRS. The datasets represent five patients with tumor

recurrence and five with radiation-induced necrosis. Diag-

noses were pathologically confirmed or retrospectively deter-

mined through long-term clinical follow-up, with incidence

of all recurrence and three of five radiation-induced necrosis

lesions biopsy confirmed. Data consist of serial MR imaging

with standard-of-care T1-weighted contrast-enhanced and

FLAIR imaging sequences acquired following SRS, prior to

diagnosis. To assess longitudinal changes, two time points of

T1-weighted MR scans obtained immediately prior to diagno-

sis are used (Fig. 1). Time between scans varied according to

the clinician from under 1 month to approximately 9 months,

with an average of 3.5 months. Use of sparse MR imaging

data from two time points has three purposes: (a) demon-

strates use of standard-of-care serial imaging data, (b) poten-

tially shows a pathway to replace inconclusive serial imaging,

and (c) if it allows earlier detection, it could reduce time

between detected changes and clinical action. Note radio-

graphic similarities in T1-weighted MR images [Figs. 2(a)

and 3(a)]. T2-weighted or FLAIR MR images obtained imme-

diately prior to diagnosis were also used (Fig. 1). Due to this

retrospective study, T2-weighted and FLAIR MR images are

used interchangeably to segment edema based on availability.

2.B. Biophysical model of tumor growth

The realistic biomechanically coupled biophysical tumor

growth model was adapted from previous work from our

group.24,26–28 A complete description is in previous publica-

tions.26–28 The governing equations are:

@N �x; tð Þ

@t
¼ r � DðrVM ;�x; tÞrN �x; tð Þð Þ

þ kN �x; tð Þ 1�
N �x; tð Þ

h

� �

(1)

DðrVM ;�x; tÞ ¼ D0e
�crVM �x;tð Þ (2)

r � Gru~þr
G

1� 2v
r � u~ð Þ � krN �x; tð Þ ¼ 0 (3)

Equation (1) describes rate of tumor cell number change

at a given time and location as the sum of random cell diffu-

sion and logistic growth. Equation (2) represents mechano-

inhibition of cellular diffusion coefficient, coupling tumor

cell transport to evolving tissue stress state. As tissue dis-

torts due to mass effects, tumor diffusive transport is inhib-

ited. Equation (3) models linear elastic, isotropic mechanical

equilibrium in the presence of an external expansive

force.26–28 In (1), (2), and (3) u~ is the displacement vector;

N is the spatiotemporal varying cell number. D is the local

cellular diffusion coefficient of tumor cells in the presence

of mechanical stress; D0 (mm2/day) is the cellular diffusion

coefficient without mechanical stress present. Tumor cell

proliferation rate is represented by k (day�1), which reflects

Medical Physics, 0 (0), xxxx

2 Narasimhan et al.: Discern recurrence and radiation necrosis 2



how proliferative lesion cells are. von Mises stress is repre-

sented by rVM (Pa). v (0.45) is Poisson’s ratio; G

(689.66 Pa) represents shear modulus. c (0.0050) and k

(0.010) are empirically derived coupling coefficients. We

solve Equations (1–3) using the Galerkin method of

weighted residuals on triangular finite elements described

by standard linear Lagrange basis functions.29 Temporal res-

olution employs a fully explicit forward Euler method. The

time step is 1 day, and in work not shown here, stability

analysis was performed. Representing the dural surface, the

displacement boundary conditions on the mesh outer surface

permits surface tangential displacement, but do not allow

normal displacement. The cortical surface is treated with a

boundary condition of no flux of tumor cells across the

boundary. Meshes have a nominal element edge length of

2.5 mm, an average of 7182 elements, and an average of

3700 nodes. We treat the parenchyma as homogenous. The

biophysical model is based on a central slice taken through

the region-of-interest (ROI), and two-dimensional (2D)

plane strain approximation is employed.

As a first-order approximation for tumor cellular density,

we assume the enhancing lesion has a Gaussian distribution

of tumor cell density. Maximal cellular carrying capacity, h,

occurs at the enhancing lesion’s center. This density

decreases outward to a minimum density of 0.25 9 h at the

lesion’s maximal long axis dimension.

2.C. Patient-specific model parameters

For each patient, two time points of T1-weighted contrast-

enhanced image volumes are selected (scan immediately

prior to diagnosis and an earlier scan). Central axial slices

with the most radiographic volumetric change with respect to

the enhancing portion of the T1-weighted MR image were

selected. Image volumes are longitudinally rigidly co-regis-

tered to the most recent time point (Fig. 1).30 Enhancing

lesions in both T1-weighed images are manually segmented.

Using the segmentations, the tumor cell number in both

T1-weighted images are estimated using the Gaussian

description and denoted as “observed tumor cellularity”

(Figs. 2(c)–2(d) and 3(c)–3(d)]. We fit our tumor growth

model to the “observed tumor cellularity”, with the first dis-

tribution as the starting point and final distribution as the

desired outcome using a custom Levenberg–Marquardt

parameter optimization algorithm in MATLAB (MathWorks

Inc., Natick, MA, USA) to estimate designated patient-speci-

fic model parameters: tumor cell diffusion coefficient (D0)

and tumor cell proliferation rate (k). The objective function

FIG. 1. Framework to estimate different patient-specific model parameters and model-derived measures for differentiating tumor recurrence and radiation-

induced necrosis.
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that was minimized is the sum-squared error between

observed and model-estimated tumor cellularity. Conver-

gence occurs if one of the following criteria are met. These

criteria include: (a) if the absolute objective function value is

less than 1e-4, (b) the relative change in the objective func-

tion between iterations is less than 1e-4, (c) a maximum of

500 iterations occur, or (d) a maximum of 1000 function eval-

uations occur. In analysis not shown, these proved robust.

These are appropriate since we treat all lesions as recurrent

tumors [Equations (1–3)] with estimated parameter set differ-

ences guiding diagnosis. We assume model parameters are

homogenous over the lesion.

2.D. Model-derived measures

Based on estimates of patient-specific model parameters,

von Mises stress field due to tumor growth at the final time

point is estimated by our mechanically coupled reaction-

FIG. 2. Patient diagnosed with tumor recurrence at starting time point (a,c,e), and final time point taken before diagnosis of lesion etiology (b,d,f,g). Post-con-

trast T1-weighted MR images (a,b) are used to estimate observed tumor cellularity (c,d) and the model is fit to estimate tumor cellularity (e,f). FLAIR imaging at

the time point prior to diagnosis (g) is compared to estimated mechanical stress field (h) at the final time point.
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diffusion model (Fig. 1). Model-derived measures were cal-

culated to compare observed edema to model-estimated stress

field. This originates from our previous work, coupling

mechanical effects from the surrounding tissue extracellular

matrix to tumor growth models.28 Here, von Mises stress is

used to describe tissue loading due to lesion growth.28 We

hypothesize tissue loading represents an edema-causative

event due to restricted diffusivity in areas with higher stress

similar to previous work.31 We investigate the relationship

between observed edema and model-calculated von Mises

stress fields as a model-derived measurement. We quantify

edema using T2-weighted or FLAIR images (based on avail-

ability) from the last time point prior to diagnosis. The T2-

weighted or FLAIR scan is rigidly registered to T1-weighted

contrast-enhanced images. Then the enhancing region, asso-

ciated with edema, is manually segmented. The choice to use

manual segmentation in our methodology was based on the

heterogeneous nature of clinically acquired imaging data as

FIG. 3. Patient diagnosed with radiation-induced necrosis at starting time point (a,c,e), and final time point taken before diagnosis of lesion etiology (b,d,f,g).

Post-contrast T1-weighted MR images (a,b) are used to estimate observed tumor cellularity (c,d) and the model is fit to estimate tumor cellularity (e,f). T2-

weighted imaging at the time point prior to diagnosis (g) is compared to estimated mechanical stress field (h) at the final time point.
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well as the patient lesions and edema. Therefore, manual seg-

mentation provided the most robust representation of the

regions of interest. We quantify regional similarity between

edema location and model-estimated stress field using the

Dice similarity index. We designate five isocontours from

low stress to high stress at 100, 200, 300, 400, and 500 Pa of

the model-estimated stress field and calculated the Dice index

of the segmented edematous region and each mechanical

stress isocontour, denoted as Dice100, Dice200, Dice300,

Dice400, and Dice500, respectively.

2.E. Morphometric analysis methods

We evaluated other diagnostic radiologic metrics based on

image morphometric analysis, including some used in clinical

treatment, to compare our methodology to conventional radi-

ologic assessments. We evaluated the ratio of lesion size in

T2 imaging to lesion size in T1 imaging.32 We performed this

by taking the ratio of the edema area (T2-weighted or FLAIR

MR imaging) to the lesion area (T1-weighted MR imaging).

As proposed by the Response Assessment in Neuro-Oncol-

ogy Brain Metastasis working group, we evaluated the

change in the lesion’s longest diameter.33 We calculated lon-

gitudinal change in maximum lesion length from outlined

lesions of T1-weighted images at both time points as percent

change from baseline. We performed morphometric analysis

evaluating the segmented lesion area and lesion perimeter

using the same central axial slice that was used to perform

modeling analysis. Finally, we manually segmented the full

three-dimensional (3D) lesion ROI in each image for full vol-

ume and surface area morphometric analysis. Full 3D mor-

phometric analysis represents additional data not analyzed

under our current 2D framework, extracting additional infor-

mation from the images. While our work herein compares

our analysis to conventional morphometric metrics, it is

important to note that this is a limited comparison. These

selected conventional analysis metrics represent a good initial

evaluation comparison, but other geometric and texture-based

metrics are certainly possible. More extensive comparisons to

other types of analysis metrics are warranted in future studies

with larger cohorts. Morphometric analysis was performed

for both T1-weighted and FLAIR images, with T1-weighted

lesions evaluated as the percent change between the two time

points. These measurements are designated as T1 Surface

Area, T1 Volume, FLAIR Surface Area, and FLAIR Volume.

3. RESULTS

Patient-specific model parameters and model-derived

measures are calculated using our biomechanically coupled

tumor growth model fit to serial patient-specific imaging

data. D0 and k are obtained by fitting the tumor growth model

to the pairs of longitudinal T1-weighted post-contrast images.

Dice100, Dice200, Dice300, Dice400, and Dice500 are the Dice

indices between isocontours of model-estimated stress field

and the segmented edematous region. Examples of the frame-

work execution are in Figs. 2 and 3.

Distribution of patient-specific model parameters are in

Fig. 4(a) and 4(b), reflecting an evident distinction in prolif-

eration rate. Examples of low and high Dice values, in

Fig. 4(c) and 4(d), respectively, indicate a distribution differ-

ence in the high Dice value. Using the Mann–Whitney U

Test, we obtained the results in Table I. In agreement with

Fig. 4(a)–4(d), k, Dice300, Dice400, and Dice500 are statisti-

cally significantly different with P values of 0.0159, 0.0079,

0.0079, and 0.0159, respectively. We plotted a receiver oper-

ating characteristic curve (ROC curve) for model parameters

in Fig. 4(e) and model-derived measures in Fig. 4(f). From

Fig. 4(e) and 4(f), we see k and multiple high Dice indexes

can classify etiologies. This is verified by observing areas

under the ROC curves (Table I).

Conventional metrics of T2/T1 ratio and percent change in

length are in Figure 5(a)–5(c). We found a lack of diagnostic

performance in differentiating etiologies using conventional

morphometric analysis, with ROC AUC for T2/T1 ratio and

percent change in length of 0.68 and 0.68, respectively, and

no statistical significance between etiologies. Shown in

Table I, we further assessed input imaging data by analyzing

morphometric data in both 2D central slice analysis and 3D

full volumetric analysis from segmented lesions. We assessed

2D change in lesion area and perimeter between T1-weighted

scans as well as the lesion area in FLAIR. We assessed 3D

change in lesion volume and surface area between T1-

weighted scans as well as lesion volume and surface area in

FLAIR. The poor performance of conventional image analy-

sis metrics is highlighted by no statistically significant

metrics being found.

4. DISCUSSION

We present a framework to estimate patient-specific model

parameters and model-derived measures based on noninva-

sive MRI data from patients with brain metastasis treated

with SRS. Parameterizing the biophysics of lesion growth

could accurately differentiate lesions based on differences in

estimated parameters with up to 100% accuracy in our pre-

liminary, initial patient cohort. We compared our modeling

results to conventional analysis methods. Our methodology

outperformed conventional methods using the same input

data, or less input data in the case of 3D image morphometry.

It is evident that k and Dice indexes associated with higher

stress von Mises isocontours can differentiate etiologies

(Table I). The Dice metrics [Fig. 4(c) and 4(d)] are not inde-

pendent observations. When estimating D0 and k, our model

is fit to “observed tumor cellularity”. Based on these fit

parameters, the von Mises stress distribution was calculated

and compared to observed edema. Therefore our Dice metrics

represent linked discriminators permitting mechanistic statis-

tical comparison to additional data. As the von Mises stress

isocontour is changed, the statistical relationship with edema

is changed, which is why a range of isocontours were com-

pared. Our biophysical model enables proliferative differ-

ences to be compared in novel ways capable of accurately

differentiating the etiologies.
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Speaking to limitations, we used T2-weighted and FLAIR

imaging interchangeably to indicate edema. Visual confir-

mation in Fig. 2(g) and 3(g), as well as the Dice indexes dif-

ferentiating the etiologies, indicate our use of imaging data

is reasonable. Next, the brain’s heterogeneity has been incor-

porated into other tumor growth models.21 We treated the

brain as homogeneous isotropic tissue. In future studies, we

intend to increase model specificity by incorporating hetero-

geneity and anisotropy. Mechanical heterogeneity will result

in a spatially varying distribution of mechanical properties

throughout tissue types (shear modulus and Poisson’s ratio

in Eq. (3)). Anisotropy will increase the number of material

parameters used to describe the mechanical constitutive

behavior in Eq. (3). Since biomechanical coupling enables

the surrounding brain tissue to impact the tumor’s growth,

including heterogeneity and anisotropy will manifest in

changes to diffusion via the von Mises stress term in

Eq. (2).34 We treated patient-specific model parameters as

homogeneous within the lesion. Our current imaging data

constrain us to a global estimate of lesion properties,

restricting our classification as entirely tumor recurrence or

radiation-induced necrosis. Biopsies can consist of both

recurrence and necrosis.15 We will address this with

additional sources of quantitative imaging to increase speci-

ficity. Previously, in other related research we used diffusion

weighted MRI (DW-MRI) to estimate tumor cell density.26–

28 In future work, we will acquire DW-MRI data that would

provide improved estimates of tumor cell density from

patient scans. Using DW-MRI, which is a studied surrogate

used for estimating tumor cellularity, will result in more

accurate estimates of cellular distribution within the patients’

lesion. This will not change the mathematical expression

[Eqs. (1)–(3)], but rather specifically change the spatial vari-

ation of N �x; tð Þ defined at imaging times. This will result in

the inverse problem being driven by more accurate estima-

tions of “observed tumor cellularity” measurements, but will

not change the number of parameters being estimated.

Despite this, the standard-of-care clinical treatment is a bin-

ary diagnosis: no tumor recurrence or partial recurrence.

Our framework accomplishes a similar binary classification,

making this clinically relevant and amenable to current clini-

cal diagnostic workflows. Given the heterogeneous nature of

clinically acquired scans, manual segmentation was used

rather than automated segmentation to prevent inaccuracy

due to nonuniform intensities across patients and scan time

points. In work not shown here, a separate blinded observer

FIG. 4. Distribution plots for (a) cell diffusion coefficient (D0, mm2/day), (b) cell proliferation rate (k, day�1), (c) low stress isocontour Dice coefficient (Dice100),

and (d) high stress isocontour Dice coefficient (Dice400) for patients with tumor recurrence and radiation-induced necrosis. The middle horizontal line in both

represents the mean value; the outer two lines represent the standard deviations. The ROC curve for (e) cell diffusion coefficient (D0) and cell proliferation rate

(k) and (f) ROC curve for the Dice correlation coefficients. In both, the dotted line represents the line of identity.
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performed the same experimental analysis methods on

the same patient imaging data (Table S1). Comparing

the Mann–Whitney P values and ROC AUC values for the

patient-specific model parameters and model-derived mea-

sures reflected the same trends obtained in this manuscript

with average difference in ROC areas under the curve for all

metrics of 5% and largest difference of 13% (Table S1).

This investigation was performed in 2D; moving forward we

will investigate these biophysical model-based parameters in

3D to capture volumetric changes, similar to our previous

work.28 The transition from 2D to 3D is nontrivial but tract-

able. The results of this 2D investigation indicate a 3D for-

mulation of this framework has the potential to further

enhance the noninvasive differentiation between the two eti-

ologies. Furthermore, this preliminary investigation involved

a total of 10 patients. For validation, the framework will

need to be tested in a larger patient cohort. Finally, the use

of edema from T2-weighted and FLAIR imaging was incor-

porated as an external model-derived feature comparison. It

would be interesting to include this data by extending our

biomechanical model to include biphasic components that

explicitly model the generation of edema from elevated

intracranial pressure during tumor expansion, similar to

modeling of capillary exchange in other work.31

We identified a biophysical model-based approach to dif-

ferentiate between the etiologies, whereas traditional image

morphometric assessment of the same data was not capable

of accurate identification. Patient-specific geometries varied

depending on lesion location (Figs. 2 and 3). Despite this,

our framework accurately predicted etiology. There is an intu-

itive aspect to the parameters which differentiate the

TABLE I. Statistical tests of patient-specific model parameters, model-derived

measures, and morphometric analysis.

Metric

Statistical tests

Mann–Whitney U

test P values

ROC area under

curve (AUC)

D0 0.4603 0.66

k 0.0159a 0.96

Dice100 0.3095 0.72

Dice200 0.0556 0.88

Dice300 0.0079a 1.00

Dice400 0.0079a 1.00

Dice500 0.0159a 0.96

T1 area 0.3095 0.72

T1 perimeter 0.0952 0.84

T1 surface area 0.6905 0.60

T1 volume 0.4206 0.68

FLAIR area 0.2222 0.76

FLAIR surface area 0.8413 0.56

FLAIR volume 0.8413 0.56

T2/T1 ratio 0.4206 0.68

% change length 0.4206 0.68

aStatistical significance of P < 0.05.

FIG. 5. Conventional morphometric assessment methods for determining local control with estimated parameter value distributions for (a) T2/T1 ratio and (b) per-

cent change in length. (c) ROC curve for the morphometric assessment methods. The dotted line represents the line of identity.
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etiologies. There was no statistical difference between diffu-

sion coefficients, suggesting diffusion is conserved between

etiologies. There is a statistical difference in tumor prolifera-

tion rates. This is consistent with radiation-induced necrosis

not being expected to proliferate. Recurrent tumors have

model-estimated mechanical stress fields with significant cor-

relation with the measured edema. We hypothesize this is the

result of mechanical stress having a causative edema genera-

tion effect associated with recurrent tumor. The success of

using patient-specific image-data-driven biophysical model-

ing to differentiate between both etiologies in patients with

brain metastasis treated with SRS shows substantial promise.

This is a limited sample size analysis and a larger cohort

study is required. The temporal sampling was chosen just

prior to diagnosis, but studying the framework’s performance

at earlier time points is desirable.

5. CONCLUSIONS

Results of this study indicate our image-data-driven

biophysical model-based analysis framework for estimating

patient-specific model parameters and model-derived mea-

sures has potential to noninvasively differentiate between

radiation-induced necrosis and tumor recurrence. We only

used standard-of-care imaging scans from the patients’

clinical care, furthering the work’s impact. If confirmed,

our framework could be used in current clinical workflows

to improve diagnosis. It is important to note that results

of this investigation are preliminary given the limited

number of patients used in this initial investigation. Con-

firmation of this framework will be needed with a larger

patient cohort and further patient statistics. Furthermore,

we restricted analysis to metastatic disease, but radiation-

induced necrosis is also found in patients with primary

intracranial disease who have undergone SRS,35 making

this methodology applicable in patients with primary brain

tumors. Our investigation demonstrates the potential of

noninvasive differentiation of lesions of unknown etiology

in patients who have undergone SRS by means of image-

data-driven biophysical modeling.
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