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Purpose: The efficacy of an imaging-driven mechanistic biophysical model of tumor growth 

for distinguishing radiation necrosis from tumor progression in patients with enhancing 

lesions following stereotactic radiosurgery (SRS) for brain metastasis is validated. 

Methods: We retrospectively assessed the model using 73 patients with 78 lesions and 

histologically confirmed radiation necrosis or tumor progression. Post-contrast T1-weighted 

MRI images were used to extract parameters for a mechanistic reaction-diffusion logistic 

growth model mechanically coupled to the surrounding tissue. The resulting model was then 

used to estimate mechanical stress fields, which were then compared with edema visualized 

on FLAIR imaging using DICE similarity coefficients. DICE, model, and standard 

radiographic morphometric analysis parameters were evaluated using a receiver operating 

characteristic (ROC) curve for prediction of radiation necrosis or tumor progression. 

Multivariate logistic regression models were then constructed using mechanistic model 

parameters or advanced radiomic features. An independent validation was performed to 

evaluate predictive performance. 

Results:  Tumor cell proliferation rate resulted in ROC AUC = 0.86, 95% CI: 0.76 – 0.95, p < 

0.0001, 74% sensitivity and 95% specificity) and DICE similarity coefficient associated with 

high stresses demonstrated an ROC AUC = 0.93, 95% CI: 0.86 – 0.99, p < 0.0001, 81% 

sensitivity and 95% specificity. In a multivariate logistic regression model using an 

independent validation dataset, mechanistic modeling parameters had an ROC AUC of 0.95, 

with 94% sensitivity and 96% specificity.

Conclusions: Imaging-driven biophysical modeling of tumor growth represents a novel 

method for accurately predicting clinically significant tumor behavior. 

Keywords: brain metastasis, stereotactic radiosurgery, radiation necrosis, tumor 

progression, computational model

Introduction
Brain metastases (BM) are a significant cause of morbidity and mortality in an 

estimated 10-30% of cancer patients with more patients being affected each year as many A
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primary cancer survival rates improve1,2. An increasing number of these brain metastasis are 

being treated with stereotactic radiosurgery (SRS)3. Despite treatment with SRS, patients 

can experience local failure rates as high as 27% to 33%4-6 and an incidence of radiation 

necrosis of 7 to 24%7,8. Radiation necrosis is thought to result from an inflammatory cascade 

initiated by the action of reactive oxygen species, leading to small vessel injury, vasogenic 

edema, and coagulative necrosis, which can result in mass effect, the need for prolonged 

steroid use, and even surgical intervention. 

Both tumor progression and radiation necrosis can occur anytime from 3 months following 

SRS to several years later. Accurate diagnosis of these lesions presents enormous clinical 

challenges as clinical symptoms and radiographic findings for radiation necrosis and tumor 

progression are often indistinguishable; see Figure 1. These sequelae are often monitored 

with serial magnetic resonance imaging (MRI) as radiation necrosis often spontaneously 

regresses with time, however, this monitoring can lead to delay in subsequent therapy9. 

Further, misdiagnosis can lead to disease progression, improper discontinuation of systemic 

therapy, steroid use, surgical intervention, or inaccurate prognosis. A biopsy is the gold 

standard for accurate diagnosis but introduces considerable risk and is often not possible 

due to the patient’s condition or lesion location. Attempts have been made to utilize one or 

multiple non-invasive modalities, but achieving an accurate diagnosis utilizing existing non-

invasive modalities remains difficult and unreliable10-12. 

Thus, an unmet need exists for clear, non-invasive, diagnostic imaging modalities to 

accurately differentiate between radiation necrosis and tumor progression. In recent work, 

we introduced a biophysical tumor growth model coupled to longitudinal lesion changes 

observed from MRI data following SRS for brain metastasis that showed preliminary promise 

as such a method in a limited ten patient cohort proof-of-concept analysis13. As a follow-up 

to that preliminary study, in this work we seek to evaluate this mechanistic biophysical 

modeling method within a separate and larger scale cohort of patients with pathologically 

confirmed radiation necrosis or tumor progression. We additionally seek to compare the 

predicative accuracy of the mechanistic model-based method to a radiomics method for 

radiographic assessment of image morphometric and texture features. A
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Methods
Patient imaging data

A prospectively maintained database at our institution with 73 patients with 78 brain 

metastasis treated with SRS and histologically confirmed radiation necrosis or tumor 

progression were retrospectively assessed under a Wake Forest Institutional Review Board 

approved study.  A previously developed mechanistic modeling approach was used to 

estimate biophysical properties of lesion expansion based on conventional MR imaging13. 

Patients treated with SRS were followed with serial imaging at the discretion of the care 

team, most often at 1-3 month intervals, to evaluate for enhancement and radiographic 

evidence of recurrence/progression or necrosis. All patients in this database exhibited lesion 

growth on follow-up imaging and were histologically confirmed for tissue diagnosis; see 

Table 1. Images were acquired during the course of routine clinical care and as such are not 

standardized between patients. We report the median value of imaging acquisition 

parameters with T1-weighted images acquired with 0.47mm x 0.47 mm x 2 mm voxel size, 

3.4 ms TE, 8.7 ms TR, 450 ms TI, and 20° flip angle. FLAIR/T2 images were acquired with 

512x512x44 acquisition matrix, 0.47mm x 0.47 mm x 3.5 mm voxel size, 136 ms TE, 8816 

ms TR, 2750 ms TI, and 90° flip angle. Images were subsequently minimally post-processed 

with the two T1-weighted scans histogram normalized and lesion segmentations manually 

performed (ITK-Snap)14.

T1-weighted imaging data from two serial imaging examination time points 

immediately prior to pathological diagnosis and FLAIR MR imaging data from the imaging 

examination time point immediately prior to pathological diagnosis were used as input data. 

Prior to analysis, all MR images were longitudinally co-registered and central-slice images 

through the mid-point of the lesion were extracted for subsequent mechanistic modeling 

analysis. T1-weighted and FLAIR enhancement lesion regions-of-interest were manually 

segmented for each patient. 

Mechanistic modeling analysis

For mechanistic modeling analysis, a previously-developed reaction-diffusion logistic growth A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

model mechanically coupled to the surrounding tissue was used to extract biophysical 

model-based parameters of tumor cell proliferation rate and diffusion coefficient13,15,16; see 

Figure 2. While a brief description for the methodological implementation of this mechanistic 

modeling approach follows, a more complete description is provided as supplementary 

material and in our previous proof-of-concept work13. The coupled set of partial differential 

equations governing the model are shown in Equations [1] - [3] which describe tumor cell 

proliferation, mechano-inhibitory tumor cell diffusion, and deformation mass effect due to 

mechanical solid stress fields imparted by an expanding lesion. Equation [1] models the 

spatiotemporal rate of change of tumor cells (N) as the summation of cell diffusion and 

logistic growth, governed by the tumor cell proliferation rate, k, and the maximal cellular 

carrying capacity, θ. Equation [2] defines the apparent local cellular diffusion coefficient, D, 

in terms of the tumor cell diffusion coefficient in the absence of stress, D0, tissue distortional 

energy, σvm, and coupling constant, γ. Eq. [3] describes linear elastic, isotropic mechanical 

equilibrium subject to an external expansive force given by changes in tumor cell number 

and coupling constant, λ. For a more complete discussion of the model and implementation, 

see the supplementary materials.

 [1]
∂𝑁(𝑥,𝑡)

∂𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥,𝑡)) +𝑘𝑁(𝑥,𝑡)(1 ―
𝑁(𝑥,𝑡)

𝜃 )
            [2]𝐷 = 𝐷0𝑒 ―𝛾𝜎𝑣𝑚(𝑥,𝑡)

            [3]∇ ⋅ 𝜎 ― 𝜆∇𝑁 = 0

The mechanistic model parameters of D0 and k were estimated for all patients by 

fitting the model to observed changes in estimated tumor cellularity based on segmented 

areas of post-contrast T1-weighted MR enhancement observed during both serial imaging 

time points. Following model-to-data parameter fitting with the T1-weighted MR images, the 

mechanical solid stress field imparted by the expanding lesion is estimated by the model. 

Based on our prior proof-of-concept study that showed a correlation between mechanical 

stress and the visualized edema front for tumor progression but not radiation necrosis13, the 

Dice similarity coefficient17 was used to quantify similarity of the model-estimated stress field A
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at a range of stress isocontours with the edema front visualized and segmented from FLAIR 

imaging as a measure of mechanical stress-induced edema. Dice coefficient analysis is a 

measure of region overlap that varies between 0 and 1, with 0 being no overlap and 1 being 

100% overlap. We quantify the degree of correlation between the model-estimated stress 

and the segmented FLAIR lesion with Dice coefficient. ROC analysis can then be used to 

define optimal cutoffs in the Dice coefficient that discriminate between tumor and necrosis. 

In summary, the mechanistic biophysical model fits proliferation rate (k) and tumor cell 

diffusion coefficient (D0) from T1-weighted images, estimates a mechanical stress field due 

to tumor growth at the final time point, and Dice coefficient is used to evaluate the similarity 

overlap between the stress field and edema visualized from FLAIR imaging at the last time 

point. 

Univariate prediction analysis 

Each mechanistic model-based parameter (tumor cell proliferation rate, tumor cell 

diffusion coefficient, and stress isocontour Dice similarity coefficients) was evaluated using a 

receiver operating characteristic (ROC) curve for prediction of tumor progression versus 

radiation necrosis. The area under the curve (AUC), sensitivity, and specificity were used to 

evaluate univariate predictors. To determine sensitivity and specificity we defined cutoff 

values to specify the decision threshold between tumor progression and radiation necrosis 

using the Youden index18,19, defined as the vertical distance between the line of identity and 

the point on the ROC curve. Optimal cutoff value thresholds were selected by choosing the 

point on the ROC curve which maximizes the Youden index, maximizing the difference 

between the true positive rate (TPR) and the false positive rate (FPR). In addition, we 

evaluated standard radiographic morphometric analysis parameters previously used for 

prediction of tumor progression versus radiation necrosis, including the change in the 

longest dimension of the lesion from T1-weighted MR imaging time points and the FLAIR/T1 

lesion area quotient. 

Radiomics analysisA
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An open-source software platform, Cancer Imaging Phenomics Toolkit (CaPTk)20 was 

used to extract radiomics feature data for all imaging data for each patient (T1-weighted 

images at both time points and FLAIR images at the final time point). T1-weighted and 

FLAIR images for each patient were bias field corrected21 and intensity normalized by 

histogram-matching22 to a common corresponding modality patient image and regions-of-

interest corresponding to the lesion were manually segmented in three dimensions for each 

image volume. Radiomics feature data corresponding to intensity histogram-based, 

volumetric, morphologic, and texture (GLCM – gray-level co-occurrence matrix, GLRM – 

gray level run length matrix, GLSZM – gray-level size zone matrix, NGTDM – neighborhood 

grey tone difference matrix, LBP – local binary patterns) features were extracted, with 360 

features for each image (T1-weighted MR at both time points and FLAIR MR at the final time 

point) for a total of 1,080 radiomics features for each patient. A fixed bin count approach was 

used for radiomics histogram discretization with the default recommended parameters from 

CaPTK (10 bins).

Multivariate prediction analysis

To explore our mechanistic modeling approach to more traditional radiomics image 

analysis, we constructed multivariate logistic regression models to combine individual 

parameters to build signatures for predicting radiation necrosis or tumor progression. Two 

multivariate prediction models were built: mmechanistic and mradiomics which reflect separate 

multivariate logistic regression models that differ based on the source of independent 

variables. These models are built with input data from either mechanistic modeling 

parameters only or radiomics features only. Mechanistic modeling metrics include the 

model-estimated proliferation rate (k), model-estimated tumor cell diffusion coefficient (D0), 

and Dice similarity coefficients across a range of five stress isocontours from low to high 

stress. Multivariate logistic regression models are used to assess relative model significance 

in predicting the probability of either tumor recurrence or radiation necrosis based on a linear 

weighted summation of independent variables and regression coefficients. As there was a 

significantly larger number of features extracted relative to the number of patients, we used 

the least absolute shrinkage and selection operator (LASSO)23 regularized logistic A
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regression model to identify significant features for prediction for the regression models. 

Without feature reduction, regression models have a significant risk of overfitting due to the 

significant degree of parameterization. To identify an optimal reduced feature set using 

LASSO, we follow the widely recommended practice of K-fold cross-validation to select an 

optimal LASSO regularization parameter, lambda, for feature selection that minimizes cross-

validation error 23-26. Using a 10-fold cross-validation design, we examine a range of lambda 

tuning parameters by training on the remainder of data and testing on the held-out data 

within each fold. A cross-validation error curve is then generated that reflects average 

prediction error at each lambda value. We then select the lambda value that minimizes 

average prediction error over the 10-fold cross-validation process and then re-run LASSO on 

the entire dataset using the selected optimal lambda value. Features with non-zero 

coefficients are then identified as the reduced feature set. The optimal number of features 

was automatically determined through the selection of the optimal LASSO regularization 

parameter, lambda, which was selected as the value which minimized the estimated 

expected deviance across folds in 10-fold cross-validation. The LASSO method was used to 

automatically determine the optimal features to minimize cross-validation error across folds 

rather than maximize performance within folds such that the optimal model reduces the 

chance of overfitting. To assess predictive performance, multivariate logistic regression 

models were then built without LASSO using the optimal reduced feature set and receiver 

operating characteristic (ROC) curves were generated with optimal cutoff thresholds 

specified by the Youden index. The area under the curve (AUC), sensitivity, and specificity 

were calculated to evaluate prediction performance. As overfitting the dataset is possible 

when using all available patient data, it is important to also test out-of-sample regression 

model performance. We performed an independent validation regression analysis whereby 

we partitioned our dataset into two fully independent groups to include a training dataset and 

a separate validation dataset. We used an 85%/15% random split to partition data into a 

training dataset and a validation dataset and built regression models (mmechanistic and 

mradiomics) based only on the training dataset using the optimal reduced feature sets selected 

using LASSO with 10-fold cross-validation. Predictive performance of multivariate models A
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was then assessed using ROC curve analysis only on the validation dataset. To ensure 

robustness against random sampling bias, we repeated this process for 100 iterations using 

a repeated random subsampling validation design in which we record AUC, sensitivity, and 

specificity for each iteration of the 85%/15% random split and report mean and 95% 

confidence intervals. 

Results
A total of 73 patients with 78 lesions were identified who met our inclusion criteria. 

Patient and radiation treatment characteristics are summarized in Table 1. The most 

common primary histology was non-small cell lung cancer, followed closely by breast 

cancer. SRS for all patients was delivered using Gamma Knife for all patients with 95% 

being treated without prior irradiation and 88% being treated without prior WBRT. Median 

tumor volume was 2.72 cm3 (0.021-16.99); small tumors were not excluded; see Table 1. 

Univariate prediction analysis 

Standard radiographic morphometric analysis of the serial post-contrast T1-weighted 

enhanced and FLAIR images reflected fair ability to differentiate between tumor progression 

and radiation necrosis for the change in the longest dimension of the lesion (ROC AUC = 

0.73, 95% CI: 0.61 – 0.85, p = 0.0009, 74% sensitivity and 63% specificity), change in lesion 

volume (ROC AUC 0.61, 95% CI: 0.47 – 0.75, p = 0.1262, 43% sensitivity and 64% 

specificity), and FLAIR/T1 lesion quotient (ROC AUC = 0.55, 95% CI: 0.41 – 0.69, p = 

0.4723, 77% sensitivity and 43% specificity). Conversely, parameters derived from the 

imaging-driven mechanistic model were able to differentiate lesion etiology with excellent 

accuracy for tumor cell proliferation rate (ROC AUC = 0.86, 95% CI: 0.76 – 0.95, p < 0.0001, 

74% sensitivity and 95% specificity) and Dice similarity coefficient associated with high 

model-estimated mechanical stresses (ROC AUC = 0.93, 95% CI: 0.86 – 0.99, p < 0.0001, 

81% sensitivity and 95% specificity); see Figure 3 and Table 2.

Multivariate prediction analysisA
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Multivariate logistic regression analysis shows that multivariate predictive models 

have an improved ability to predict tumor progression and radiation necrosis over univariate 

parameters. In this work, two different statistical models were created that differ based on 

the source of independent variables, mmechanistic and mradiomics. The LASSO method was used 

to select an optimal reduced feature set to reduce the chance for overfitting. For mmechanistic, 

the LASSO selected features were model-estimated tumor cell diffusion coefficient (D0) and 

Dice similarity coefficients of the highest three stress isocontours. For mradiomics, the LASSO 

selected features were morphologic short axis ellipse diameter, morphologic equivalent 

spherical radius, GLSZM zone percentage, and NGTDM strength from the final T1-weighted 

image and 90 percentile intensity from the FLAIR image. When multivariate logistic 

regression models were fit to all of the available patient data, the mechanistic regression 

model, mmechanistic, exhibited a ROC AUC of 0.97 (95% CI: 0.92 – 1.0), with sensitivity and 

specificity of 95% and 96%, respectively. The radiomics regression model, mradiomics, had a 

ROC AUC of 0.82 (95% CI: 0.71 – 0.92), with sensitivity and specificity of 95% and 62%, 

respectively; see Figure 4 and Table 2. 

As fitting logistic regression models to all available data can potentially lead to 

overfitting the data, which results in statistical models that perform poorly on novel out-of-

training set data, we also assessed regression model performance by using an independent 

training/validation dataset analysis with repeated random subsampling validation. In this 

setting, the mechanistic model-based regression model, mmechanistic, had a mean ROC AUC 

of 0.95 (CI: 0.94-0.97), with 94% (CI: 92-95) sensitivity and 96% (CI: 94-98) specificity. The 

radiomics regression model, mradiomics, had a mean ROC AUC of 0.77 (CI: 0.75-0.80), with 

86% (CI: 83-89) sensitivity and 73% (CI: 69-78) specificity; see Table 2.

Discussion
Brain metastasis patients are not always candidates for surgical resection due to 

eloquent location of some metastases and limited life expectancy of some patients 27.  This 

clinical dilemma has led to several attempts to find successful non-invasive diagnostic 

techniques to distinguish radiation necrosis from tumor progression. Some populations have 

been shown to be at increased risk of radiation necrosis including patients with larger A
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lesions, those treated with concurrent immunotherapy, or those receiving a second 

treatment of SRS28-30.  In these patients, imaging changes can often be treated expectantly 

as radiation necrosis until proven otherwise.  In standard-risk patients, however, the limited 

efficacy of contrast-enhanced MRI follow-up imaging in patients with brain metastasis 

treated with SRS has led to the investigation of adjunctive methods including various 

positron emission tomography (PET) techniques, magnetic resonance spectroscopy, and 

perfusion-weighted MRI (PWI); however, these results have had limited success12,31,32. 

The emerging field of radiomics and machine learning has shown recent promise for 

differentiating radiation necrosis from tumor progression33,34. One recent study by Peng et al 

found that 51 radiomic features extracted using an in-house software could be used in 66 

patients with 77 confirmed lesions, to differentiate tumor progression from radiation necrosis 

with a sensitivity and specificity of 65.38% and 86.67%, respectively, with an area under the 

curve of 0.8134. Interestingly, our radiomics regression model showed comparable predictive 

performance. In our study, LASSO identified important features describing the size/shape of 

the lesion (short axis ellipse diameter, equivalent spherical radius), texture coarseness 

(GLSZM zone percentage), and image primitives (NGTDM strength) from the final T1-

weighted image and intensity (90 percentile) from the FLAIR image and achieved ROC AUC 

of 0.77 in an independent validation setting. 

One limitation of radiomics is the difficulty of associating biologic mechanisms with 

radiomic features, making widespread use and consistent results among independent 

datasets challenging. The biophysical mechanism-based model helps to overcome this 

weakness by parameterizing the biophysics of lesion growth and thus marries underlying 

mechanism to morphologic imaging features. Specifically, we utilize a reaction-diffusion 

model of tumor growth that includes mechanical coupling to the surrounding tissue stiffness, 

creating a mechanically-restricted cell diffusion growth model as described in previous 

work13. We relied on the assumption that the parameters of D0 (cellular diffusion coefficient) 

and k (cell proliferation rate) are significantly different in tumor growth versus radiation 

necrosis. We fit these parameters to “observed tumor cellularity” and use them to calculate a 

mechanical solid stress distribution, which is compared the observed edema using a Dice A
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similarity coefficient. Both cell proliferation rate and Dice similarity coefficient at high model-

estimated mechanical stresses were accurately able to differentiate lesion etiology in the 

univariate predictive setting. Combining model parameters in a multivariate fashion further 

increased predictive ability. These findings confirm our underlying mechanistic assumptions 

that tumor progression will exhibit more cell proliferation and that the loading conditions of 

tumor growth have higher local distortional strain energy that results in edema. When a 

multivariate statistical model was created to explore the combination of biophysical 

parameters, it showed excellent predictive abilities. 

While our biophysical modeling approach shows great promise for the ability to 

accurately model tumor growth within the mechanically restricted environment of brain 

parenchyma, this study has several important limitations. These are summarized below with 

a more complete discussion of technical limitations in a prior proof-of-concept study 13. 

Lesion segmentation was manual and thus potentially introduces observer error and/or bias. 

The model also treats brain matter as a homogeneous isotropic elastic tissue despite the 

brain’s mechanical heterogeneity. Future studies refining the model could incorporate such 

heterogeneity for potentially increased accuracy. In our study, mixed pathology was 

assumed as true progression; although this mirrors clinical treatment paradigms, an ideal 

model would account for and identify this heterogeneity Additionally, there is potential for 

overestimation of the impact of individual LASSO selected features in this study. LASSO, 

and more generally all sparsity-inducing feature reduction algorithms, are not uniformly 

algorithmically stable35,36. Future studies are needed to validate the impact and predictive 

accuracy of the selected features. Finally, the sample size of 73 patients at a single site is a 

limitation in this study. It will be important in future studies to examine training the 

multivariate regression models with a significantly larger amount of data from additional 

centers and MRI scanners to robustly evaluate reproducibility and clinical efficacy.

We demonstrate that an imaging-driven biophysical model is able to accurately 

differentiate radiation necrosis from tumor progression, prior to pathological diagnosis. 

These results suggest that a mechanism-based modeling method has the potential to be a 

powerful tool for interpreting follow-up imaging in a significant patient population and A
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outperformed standard radiographic analysis in our dataset. The methods presented in this 

study could vastly increase the accuracy and timeliness of diagnosis and pave the way for 

advancements in brain metastasis treatment allowing for improved tumor control and 

survival. Further, our work supports the emerging concept that biophysical modeling can 

provide a valuable physics-based mechanistic signature using computational reactive-

diffusive tumor growth biophysics as a mechanistic filter to evaluate imaging data. This is in 

contrast to functional molecular or imaging-physics contrast signatures as evaluated by 

radiomic evaluation methods, which have been shown to be incomplete for differentiating 

radiation necrosis from tumor progression.
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Figure Legends
Figure 1. Serial imaging of lesions identified on follow-up after treatment of BM with SRS.A
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Figure 2. Schematic of mechanistic modeling framework for biophysical parameter 

estimation based on standard-of-care MR images for prediction of radiation necrosis and 

tumor progression.

Figure 3. ROC curves for univariate parameters from the biophysical model and standard 

radiographic morphometric analysis. The dotted line represents the line of identity.

Figure 4. ROC curves for multivariate logistic regression models combining individual 

parameters from with input data from radiomics features and mechanistic biophysical 

modeling parameters. LASSO regularized logistic regression was used to identify significant 

features for prediction. The dotted line represents the line of identity. 
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Table 1. Tumor and Treatment Characteristics 

Characteristics  Data 

No. Patients  73 

No. Lesions 78 

Lesion status (radiation necrosis/tumor recurrence) 31/47 

Median patient age at SRS (range) 54 (16-88) 

Male/Female 27/46 

No. of lesions treated (range) 1 (1-3) 

Median tumor volume (range)  2.72cc (0.021-16.99) 

Median time between MRI scans 108 days 

Median time from SRS to 2nd imaging time point 310 days 

Primary Histology  

(radiation necrosis/tumor recurrence) 

 

Lung Non-small Cell 29 (16/13) 

Breast 24 (7/17) 

Lung Small Cell 7 (3/4) 

Melanoma  6 (0/6) 

Colon Adenocarcinoma  5 (0/5) 

Thyroid  2 (2/0) 

Renal Cell Carcinoma 2 (2/0) 

Neuroendocrine 1 (1/0) 

Esophageal Adenocarcinoma  1 (0/1) 

Ovarian  1 (1/0) 
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Median total dose (range), Gy 18 (10-22) 

Median fractions (range) 1 (1-1) 

No. Treated with WBRT (%) 9 (12) 

No. with prior same-site SRS (%) 4(5) 

Median time from SRS to resection (range), d* 312 (45-1226) 

Abbreviations: SRS = Stereotactic radiosurgery; WBRT = whole brain radiation therapy 

*For lesions determined without pathology, time interval taken from SRS until date of maximum lesion diameter.  
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Table 2. Summary of ROC analyses 

 ROC AUC Sensitivity Specificity 

Univariate 

Lesion longest dimension  0.73 (0.61 – 0.85) 74% 

 

63% 

Lesion change in volume 0.61 (0.47 – 0.75) 43% 64% 

FLAIR/T1 lesion quotient  0.55 (0.41 – 0.69) 77% 43% 

proliferation rate 0.86 (0.76 – 0.95) 74% 95% 

High stress Dice similarity 

coefficient 

0.93 (0.86 – 0.99) 81% 95% 

Multivariate 

Radiomics features 0.82 (0.71 – 0.92) 95% 62% 

Mechanistic model features 0.97 (0.92 – 1.0) 95% 96% 

Multivariate – Independent validation 

Radiomics features 0.77 (0.75-0.80) 86% (83-89) 73% (69-78) 

Mechanistic model features 0.95 (0.94-0.97) 94% (92-95) 96% (94-98) 
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