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Abstract
Reaction–diffusionmodels have beenwidely used tomodel glioma growth.However, it has not been
shownhow accurately thismodel can predict future tumor status usingmodel parameters (i.e., tumor
cell diffusion and proliferation) estimated fromquantitative in vivo imaging data. To this end, we used
in silico studies to develop themethods needed to accurately estimate tumor specific reaction–
diffusionmodel parameters, and then tested the accuracy withwhich these parameters can predict
future growth. The analogous studywas then performed in amurinemodel of glioma growth. The
parameter estimation approachwas tested using an in silico tumor ‘grown’ for ten days as dictated by
the reaction–diffusion equation. Parameters were estimated from early time points and used to predict
subsequent growth. Prediction accuracywas assessed at global (total volume andDice value) and local
(concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n= 9)withC6
gliomas, imagedwith diffusionweightedmagnetic resonance imaging, were used to evaluate the
model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor
volume error <8.8%,Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six
days into the future. The in vivo study showed higher global (tumor volume error >11.7%,Dice
<0.81) and higher local (CCC<0.33) level errors over the same time period. The in silico study shows
thatmodel parameters can be accurately estimated and used to accurately predict future tumor growth
at both the global and local scale.However, the poor predictive accuracy in the experimental study
suggests the reaction–diffusion equation is an incomplete description of in vivoC6 glioma biology and
may require furthermodeling of intra-tumor interactions including segmentation of (for example)
proliferative and necrotic regions.

1. Introduction

Mathematical models have been constructed to
describe tumor growth and invasion over a large range
of spatial scales (nm to cm) and temporal scales (ns to
years). Substantial discussions have focused on trans-
lating these models to clinical care with the long term
goal of providing clinicians with patient-specific pre-
dictions of future tumor growth and therapy response
in order to optimally select and guide patient therapy

[1–3]. Approaches for patient-specific predictions
may focus on changes in a single property such as
tumor volume, or changes in tumor growth as a
function of several related properties (e.g., cellularity,
vascularity, nutrient distribution). Models that focus
on the change in a single tumor property can be
parameterized readily with experimental data [4, 5],
but may fail to capture spatial and temporal tumor
heterogeneity of, for example, cellularity, vasculature
density, proliferation rates, and the level of response
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(or lack thereof) of cells to treatment that is observed
within tumors [6, 7]. Patient-specific models that
capture a tumor’s spatial and temporal heterogeneity
could be used to more accurately describe the delivery
of treatment and subsequent response [8–11]. Unfor-
tunately, modeling these characteristics frequently
requires knowledge of parameters that can only be
measured by highly invasive methods or within
idealized (in vitro) settings [12–15]. The reliance of the
existing modeling literature on parameters that are
either extraordinarily difficult or impossible to mea-
sure non-invasively fundamentally limits their clinical
application. Recasting these models in terms of para-
meters measured via non-invasive imaging measure-
ments would dramatically improve the clinical
relevance of patient-specific tumor growth predic-
tions [1].

Magnetic resonance imaging (MRI) and positron
emission tomography (PET) can be used to provide an
array of non-invasive, quantitative, and functional
measurements in 3D and at multiple time points of
tumor growth. More specifically, MRI and PET can
provide measurements of cellularity [16], blood
volume [17, 18], blood flow [17, 18], hypoxia [19],
oxygen saturation [20], and metabolism [21]. Addi-
tionally, the ability to make repeatable, non-invasive,
spatially discretized, quantitative measurements of
tumor growth supports the development, testing, and
refinement of mathematical descriptions of in vivo
tumor growth. Several groups [1, 5, 22–29] have
incorporated imaging measurements fromMRI, PET,
and x-ray computed tomography into mathematical
models of tumor growth. Preliminary efforts in both
breast [23] and pancreatic [24] cancers, have shown
that patient specific imaging data can potentially accu-
rately predict future tumor growth. This, however, has
not been demonstrated for gliomas.

One commonmodel for glioma growth is the reac-
tion–diffusion model, whereby the spatio-temporal
change in tumor cellularity is due to proliferation and
invasion (described by random diffusion) of tumor
cells. The proliferation and invasion of cells are typi-
cally characterized with a proliferation rate and a dif-
fusion coefficient, respectively. The reaction–diffusion
model of glioma growth described by Swanson et al
[29], uses proliferation and diffusion coefficients of
tumor cells estimated from T2-weighted and post-
contrast T1-weighted MRI data obtained at two time
points. The estimated tumor cell proliferation and dif-
fusion values can then be used to simulate tumor
growth following surgical resection [29] or simulate a
virtual control to assess patient response to radio-
therapy [25]. Jbadbi et al [28] extended this approach
by allowing anisotropic diffusion of tumor cells by
replacing the diffusion coefficient with a diffusion ten-
sor measured using diffusion tensor imaging. The
authors showed that simulated anisotropic tumor
growth better matched the shape of glioma growth
observed in patients. Spatially varying estimates of

diffusion and proliferation were included in the work
of Ellingson et al [27]. In this work, serial diffusion
weighted MR images were used to develop a voxel-
wise analytical solution (when certain assumptions are
satisfied) to a reaction–diffusion model of glioma
growth. The proliferation and diffusion values were
compared to MR spectroscopy measurements, but
these values were not used to simulate tumor growth.
Another extension of the reaction–diffusion model is
the incorporation of mechanical properties of healthy
and tumor tissue into a description of tumor growth
[23, 24, 26, 30]. The work of Hogea et al [26] showed
the benefit of incorporating mechanical deformations
caused by the invading tumor growth into a reaction–
diffusion model. Their effort also demonstrated the
means to invert their model system to estimate para-
meters from imaging data.

In this work we use a reaction–diffusion model of
glioma growth with proliferation and diffusion values
estimated from quantitative in vivo imaging data to
predict future tumor growth and then validate (or
refute) that prediction by direct comparison to future
in vivomeasurements. Using an in silico tumor we first
developed the means to accurately estimate model
parameters and assessed the accuracy of tumor growth
predictions. We then performed the analogous in vivo
study, where model parameters were estimated from
serial diffusion-weighted MRI data in a murine model
of glioma to predict future tumor status which could
then be directly compared to experimental outcome.
The in silico experiments show that model parameters
can be accurately estimated from tumor growth data-
sets and then used to predict future tumor growthwith
low global and local errors. However, when the
approach is applied to in vivo gliomameasurements, it
is shown that the reaction–diffusion model provides
poor predictive ability of future tumor growth.

2.Materials andmethods

2.1.Modeling approach
The reaction–diffusion equation describes the spatio-
temporal rate of change in tumor cell number and
distribution due to the random movement of tumor
cells (diffusion; the first term on the right-hand side of
equation (1)), and proliferation (reaction; the second
termon the right-hand side of equation (1)):

( )N x t

t
D x N x t

k x N x t
N x t
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• ( ¯) ( ¯, )
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where N x t(¯, ) is the number of tumor cells at three-
dimensional position x̄ and time t, D x(¯) is the tumor
cell diffusion coefficient at position x̄, k x(¯) is the net
tumor cell proliferation at position x̄, and θ is the
tumor cell carrying capacity. Note that the prolifera-
tion term varies temporally as a function of cell
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density, N x t(¯, ), although it is assumed that the
proliferation rate, k x(¯), is temporally constant. As
described below, quantitative diffusion weightedmag-
netic resonance imaging (DW-MRI) provides esti-
mates of N x t(¯, ). These data are obtained at multiple
time points, early in the tumor’s life cycle, and used to

solve an inverse problem using equation (1) to return
estimates of k x(¯) for each voxel within the tumor, and
two D x(¯) values: one for white matter (Dwm) and one
for gray matter (Dgm). The forward evaluation of
equation (1) is solved using a three dimension in space,
fully explicit finite difference (FD) in time simulation

Figure 1.Parameter optimization approach. Panel (a) shows a central anatomical axial slice through the rat brain and cropped images
of the in silico tumor cell distributions at days 0, 2, and 4. Panel (b) shows themodel parameter optimization approach used for the in
silico and in vivo studies. The process starts with an initial distribution of tumor cells and an initial guess for P. Afinite difference
simulation of equation (1) using the initialP and the initial tumor cell distribution is used to ‘grow’ amodel estimate ofN for four
days. The error betweenNest at day 4 (or days 2 and 4 for approach 3) andN is calculated.When the error betweenNest andN is
minimized, parameter optimization ceases and themodel parameters are set to the current values of P. However, if the error is not
minimized, P is updated and parameter optimization continues.

Figure 2.Predicted tumor growthmodeling approach. Thisfigure shows themodeling approach for predicting future tumor growth
for the in silico and in vivo studies. The tumor growth predictionmodel is initializedwithN fromday 4 aswell as the optimized
parameters P.N at day 4 and P are used in afinite difference simulation of equation (1) to ‘grow’ the tumor for 6 days resulting in a
model prediction ofN (i.e.,Npred). Thismodeling approach is repeated for each set ofmodel parameters (P1,P2,P3). The error
betweenNpred andN at days 5 through 10 is calculated at the global level (Dice similarity coefficient, nrms error, and percent error in
tumor volume) and at the local level (CCC).
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written in Matlab (Mathworks, Natick, MA). The
simulation domain has no diffusive flux of tumor cells
at brain tissue boundaries (i.e., at the skull) and the
grid spacing matches the spatial resolution of the MRI
data (Δx= 250 μm, Δy= 250 μm, Δz= 1000 μm). The
simulation time stepwas set at 0.01 days.

2.2. In silico experiments
Figures 1 and 2 show the approach for the in silico
experiments. An initial distribution of tumor cells,
N x t(¯, ),0 was seeded within a rat brain domain. A
spatial map of k was determined from DW-MRI
estimates of N x t(¯, ) from a C6 glioma bearing rat
using equation (2):

( )k x N x t N x t t t( ¯) log ( ¯, ) ( ¯, ) / ( ), (2)1 0 1 0= − −

where N x t(¯, )0 and N x t(¯, )1 represent the distribu-
tion of cells at time t0 and t1, respectively, while k x(¯)
remained constant in time. The initial model para-
meters, or Ptrue (P= (k(1), k(2),… k(n), Dgm, Dwm),
where n is the number of voxels within the tumor),
were selected by iteratively scaling k x(¯) until a 12 fold
increase in total tumor volume was observed over 10
days, matching the average observed tumor volume
increase observed in the in vivo study. An FD simula-
tion of equation (1) with an initial distribution of
tumor cells N x t(¯, )0 and parameters Ptrue was used to
grow an in silico tumor for 10 days (1000 time steps/
iterations). Tumor cell distributions, N x t(¯, ), were
then sampled at days 0, 2, and 4 thru 10. Panel (a) in
figure 1 shows a central anatomical axial slice through
a rat head and cropped images of the in silico tumor
cell distribution seeded at day 0 and ‘grown’ to days 2
and 4. Three different combinations of these three
time points were then used to estimate three sets of
model parameters (P1, P2, and P3). P1 was estimated
using tumor cell measurements from days 0 and 4
(N x t(¯, )0 and N x t(¯, ),4 respectively). P2 was esti-
mated using tumor cell measurements from days 2
and 4 (N x t(¯, )2 and N x t(¯, ),4 respectively), while P3
was estimated using tumor cell measurements from
days 0, 2, and 4 (N x t(¯, ),0 N x t(¯, ),2 and N x t(¯, ),4

respectively). Panel (b) infigure 1 shows the parameter
optimization approach for these model parameters
(P1, P2, and P3). For each set of estimated parameters
(P1, P2, and P3) a FD simulation of equation (1) was
initialized with N x t(¯, )0 (for P1 and P3) or N x t(¯, )2

(for P2) and used to grow a tumor to day 4 resulting in
a model estimate of N for each parameter set (Nest,1,
Nest,2, and Nest,3). The error between N and Nest,1,
Nest,2, and Nest,3, respectively, was calculated. If this
error is minimized, the optimal values of P1, P2, and P3
have been determined, otherwise P1, P2, and P3 are
updated with new values. The optimized P values are
then used to predict future tumor growth.

Figure 2 shows the modeling approach for pre-
dicting future tumor cell distributions. For each set of
optimized parameters (P1, P2, and P3) an FD simula-
tion of equation (1) was used to ‘grow’ the tumor
from day 4 to day 10 (6 days; 600 iterations) resulting

in predicted tumor cell distributions for each para-
meter set (N x t(¯, )pred,1 5 10− ,N x t(¯, ),pred,2 5 10− and

N x t(¯, ),pred,3 5 10− respectively). Error between the true
N andNpred was calculated at both the global and local
levels by calculating the percent error in tumor
volume, the Dice similarity coefficient, the normalized
root mean square error (nrms error), and the con-
cordance correlation coefficient (CCC).

2.3. In vivo experiments
All experimental procedures were approved by Van-
derbilt University’s Institutional Animal Care and Use
Committee. Female Wistar rats (n= 9, 236–263 g)
were anesthetized, given analgesics, and inoculated
with C6 glioma cells (1 × 105) via stereotaxic injection.
During each MRI procedure body temperature was
maintained near 37 °C by a flow of warm air directed
over the animal and respiration wasmonitored using a
pneumatic pillow. Each rat was anesthetized using 2%
isoflurane in 98% oxygen for all surgical and imaging
procedures. Rats were imaged beginning 10 days post-
surgery (defined as day 0). Rats were imaged up to 10
days after the first imaging time point. The first three
imaging measurements for all rats occurred on days 0,
2, and 4. Rats 1–3 were then imaged on days 5, 8, and
10. Rats 4–5 were imaged on days 5, 6, and 9. Rat 6 was
imaged on days 5, 6, 8 and 10, while rats 7–8 were
imaged only on days 5 and 6. Rat 9 was only imaged at
one additional time on day 5.

MRI was performed on a 9.4 T horizontal-bore
magnet (Agilent, Santa Clara, CA, USA). The animal’s
head was positioned in a 38 mm diameter Litz quad-
rature coil (Doty Scientific, Columbia, SC, USA) and
was secured by a bite bar. AllMR images were sampled
with a 128 × 128 × 16 matrix acquired over a
32 × 32× 16mm3

field of view. In order to facilitate
the modeling, the imaging volumes obtained at time
points two through the end of the experiment were
registered to the first time point via a mutual informa-
tion based rigid registration algorithm performed at
the scanner [31]; this ensures that the image volumes
obtained at each time point are very nearly identical
(see supplementary figures 1–3 for example registra-
tion results). A T1 map was produced using data from
an inversion-recovery snapshot experiment with TR/
TE= 5000/3 ms, TI (inversion time) = (8 TIs logarith-
mically spaced between 200 and 4000 ms), and two
averaged excitations.

DW-MRI was acquired using a pulsed fast spin
echo diffusion sequence in three orthogonal diffusion
encoding directions with b-values of 0, 300, 500, 700,
900, and 1100 s mm−2, and Δ/δ= 25ms/2 ms. The
apparent diffusion coefficient (ADC) was estimated
on a voxel basis using a two parameter fit of the DW-
MRI data [32]. To determine N x t(¯, ), the ADC values
from the DW-MRI data are then transformed to esti-
mate cell number [33, 34] using equation (3):
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where θ represents the tumor cell carrying capacity,
ADCw is the ADC of free water at 37° C
(2.5 × 10−3 mm2 s−1) [32], x tADC(¯, ) is the ADC
value at position x̄ and time t, and ADCmin is the
minimumADC value which corresponds to the voxel
with the largest number of cells. The carrying
capacity, θ, was calculated for each imaging voxel
assuming spherical tumor cells with a packing density
of 0.7405 [35] with an average cell volume of
908 μm3 [36].

Tumor regions-of-interest (ROI) were manually
placed at each time point using the T1 maps. ADC
measurements within these ROI’s were then trans-
formed to tumor cell number using equation (3). T1

maps were used to define tumor, white, and gray mat-
ter regions in theMR images.

Similar to the in silico experiments, three sets of
model parameters (P1, P2, and P3) were then estimated
for each rat.We note that the time and spatial origin of
the tumor (as mentioned in Hogea et al [26]) was not
determined as tumor growth simulations were initi-
alized with tumor cellularity measurements from
DW-MRI. The estimated parameters for each rat
(parameters for rat 1; PR1,1, PR1,2, and PR1,3) were used
in a FD simulation of equation (1) to ‘grow’ simulated
tumors from day 4 to day 10 (6 days; 600 iterations)
resulting in predicted tumor cell distributions for each
parameter set (predicted N x t(¯, ) for rat 1; NR1,pred,1

x t(¯, ),5 10− NR1,pred,2 x t(¯, ),5 10− and NR1,pred,3

x t(¯, ),5 10− and, respectively).
The three different time point combinations from

the in vivo data sets were alsofit to amodel substituting
a spatially invariant proliferation rate (kROI) for the
spatially variant proliferation rate (k x(¯) ); i.e., k x(¯)
≡ kROI in equation (1).

2.4. Numericalmethods
A Levenberg–Marquardt weighted least squares non-

linear optimization, implemented with a regulariza-

tion parameter described in Joachimowicz et al

[37, 38], was used to estimate model parameters (P1,

P2, P3) from tumor cell distribution measurements.

All parameters were constrained to non-negative

values. Prior to estimating P a 3 × 3 Gaussian filter was

applied to each slice of N x t(¯, ) to reduce the effects of

noise within individual voxels. During the optimiza-

tion scheme, k was estimated voxel-wise in areas

within the tumor ROI and assigned 0 elsewhere.

Additionally, Dwm and Dgm values were assigned

region-wise using a white and gray matter map. The

optimized parameters were determined when the

objective function, equation (4), wasminimized:
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where ti is the initial time point, tf is the final time
point, n is the total number of voxels within the tumor,
and N x t(¯, )est is the model estimate of N using the
current parameter set. For P1 and P2 optimizations, ti
and tf were equal to day 4. For P3 optimization ti was
equal to day 2 and tf was equal to day 4.

To assess the effect of noise in ADCmeasurements
on estimates of P, in silico parameter optimization was
repeated (N= 100) for each set of parameters (P1, P2,
P3) with noise added to N x t(¯, ) from a normal dis-
tribution with a zeromean and a standard deviation of
3.3% of the carrying capacity (selected based on the
reproducibility of ADCmeasurements in vivo [32]).

After optimization of P, these values were used in a
FD implementation of equation (1), initialized with
the tumor cell distribution at day 4 (N x t(¯, ) ),4 to
‘grow’ a predicted tumor from day 4 thru 10 (600
iterations). Throughout the FD simulation, as the
tumor expanded into regions where an estimate of k
was unavailable, kwas assigned using a local average of
available non-zero k’swithin a 3 × 3× 3 kernel.

The accuracy of P estimated from the in silico data-
set was evaluated by computing the percent error
between the true, Ptrue, and the estimated parameter
sets (P1, P2, and P3), the Pearson correlation coeffi-
cient (PCC), and the CCC (similar to the PCC but
with a penalty for data that do not lie on the line of
unity) [39]. A Bland–Altman analysis was also per-
formed between the true, Ptrue, and the estimated (P1,
P2, and P3) parameter sets. For the in vivo study, agree-
ment between P1, P2, and P3 estimates of k x(¯) was
assessed by calculating the PCC and CCC for P1 and
P2, P1 and P3, and P2 and P3. For both the in vivo and in
silico studies error between the predicted and true
tumor growth was assessed at the global (i.e., volume)
and local (i.e., voxel) levels. For the in vivo analysis, the
tumor ROIs and measured cellularity from DW-MRI
are taken as true tumor growth. At the global level,
error was assessed by calculating the percent error in
tumor volume, the nrms error, and the Dice similarity
coefficient (a measure of spatial overlap between two
data sets ranging from 0 (no overlap) to 1 (complete
overlap); [40]). The percent error in tumor volume
and nrms error were computed by comparing the true
tumor volume and the tumor volumes predicted from
FD simulations using P1, P2, and P3 at days 5 thru 10.
The Dice similarity coefficient was computed by com-
paring the spatial overlap between the true tumor
ROIs and the tumor ROIs predicted from FD simula-
tions using P1, P2, and P3 at days 5 thru 10. At the local
level, error was assessed by computing the CCC
between N and Npred at days 5 thru 10. For the in vivo
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study, paired t-tests were used to evaluate the differ-
ences between percent error in tumor volume, Dice,
and CCC results observed with the spatially variant k
and spatially invariant kmodels.

3. Results

3.1. In silico results
Illustrative results of the in silico experiments are
shown figures 3–5 and summarized in table 1. Figure 3
shows the true distribution of k (panel (a)) used to
‘grow’ the in silico tumor, the estimated values of k
(panels (b)–(d)), and plots of the true voxel values of k
against the estimated values of k (panels (e)–(g)).
Panels (b) and (e) show the results from parameters
estimated from days 0 and 4. Both a low level of
agreement (CCC= 0.38) and a weak linear relation-
ship (PCC= 0.54) is observed between the true k and
the k estimated using the P1 data sets (kP1). Addition-
ally 88%of voxels in kP1 are overestimated. Parameters

estimated using days 2 and 4 (panels (c) and (f))
showed an improved level of agreement (CCC= 0.74),
stronger linear relationship (PCC= 0.80), and fewer
overestimated voxels (72%) compared to kP1. Using all
three time points (panels (d) and (g)) resulted in the
best level of agreement (CCC= 0.84), the strongest
linear relationship (PCC= 0.87), and the fewest over-
estimated voxels (58%). Panels (h)–(j) show the
Bland–Altman analysis for P1, P2, and P3 compared to
Ptrue. The black lines represent the mean difference
while the gray lines represent the 95% confidence
interval (CI). A larger 95% CI was observed for kP1–
kPtrue (−0.35 to 0.91) compared to kP2–kPtrue (−0.25 to
0.46) and kP3–kPtrue (−0.26 to 0.32).

Figure 4 shows the true (panel (a)) and the pre-
dicted tumor cell distributions (top rows in panels
(b)–(d)) and the percent difference between the true
and predicted distributions (bottom rows in panels
(b)–(d)). Panel (b) shows the predicted N at day 5
using P1, P2, and P3. The highest error between N and

Figure 3.True and estimated proliferation ratemaps from in silico study. The true (panel (a)) and estimated values (panels (b)–(d)) of
k are shown for the in silico study. Panel (a) shows the true distribution of kused to ‘grow’ the in silico tumor. Panels (b)–(e) show
example parametermaps of k estimated using days 0 and 4 (panel (b)), days 2 and 4 (panel (c)) and days 0, 2, and 4 (panel (d)). Panels
(e)–(g) show the individual voxel values of the true k plotted against the estimated values of k fromP1,P2, andP3. Additionally panels
(e)–(g) show the PCC andCCC values between the true k and the estimated k. k estimated fromdays 0 and 4 havemore voxels that are
overestimated resulting in a lower level of agreement (CCC= 0.38) compared to the other two approaches. The highest level of
agreement and correlation (CCC= 0.84 and PCC= 0.87) between the estimated and true kwas observedwhen days 0, 2, and 4were
used to estimate k. Panels (h)–(j) show the Bland–Altman analysis comparing the kP1, kP2, and kP3 to kPtrue. The black lines represent
themean difference, while the gray lines represent the 95% confidence interval of thosemeans. A lowermean difference was observed
for kP3–kPtrue (0.028) compared to kP1– kPtrue (0.28) and kP2–kPtrue (0.11).
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Npred at day 5 was observed for parameters P1 (mean ±
standard error; 31.15 ± 0.82%) compared to P2
(19.67 ± 0.64%) and P3 (16.84 ± 0.58%). As the tumor
continues to grow, increased error is observed
betweenN andNpred. Generally, this error is increased
at the periphery (greater than 100% error) relative to
the interior (less than 40%). The predicted N at day 8
(panel (c)) resulted in increased mean error relative to
day 5 for predictions using P1 (41.38 ± 0.87%), P2
(28.03 ± 0.68%) and P3 (26.03 ± 0.64%). At the final
time point (panel (d)), P3 based predictions had a
mean error (29.51 ± 0.65%) lower than P1
(45.93 ± 0.90%) and P2 (30.83 ± 0.67%) based

predictions. The lowest cumulative error was observed
for P3 based predictions (nrms error; mean= 0.062,
standard error = 1.33 × 10−2) compared to P1 based
predictions (mean= 0.289, standard error = 2.51 ×
10−2) or P2 based predictions (mean= 0.102, standard
error = 1.19 × 10−2).

The results of the ROI and voxel level analysis are
shown in figure 5. Error in tumor volume generally
increases the further out in time a prediction is made
(panel (a)). Percent error in tumor volume ranged
from 11.9 to 36.4% for P1 based predictions, 3.1 to
13.6% for P2 based predictions, and 0.8 to 8.8% for P3
based predictions. All parameter sets, however,

Figure 4.True and predicted tumor cell distributions for in silico study. The true and predicted tumor cell distributions for the in silico
study are showed above. Panel (a) shows the trueN at the central slice of the tumor volume on days 4, 5, 8, and 10. The predictedN
(Npred) and the error betweenN andNpred for the same slice on days 5, 8, and 10 are shown in panels (b)–(d). The black outline
displayed onNpred in panels (b)–(d) represent the high cell density region from the true tumor cell distributions in panel (a). The color
bars represent percent of the carrying capacity (top rows) and percent error (bottom rows).White regions observed in the percent
errormaps represent areas where no tumor cells were observed in the true data set. The top rows in panels (b)–(d) representNpred,
while the bottom row represents the percent difference betweenN andNpred. Additionally, the three columns in panels (b)–(d)
represent the results using parametersP1,P2, andP3. Increased error (greater than or equal to 100%) is observed at the periphery of the
tumor relative to the interior of the tumor (less than 20%).
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resulted in Dice values (panel (b)) greater than 0.83 at
days 5 thru 10. An increased level of agreement was
observed at the voxel level (panel (c)) for P3 based pre-
dictions (CCC: 0.80–0.99) relative to P1 based predic-
tions (CCC: 0.53–0.93) and P2 based predictions
(CCC: 0.74–0.98).

Table 1 shows the mean percent error between the
true values and estimated values of k, Dwm, and Dgm.
Using all three time points resulted in less than 1.0%
error in estimates of Dwm, whereas using two time
points (days 0 and 4 or days 2 and 4) resulted in greater
than 49.5% error. Less than 6.2% error was observed
in estimates ofDgm when using days 2 and 4 or days 0,
2, and 4, while 13.7% error was observed when using
days 0 and 4 to estimate model parameters. Similarly,
the highest mean error in k was observed for para-
meters estimated from days 0 and 4 (28.3 ± 2.9%),
while lower error was observed for the approaches
using days 2 and 4 (13.1 ± 2.1%) and days 0, 2, and
4 (5.9 ± 1.8%).

3.2. In vivo results
The results of the in vivo experiments are shown in
figures 6–8 and tables 2 and 3. Figure 6 shows the PCC
(a) and CCC (b) analysis for all nine rats, as well as kP1,
kP2, and kP3 from rats 3 (c)–(e) and 6 (f)–(h). The
green bars in panels (a) and (b) represent the
comparison of kP1 to kP2, while the blue and red bars
represent the kP1 to kP3 and kP2 to kP3 comparisons,
respectively. A high level of correlation existed
between kP1 and kP3 (mean PCC= 0.75, standard
error = 0.05) and between kP1 and kP2 (mean PCC=
0.72, standard error = 0.09) compared to kP2 to kP3
(mean PCC= 0.46, standard error = 0.08). Similar
comments apply to the CCC trends. Panels (c)–(h)
show estimated kP1 (panels (c) and (f)), kP2 (panels (d)
and (g)), and kP3 (panels (e) and (h)) for rats 3 and 6.
Rat 3 (c)–(e) is an example of a rat with a high level of
correlation (PCC: 0.68 to 0.88) but a low level of
agreement (CCC: 0.08 to 0.34). Rat 6 (f)–(h), however,
is an example of a rat with both a high level of
correlation (PCC: 0.72 to 0.93), and a high level of
agreement (CCC: 0.60 to 0.84).

Figure 7 shows the true (panel (a)) and the pre-
dicted tumor cell distributions (top rows in panels
(b)–(d)) and the percent difference between the true
and predicted distributions (bottom rows in panels
(b)–(d)) for rat 1. The left column in panel (a) shows
T2-weighted images with a white box indicating the
simulation domain and a black outline around the
tumor. Panel (b) shows estimated k and the predicted
N at day 5 using P1, P2, and P3. Decreased kP1 (mean ±
standard error; 0.08 ± 0.02 day−1), kP2 (0.13 ± 0.03
day−1), and kP3 (mean ± standard error; 0.08 ± 0.02
day−1) were observed for the low cell density regions
relative to the rest of the tumor (kP1; 1.51 ± 0.06 day−1,
kP2; 1.87 ± 0.10 day−1, kP3; 1.32 ± 0.05 day−1). The
highest error between N and Npred at day 5 was

Figure 5.Global and local level error analysis for in silico
study. Panels (a) and (b) show the result of global level error
analysis while panel (c) shows the result of local level error
analysis for the in silico experiments. Themean and standard
error (N= 100) of eachmeasurement is plotted at days 5
through 10. Panel (a) shows that less than 8.8% error is
observed for all predictions when using parameters estimated
fromdays 0, 2, and 4. Standard error in panel (a) is less than
0.32%. TheDice values (panel (b)) show all parameter sets
result in aDice value greater than 0.83. Panel (c), shows a
steady decrease in the level of voxel agreement (decrease in
CCC) over time for all sets of parameters. At each time point
and for each errormeasurement there are significant differ-
ences between values fromP1 andP2,P1 andP3, andP2 andP3
(P⩽ 0.05). The standard error in panels (b) and (c) is less than
3.8 × 10−3.

Table 1.Parameter estimation error from in silico experiments.

Percent error:mean (standard error)

Days 0 and 4 Days 2 and 4 Days 0, 2, and 4

Dwm −76.2 (0.3) −49.5 (0.7) −1.0 (0.5)

Dgm −13.7 (0.3) −6.2 (0.4) −0.5 (0.2)

k 28.3 (3.9) 13.1 (2.1) 5.9 (1.8)
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observed for parameters P3 (mean ± standard error;
17.80 ± 0.50%) compared to P1 (17.07 ± 0.50%) and
P2 (17.12 ± 0.51%). Increased error (greater than or
equal to 100% error) is observed betweenN andNpred

at both the periphery and in regions where N has low
cell numbers (less than 50% of a voxels carrying capa-
city). This pattern is observed also in panels (c) and
(d). Increased error at day 8 (panel (c)) was observed
relative to day 5 (panel (b)) with P1 predictions having
the highest error (32.58 ± 0.63%) compared to P2
(28.27 ± 0.57%) and P3 (31.43 ± 0.61%). The pre-
dictedN at day 10 (panel (d)) shows an overestimation
of tumor size for P2 based predictions compared to P1
or P3 based predictions. However, at the voxel level the
highest mean error was observed for P1 based predic-
tions (35.80 ± 0.54%) relative to P2 (35.03 ± 0.53%)
andP3 (33.45 ± 0.51%) based predictions.

Figure 8 presents the global and local level error
analysis for the in vivo experiments. Panels (a)–(c)
show the results when a spatially variant k (i.e., k x(¯))
is estimated and panels (d)–(f) show the results for the
spatially invariant estimated k (i.e., kROI). For the spa-
tially variant k, percent error in tumor volume (panel
(a)) for P1, P2, and P3 based predictions ranged from
14 to 34%, 16 to 50%, and 12 to 29%, respectively.
Lower Dice values (panel (b)) were observed

compared to the in silico study and ranged from0.67 to
0.81 for all approaches. Similarly, the in vivo study had
decreased level of agreement (panel (c)) compared to
the in silico study with CCC’s less than 0.33 for all
approaches. For the spatially invariant k, percent error
in tumor volume (panel (d)) for P1, P2, and P3 based
predictions ranged from 36 to 58%, 36 to 77%, and 32
to 54%, respectively. The Dice values were also lower
than the in silico study and ranged from 0.66 to 0.79.
Lower agreement (CCC< 0.25) at the voxel level was
also observed for the spatially invariant k approach
compared to the spatially variant k approach. The spa-
tially invariant k’s percent error in tumor volume was
significantly greater (P< 0.05) than the spatially var-
iant k’s results for all parameter sets. Similarly, both
the Dice and CCC values were significantly smaller
(P< 0.05) for the spatially invariant k predictions
compared to the spatially variant k predictions.

The average diffusion estimates and the nrms error
for both the spatially variant and invariant k models
are shown in table 2. For the spatially variant kmodel
fits, the mean Dwm ranged from 1.49 × 104 to
1.57 × 104 μm2 day−1, and the mean Dgm per animal
ranged from 1.58 × 104 to 1.99 × 104 μm2 day−1. The
cumulative error (nrms error) was lowest for P3 based
predictions (0.49) compared to P1 (0.54) or P2 (0.81)

Figure 6.Estimated proliferation ratemaps from in vivo study. Panels (a) and (b) show the results of the PCCandCCCanalysis
between kP1 to kP2 (green bars), kP1 to kP3 (blue bars), and kP2 to kP3 (red bars) for each rat. Higher agreement and correlationwas
observed between kP1 to kP2 and kP1 to kP3, while weaker correlation and agreementwas observed between kP2 to kP3. Proliferation rate
maps from the central slice of rat 3 (c)–(e) and 6 (f)–(h) are also shown above. Panels (c) and (f) show the estimated kP1, while panels
(d) and (g) show kP2 and panels (e) and (h) show kP3. The proliferation rates in each image range from0 to themaximum k of each rat
(max k= 8 for rat 3,max k= 4 for rat 6). The proliferationmaps demonstrate spatial heterogeneity of proliferation rateswithin the
tumor. Additionally, themagnitude of k varies between themethods (i.e., using P1, P2, or P3) used to estimate k.
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based predictions. The spatially invariant k model
optimization resulted in higher diffusion values for
both Dwm (greater than 3.05 × 104) and Dgm (greater
than 3.50 × 104) compared to the spatially variant k
results. Increased cumulative error (nrms error >1.04)
was also observed compared to the spatially variant k
results.

Table 3 shows the average proliferation rate for
each rat from the spatially variant (k x(¯),where k x(¯) is
the average voxel-wise k estimated within the tumor)
and the estimated spatially invariant proliferation rate
(kROI). k x(¯) ranged from 0.51 to 4.06 day−1, while
kROI ranged from 0.94 to 9.94 day−1. kROI was larger

than k x(¯) for six rats for parameter estimates using
day 0 and day 4, nine rats for days 2 and 4, and three
rats when all three time points were used.

4.Discussion

The results of the in silico experiments indicate that the
parameters within the reaction–diffusion equation
(i.e.,Dwm,Dgm, and k) can be accurately estimated and
then used to accurately predict future tumor growth at
the local and global levels, provided the tumor’s
growth is described by the reaction–diffusion

Figure 7.True and predicted tumor cell distributions for rat 1. The true and predicted tumor cell distributions for an example rat (rat
1) from the in vivo study are shown above. Panel (a) shows theT2 weighted anatomical images (left column, black lines representing
tumor ROI, white box representing simulation domain) and the trueN (right column) at the central slice of the tumor volume on days
4, 5, 8, and 10. The predictedN (Npred) and the error betweenN andNR1,pred for the same slice on days 5, 8, and 10 are shown in panels
(b)–(d). The estimated k is also shown in panel (b). The color bars represent percent ofmax k value (top row in panel (b)), the percent
of the carrying capacity (rows labeled ‘NR1,pred’), and percent error (bottom rows). The black outline displayedwithin the kmaps
represent areas of low cell density on day 4.White regions observed in the percent errormaps represent areas where no tumor cells
were observed in the true data set. The black outline displayed onNpred in panels (b)–(d) represent the tumor periphery observed in
the true tumor cell distributions in panel (a). The top rows in panels (b)–(d) representNR1,pred, while the bottom row represents the
percent difference betweenN andNR1,pred. Additionally, the three columns in panels (b)–(d) represent the results using parameters
PR1,1, PR1,2, and PR1,3. Increased error (greater than or equal to 100%) is generally observed at the periphery of the tumor relative to the
interior of the tumor (less than 20% error). Increased error betweenNR1,pred andN (greater than or equal to 100%) is also observed in
areas whereN has low cell numbers (less than 50%of a voxel’s carrying capacity).
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equation. While parameters estimated from data with
experimentally observed noise does increase the error
between the true and estimated values, when three
time points are used the error between the true and

observed parameters is less than 5.86%. Thus, the
addition of a third time point decreases the sensitivity
of the parameter optimization algorithm to approxi-
mately the same level of noise that is present in the

Figure 8.Global and local level error analysis for in vivo study. Panels (a)–(c) show the results for the spatially variant k predictions and
panels (d)–(f) show the results for the spatially invariant k predictions. Panels (a) and (b) and (d) and(e) show the result of the global
level error analysis, while panels (c) and (f) show the results of the local level error analysis for the in vivo experiments. Themean and
standard error of eachmeasurement is plotted at days 5 through 10. Panel (a) shows that greater than 11.7% error is observed for all
predictions when using days 0, 2 and 4.No significant difference (P> 0.05)was observed between the results of the three different
parameter sets. TheDice values (panel (b)) show that no significant difference (P> 0.05)was observed between the results using the
three different parameter sets. Panel (c) shows a steady decrease in the level of voxel agreement (decrease inCCC) over time for all sets
of parameters, but no significant difference (P> 0.05) between parameter estimation approaches. Predictionsmadewith the spatially
invariant k (panels (d)–(f)) resulted in increased percent error in tumor volume and decreased tumor volume agreement (lowerDice
values) and decreased voxel level agreement (CCC<0.25).

Table 2.Average diffusion parameter values and nrms error from in vivo experiments.

Mean (standard error)

Days 0 and 4 Days 2 and 4 Days 0, 2, and 4

Spatially variant Dwm (μm2 day−1) 1.53 × 104 (3.71 × 103) 1.49 × 104 (4.71 × 103) 1.57 × 104 (4.15 × 103)

Dgm (μm2 day−1) 1.71 × 104 (2.87 × 103) 1.99 × 104 (3.86 × 103) 1.58 × 104 (4.81 × 103)

nrms error 0.54 (0.15) 0.81 (0.29) 0.49 (0.13)

Spatially Invariant Dwm (μm2 day−1) 3.26 × 104 (1.09 × 104) 3.05 × 104 (1.01 × 104) 5.2 × 104 (2.07 × 104)

Dgm (μm2 day−1) 3.50 × 104 (1.13 × 104) 3.59 × 104 (8.60 × 103) 8.01 × 104 (1.99 × 104)

nrms error 1.27 (0.35) 1.73 (0.55) 1.04 (0.28)
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measurement. The increased error observed for Dwm

relative toDgmmay be explained due to only 4% of the
voxels in the domain being identified as white matter.
The limited number of voxels containing white matter
most likely makes the model less sensitive to changes
inDwm compared toDgm.

The results of the in silico study show the strength
of both the estimated parameters and the forward eva-
luation algorithm as exhibited in the high level of over-
lap of tumor volumes (Dice values greater than 0.83
for P1, P2, and P3) and strong agreement at the local
level (CCC values greater than 0.80 for P3; greater than
0.53 for P1 and P2) betweenN andNpred (figure 5). The
largest disagreements occur at the tumor edges. The
simple propagation (local average) of proliferation
rates outside of the parameter estimation region pro-
pagates errors and may need to be improved to incor-
porate additional information (e.g., local cellularity,
distance from vasculature, and nutrient concentra-
tion; importantly such data is also available from clini-
cally relevant, non-invasive imaging studies [41]). The
significant differences in prediction errors (globally
and locally) between the two time point approaches
(P1 and P2) suggest the parameter optimization
approach is sensitive to the spacing between measure-
ments (P1: 4 days, P2: 2 days). Additionally, the lower
error in P2 based predictions compared to P1 based
predictions suggest that the tumor growth between
days 2 and 4 is more representative of future growth
than growth between days 0 and 4.

The in vivo experiments demonstrated greater
error at both the global and local level compared to the
in silico experiments. The increased error suggests that
the reaction–diffusion equation is an incomplete
description of C6 biology. The overestimation of

tumor volume estimates suggests that overall tumor
growth properties are changing between the estima-
tion time points and the prediction time points. At the
global level, the expansion of the tumor may be less
restricted at earlier time points compared to later time
points. At the local level, these changes may be the
result of an increase or decrease in proliferation due to
changes in the viability of the cells within a particular
voxel. The very poor CCCs (less than 0.33, figure 8)
similarly suggest that the reaction–diffusion equation
provides a poor description of local properties. The
reaction–diffusion equation does, however, provide
tumor growth predictions that co-localize (Dice values
greater than 0.62) with the true tumor volumes. Dif-
ferent from the in silico study, P1 predictions had lower
percent error in tumor volume (less than 34.4%) com-
pared to P2 based predictions (less than 50.1%). This
suggests that the tumor growth over days 0 and 4 are
more representative of future in vivo growth than the
tumor growth over days 2 and 4. The larger distance
betweenmeasurements allows potentially inconsistent
growth rates between days 0 and 2 and days 2 and 4 to
be averaged over 4 days, lessening the effects of non-
representative volumetric growth on model estimates
and predictions. Replacing the voxel-specific pro-
liferation, k x(¯), with a tumor-specific proliferation
rate, kROI, resulted in larger global (increased percent
error in tumor volume, decreased Dice values) and
local (decreased CCCs) level errors. The decreased
agreement between predicted and observed tumor
ROIs (decreased Dice values) using kROI suggest that a
spatially variant k is an important factor in predicting
tumor geometry by allowing variations in regional
tumor expansion. This factor may also contribute to
the increased tumor volume error due to a more uni-
form expansion of tumor growth.

There are several limitations in this current
approach. One limitation is the assumption that all
tumor cells within a given voxel (spatially variant k) or
within the tumor (spatially invariant k) follow the
same proliferation rules. Within tumors there may be
groups of actively proliferating cells as well as cells that
are quiescent or necrotic [42]. In particular, necrotic
tissues (which can be relatively large compared to total
tumor volume) can strongly influence tumor growth
[42] and patient prognosis [43, 44]. Models incorpor-
ating different proliferation rules have the potential to
more accurately describe in vivo proliferation [45, 46];
however, it is challenging to initialize these models
using non-invasive measurements. Although the pro-
liferation model in this approach is limited, the spa-
tially variant k lessens the potential error (relative to
kROI) in this assumption by discretizing the tumor into
individual regions that can have a proliferation rate
that more closely captures local behavior. A second
limitation is that proliferation rates, k, estimated from
early time points are assumed to be constant for the
remainder of the tumor growth. The logistic growth
term in equation (1) allows for temporally variation of

Table 3.Average k values from in vivo experiments.

Mean (standard error), units: (day−1)

Days 0 and 4 Days 2 and 4 Days 0, 2, and 4

Rat 1 k x(¯) 2.39 (0.03) 3.38 (0.05) 3.24 (0.04)

kROI 2.38 4.22 1.54

Rat 2 k x(¯) 1.51 (0.01) 0.84 (0.01) 1.78 (0.02)

kROI 1.30 0.94 1.41

Rat 3 k x(¯) 2.32 (0.04) 4.06 (0.07) 1.08 (0.02)

kROI 2.11 8.32 1.53

Rat 4 k x(¯) 1.62 (0.03) 1.54 (0.04) 1.50 (0.03)

kROI 2.90 3.38 1.69

Rat 5 k x(¯) 2.97 (0.08) 1.57 (0.03) 3.15 (0.11)

kROI 5.75 2.44 2.13

Rat 6 k x(¯) 0.64 (0.04) 0.51 (0.06) 0.94 (0.04)

kROI 1.01 1.26 1.26

Rat 7 k x(¯) 1.99 (0.03) 1.40 (0.03) 2.69 (0.03)

kROI 2.76 5.31 1.94

Rat 8 k x(¯) 2.59 (0.04) 1.88 (0.04) 2.63 (0.04)

kROI 2.69 2.70 2.25

Rat 9 k x(¯) 3.44 (0.07) 3.84 (0.07) 2.76 (0.06)

kROI 9.94 8.19 2.07

k x(¯) is the average k estimated voxel-wise within the tumor

kROI is the spatially invariant k estimated for the tumor
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the instantaneous growth rate as cell density increases
or decreases, but it does not allow for the individual
voxel proliferation rates to vary temporally over the
course of the experiment; this is a fundamental limita-
tion of this model as formulated. As in vivo tumors
expand, the characteristics of a cell’s environment will
change and either accelerate or slow future cell pro-
liferation. A more realistic model would incorporate
these phenomena [12, 13] and adjust the spatio-tem-
poral distribution of k throughout the simulation.
These approaches, however, require model para-
meters that are extraordinarily difficult to measure
non-invasively thereby limiting their application to
subject-specificmodel predictions. This approach also
does not consider the impact that tumor necrosis and
edema may have on tumor cell proliferation
[42, 47, 48] and the estimation of cellularity fromADC
measurements (e.g., increased water diffusion may be
observed in necrosis or necrosis adjacent regions due
to breakdown of barriers to free water movement).
However, there currently is not a widely accepted or
validated method for segmenting necrosis and edema
a priori in brain tumors. A third limitation is that as the
tumor expands into voxels not included in the para-
meter estimation procedure (i.e., voxels outside of the
tumor ROI determined at day 4), the proliferation rate
in that voxel is then assigned as the average of the
nearby known proliferation rates. This average value
of the local k does not account for differences in envir-
onmental conditions, cell distributions, or cell pheno-
types that may alter a voxel’s k. A fourth limitation of
equation (1) is thatD is temporally fixed which results
in tumor growth that is unrestricted (i.e., the model
assumes that the tumor is growing into an empty space
and does not incorporate the effects of the surround-
ing tissue [49]) and unresponsive to changes inmicro-
environment properties (e.g., extracellular matrix
components, growth factors, tumor necrosis factor,
matrix-metalloproteinase [50, 51]). This limitation
can be amended through including more realistic
terms such as mass effect [26, 52] to temporally adjust
tumor migration behavior which may increase the
predictive accuracy of the model. We do note, though,
that the models which include the spatial-temporal
evolution of D and k must carefully consider how the
model parameters will be initialized (i.e., how are the
values for the additional model parameters assigned)
to provide subject-specific tumor growth predictions.
The poor predictive strength of the current model and
the temporally constant proliferation rates hinders the
reliability of both untreated (and, most likely, treated)
tumor growth predictions. Expanding the model to
include an additional term to describe the effect of
treatment (i.e., death rate as a function of drug dose or
radiation dose) or fitting for a post-treatment pro-
liferation rate would provide a platform to compare
observed treatment response to predicted treatment
response.

In conclusion, parameters can be accurately esti-
mated and used to predict future tumor growth with
low error at the global and local levels, provided that
the tumor’s growth is described by the reaction–diffu-
sion equation. However, the in vivo experiments sug-
gest that the reaction–diffusion model consisting of
just tumor cell diffusion and logistic growth described
by equation (1) provides an incomplete description of
tumor growth andmust be amended to provide better
descriptions of in vivoC6 glioma growth in rats.
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