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ABSTRACT

Similar to the well documented brain shift experienced during neurosurgical procedures, intra-operative soft
tissue deformation in open hepatic resections is the primary source of error in current image-guided liver surgery
(IGLS) systems. The use of bio-mechanical models has shown promise in providing the link between the deformed,
intra-operative patient anatomy and the pre-operative image data. More specifically, the current protocol for de-
formation compensation in IGLS involves the determination of displacements via registration of intra-operatively
acquired sparse data and subsequent use of the displacements to drive solution of a linear elastic model via the
finite element method (FEM). However, direct solution of the model during the surgical procedure has several
logistical limitations including computational time and the ability to accurately prescribe boundary conditions
and material properties. Recently, approaches utilizing an atlas of pre-operatively computed model solutions
based on a priori information concerning the surgical loading conditions have been proposed as a more realistic
avenue for intra-operative deformation compensation. Similar to previous work, we propose the use of a simple
linear inverse model to match the intra-operatively acquired data to the pre-operatively computed atlas. Ad-
ditionally, an iterative approach is implemented whereby point correspondence is updated during the matching
process, being that the correspondence between intra-operative data and the pre-operatively computed atlas is
not explicitly known in liver applications. Preliminary validation experiments of the proposed algorithm were
performed using both simulation and phantom data. The proposed method provided comparable results in the
phantom experiments with those obtained using the traditional incremental FEM approach.

Keywords: image-guided surgery, liver surgery, soft tissue deformation, finite element method, laser range
scanning

1. INTRODUCTION

Similar to the well documented brain shift experienced during neurosurgical procedures, intra-operative soft
tissue deformation in open hepatic resections is the primary source of error in current image-guided liver surgery
(IGLS) systems. Numerous avenues have been suggested to aid in the compensation for the experienced soft
tissue deformation, including the use of intra-operative tomography and ultrasound. However, intra-operative
computed tomography (iCT) and magnetic resonance (iMR) imaging equipment is extremely expensive and
cumbersome in the operating room environment. Additionally, intra-operative ultrasound (iUS) provides low
signal-to-noise, sparse images of the patient’s anatomy. Ultimately, the goal for image-guidance is to update the
high contrast, high resolution pre-operative tomograms to match the intra-operative presentation.
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Mathematical models, which have been used to model various mediators of the deformation in neurological
surgery, have been proposed to provide the link between the pre-operative and intra-operative presentations.
While direct solution of mathematical models, utilizing intra-operatively acquired displacements, during surgery
seems to be of promise in facilitating deformation compensation, more recent work in atlas-based methods seem
to provide a more realistic alternative. By simulating the range of deformation sources in a pre-operatively
computed atlas and matching the intra-operative data to the atlas, compensation for soft tissue deformation can
be performed with minimal user interaction and in a fraction of the time needed to directly solve the model.

While useful guidance information is provided by the rigid, surface-based registrations used in current IGLS
procedures, it is quite clear that this information can be compromised by intra-operative soft tissue deforma-
tion. The significance of soft tissue deformation in the form of ”brain shift” has been widely documented in
neurosurgical procedures1–7 and has been observed in our initial clinical experience in the performance of IGLS.8

Figure 1 illustrates the range of soft tissue deformation imposed during clinical cased by the liver mobilization
and packing procedures performed prior to resection.

Figure 1. Figures showing the results of ICP registration and the corresponding closest point distances for two clinical
cases. The two sets of data demonstrate the inter-patient variability in the observed soft tissue deformation in open
IGLS. Notice that the while the case presented in the left panels show significant portions of the surface with closest point
distances in upwards of 2 cm, whereas a vast majority of the surface shown in right panels displays closest point distances
of approximately 5 mm.

Based on the observed incidence of soft tissue deformation in IGLS, we seek to provide compensation via
an atlas-based approach similar to that originally proposed by Davatzikos et al.9 Atlas-based approaches to
deformation compensation have shown great promise in neurosurgery applications10, 11 and we seek to expand
on this work such that it will be amenable to IGLS. It should be noted that the implementation of atlas-
based deformation compensation techniques to IGLS presents a unique challenge based on the fact that exact
correspondence between the intra-operatively acquired LRS data and the pre-operative liver surface is not known.
In neurosurgical applications, this point correspondence can be determined and allows for the computation of
intra-operative brain shift.12

1.1. Related Work
The use of LRS data to drive a bio-mechanical model of the liver was initially proposed by Miga et al.13 Building
on this work, Cash et al. proposed an incremental approach to solving the model.14 Additionally, this work
demonstrated the use of a deformation identifying rigid registration (DIRR) which provided a more meaningful
alignment than a traditional ICP registration. Other groups, such as Brock et al., have used time dependent
models to describe the liver motion due to respiration.15

Recently, the use of atlas-based methods have been proposed for incorporation into IGS systems for the
compensation of deformation. Dumpuri et al. have proposed the computation of a deformation atlas, provided
by FEM solutions of a bio-mechanical model under a variety of conditions determined by a priori knowledge of
the surgical procedure.10, 11 The individual surface displacements predicted by the deformation atlas are then
matched with those determined via cortical surface tracking with LRS using a constrained linear inverse model.
Similar methods have been proposed by Davatzikos et al.9 wherein a statistical approach based on principal
component analysis (PCA), inspired by the work of Cootes et al.,16, 17 is used to fit deformed data to the atlas.



1.2. Objective

The objective of this work is to develop an atlas-based model updating method that is amenable to the application
of IGLS. As mentioned previously, the development of such a method represents novel work due to the lack of point
correspondence information as opposed to brain applications. Preliminary validation of the proposed method
will be provided in the form of simulation and phantom experiments. Additionally, a comparison between the
phantom experiment results obtained with the proposed atlas-based approach and traditional incremental FEM
implementation will be presented.

2. METHODS

2.1. Model Equations and Boundary Condition Implementation

We begin with the assumption that the liver is an isotropic solid with a linear stress-strain relationship as in the
work of Cash et al.14 The equation for a linear-elastic 3D solid at static equilibrium is:

∇ · σ̃ = B (1)

where σ̃ represents the stress tensor and B represents the body forces acting on the object. Hooke’s law
relates mechanical stress tensor (σ̃) to the mechanical strain tensor (ε̃) via the following relationship:

σ̃ = Cε̃ (2)

where C represents the material stiffness matrix, which is dependent on the Young’s Modulus (E) and
Poisson’s ratio (ν) material properties. By making the appropriate substitutions for C, a system of partial
differential equations (PDEs) can be expressed in terms of the displacement vector (u):

E

2(1 + ν)
∇2u +

E

2(1 + ν)(1 − 2ν)
∇(∇ · u) = B (3)

In order to solve the system equations in Equation 3 over the liver mesh domain, the Galerkin weighted
residual method is applied using linear basis functions. Using this technique, the system of PDEs reflecting the
displacement vectors (u) at each node in the tetrahedral mesh can be compiled in matrix form using the following
relation:

Ku = B (4)

The driving force behind generating deformations with an FEM model is provided by the prescription of the
appropriate conditions along the boundary of the tetrahedral mesh. Similar to the conditions described by Cash
et al.,14 a set of three general boundary condition types will be used in the creation of the liver deformation
atlas. The first type of condition we use is a Dirichlet zero displacement condition that is used to signify fixed
regions of the liver that do not experience any displacement. This condition is generally prescribed to regions
on the posterior surface of the right lobe. The second type is condition used is a Dirichlet condition of specified
non-zero displacement. We use this condition to model the liver packing performed prior to resection, typically
prescribed to regions beneath the left lobe. The final type of condition used in the liver model is a Neumann
”stress free” condition used to signify regions that are unrestricted by force.

In the application of displacement boundary conditions for anatomical soft tissue (i.e. the aforementioned
Dirichlet conditions), it is often desirable to express the movement of the boundary in a coordinate system
that is relative to the shape of the organ of interest. A number of studies have shown that the specification
of displacement boundary conditions normal to the surface can be quite helpful in providing tissue-mimicking
deformations.13, 14, 18 In certain scenarios it may be useful to allow an organ surface to slide along a supporting
plane tangent to the surface and not deform in the normal direction. Additionally, it may also be useful to
apply deformation in a direction normal to the surface and also allow the tissue to slide tangent to the displacing



surface (e.g. the depression of a tissue surface with a retractor). These types of conditions require stress-free
conditions to be imposed tangent to (i.e. �t1 and �t2) the specified normal displacement direction (�n):

σt1 = σt2 = 0, un = us (5)

where σt1,t2 are the stresses applied tangent to the organ surface and us signifies the specified displacement
normal the surface. These so called ”mixed” boundary condition are implemented via the normal-tangential
procedure described by Engelman et al.19

2.2. Deformation Atlas Creation

A primary factor in determining the success of atlas-based methods of registration is the process of atlas creation
to ensure that the range of possible deformations, based on the pre-operative plan for a particular patient
and a priori knowledge of surgical loading conditions, are contained within the atlas. The process of atlas
construction begins with the generation of a volumetric mesh of the liver which is derived from the surface
description provided by a segmentation of the pre-operatively obtained tomographic image volumes. We employ
the algorithm described by Sullivan et al.20 to generate the tetrahedral liver mesh. Once the mesh has been
created, a set of boundary conditions, range of patient orientations (i.e. gravity directions), and range of material
properties are selected based on a priori information about the surgical procedure. Once the set of conditions
have been determined, the model is run for each permutation of the sets of conditions and the deformed volumetric
and surface meshes for each model solution are then saved for incorporation into the surface matching algorithm.

2.3. Iterative Closest Atlas Algorithm

Once the set of model solutions have been computed and the deformed liver volume meshes and surfaces have
been compiled, the collected intra-operative data (i.e. LRS scan of the liver surface) is then fit to the atlas via the
Iterative Closest Atlas (ICAt) Algorithm. Similar to the work performed by Dumpuri et al.,10, 11 fitting the intra-
operative data to the pre-operatively computed model atlas is performed via the following linear relationship:

Aω = d (6)

where A is an [(N × 3) × M ] model atlas matrix, ω is an [M × 1] vector representing weighting coefficients
for each model solution, d is an [(N × 3) × 1] vector representing the intra-operative data, M represents the
number of model solutions contained in the atlas, and N is the total number of surface nodes of the tetrahedral
mesh that have corresponding points within the intra-operative data set d. Note that the expression in Equation
6 inherently implies a known correspondence between mesh surface points and the intra-operative surface data
points. Being that this correspondence is not known with any certainty, an iterative approach is used whereby
point correspondence is updated at each iteration following computation of the current atlas solution based on
the values of the weighting coefficients (ω) at the current iteration. Given an initialization of the weighting
parameters (ω0) and assuming a rough initial alignment of the intra-operative data (d) to the pre-operative
image surface, the algorithm proceeds as follows:

Step 1. Let iteration number i = 0. Given the a priori distribution of the weighting parameters (ω0), compute
the current model solution using the relationship A = Aω0.

Step 2. Compute the rigid body transformation (Td−A) between the data point set (d) and A using the closest
point operator to determine point correspondence.

Step 3. Transform the data point set (d) using transformation computed in Step 2: d = Td−A(d).

Step 4. Compute the closest points on A to the transformed data points d, which we will call Acp. Build a new
atlas matrix (Acp) containing only the indices of the points in Acp.

Step 5. Compute the closest points on d to the point set Acp, which we will call dcp.



Step 6. Compute the new set of weighting parameters (ωi) by solving the linear equation Acpωi = dcp.

Step 7. Increment iteration count (i = i + 1). Compute new model solution using the relationship A = Aωi.
Repeat Step 2 through Step 7 until i exceeds maximum number or residual error tolerance is met.

We choose a least squares formulation to obtain the solution of Equation 6 in Step 6 of the above description
of the ICAt algorithm, which is equivalent to the following matrix equation:

ω = (AT A)−1AT d (7)

Due to the fact that the condition number of the matrix AT A is extremely large, the inverse formulation is
7 is ill-conditioned in the sense of Hadamard.21 In order to stabilize the results of the solution of Equation 7,
we employ a Tikhonov regularization process where we seek to find an ω to minimize:

‖Aω − d‖2 + β2‖ω‖2 (8)

where ‖ · ‖ is the Euclidean norm and β is called the Tikhonov factor. The least squares formulation in
Equation 7 now becomes:

ω = (AT A + β2I)−1AT d (9)

where I is the M × M identity matrix. We chose to use the following Tikhonov factor (β2) used by Jaochi-
mowicz et al.22 for the solution of a similar inverse problem:

β2 = λ
[
1/N

N∑
i=1

AT A(i, i)
]
[derr]2 (10)

where the parameter λ is a weighting parameter that represents the magnitude of β2, which is empirically
determined based on the convergence of the problem. The middle term represents the trace of the matrix AT A,
which improves the conditioning of the matrix by reducing the gap between its higher and lower eigenvalue.
The final term ([derr]2) is a relative mean square error term used to decrease the weight of β2 as the method
converges and is defined as follows:

derr =

√√√√
∑N

i=1 |∆dk(i)|2∑N
i=1 |dcp(i)|2

(11)

where ∆dk = Acp − dcp at iteration k and i is the point index. In other words, derr represents the relative
error between the true point location (dcp) and the atlas reconstructed point location (Acp) at each iteration.
The difference in ∆dk = Acp − dcp between iterations is used as one of the stopping criteria.

2.4. Validation

2.4.1. Simulation Experiment

The initial validation experiments for the ICAt algorithm involved the performance of a simulation experiment.
First, an atlas was created using one of the liver meshes obtained from the segmentation of a clinical data set
(shown in Figure 2). The following parameters were used in the generation of the atlas: initial gravity vector (�g)
= (0.7071,0.7071,0.0), Young’s modulus (E) = 15 kPa, Poisson’s ratio (ν) = 0.47 and ρ = 1000.0 kg/m3. The
distribution of boundary conditions used to generated the atlas are shown in Figure 2. The patient orientation
was varied to create a atlas of 121 solutions by rotation of �g about the y- and z-axes where the values of the
rotation angles (θy and θz) were varied between -50◦ and 50◦ in increments of 10◦. In order to generate a set
of source data, simulating deformed LRS scans, five separate deformed meshes were created by using randomly



generated rotation angles for θy and θz within the range of that used to create the atlas (i.e. θy, θz ∈ [−50◦, 50◦]).
Once the deformed meshes were created, a subset of the surface points, which were obtained by extracting the
region corresponding with the coverage of the acquired LRS data (shown in Figure 2), were used to realistically
simulate the surface coverage of true intra-operative data. It should be noted that the parameters used to create
the deformation atlas were chosen such that considerable deformations would be imposed and not to reflect
parameters that would be used in the generation of a deformation atlas to model actual intra-operative data.

Figure 2. The liver surface mesh (left), the ICP registration result (center), and the boundary condition distribution
(right) used to create the deformation atlas for the ICAt simulation experiments. The ICP registration result is shown
to give the reader an indication of the size of the simulated scans relative to the full liver surface. For the distribution of
boundary conditions, the green area corresponds with the Neumann ”stress free” condition, the light blue area corresponds
with the Dirichlet ”fixed” condition, and the dark blue region corresponds with the normal-tangential Dirichlet ”fixed”
condition where un=0).

Once the deformation atlas and the sets of simulated LRS data had been generated, the ICAt algorithm
was used to fit the simulated LRS data to the atlas. The maximum number of iterations was set to 50 and the
convergence tolerance was set to 1e-5 mm. The weighting factor (λ) for the Tikhonov regularization parameter
in Equation 10 was set to 0.1. Additionally, no further changes were made to the initial pose of the simulated
LRS surfaces. Unlike the data used in the phantom and clinical examples, point correspondence is known exactly
in the simulation data. Therefore, the least-squares problem in Equation 9 was solved directly to provide a ”gold
standard” comparison for the ICAt results. For the direct LSQ solution the regularization parameter (β2) was
set directly to 0.1.

2.4.2. Phantom Experiments

A set of experiments were performed using the poly (dimethyl) siloxane (rubber silicone) model of the liver
which was used in the phantom studies performed by Cash et al.14, 23 The silicon phantom is rigidly attached
to a plexiglass base and is surrounded by a set of seven white Teflon spheres resting atop cylindrical holders of
various heights. These spheres can be localized in both CT and LRS images reliably and serve to provide reliable
landmarks for point-based registrations between the various imaging data collected. Additionally, a set of six
styrofoam spheres (radii approximately 1-1.15 cm) are embedded within the silicon phantom which represent
mock tumors. These styrofoam spheres are easily distinguishable from the surrounding silicone in CT images and
the centroids are obtained using a region growing algorithm provided by the Analyze software package (Mayo
Clinic, Rochester, MN). The locations of the centroids of the six mock tumors serve as subsurface targets to
quantify performance of the algorithm and to facilitate a comparison between the proposed atlas-based method
and the traditional incremental FEM approach. The positions of the mock tumors within the liver phantom are
shown in Figure 3.

In order to simulate the deformations imposed by the packing and mobilization procedure performed during
liver resections, a plastic object (approximate height of 3.8 cm) was placed in two locations beneath the phantom.
A large nylon screw placed through the middle portion of the right lobe of the silicon liver served to hold other
regions stationary. The two selected locations were the left lobe region and the middle of the inferior ridge
beneath Couinaud segments III, IV, and V. For the first deformation the mock tumors 1 and 2 experienced the



Figure 3. The segmented CT surface (left) of the phantom with sub-surface tumors and corresponding CT slices for
non-deformed (middle) and deformed (right) phantom configurations. A plastic object (approximate height of 38 mm)
was placed underneath the left lobe of the liver phantom to simulate deformation imposed by liver packing performed
during surgery.

most shift and tumors 4 and 6 experienced the most shift for the second displacement. Corresponding slices
from one of the deformed image volumes (deformation 1) and the non-deformed CT image volumes are shown
in Figure 3.

To perform the ICAt algorithm on the phantom data sets, two atlases were created based on a priori
knowledge of the two imposed deformations. The imposed deformations were modeled as normal displacement
conditions in the regions of the boundary that corresponded with the areas under which the plastic object was
placed. The imposed normal displacement (un) was varied from 2 cm to 6 cm in increments of 1 cm. In addition
to varying the normal displacement lengths, a set of three region sizes of the imposed normal displacement
condition was also used. Finally, the material property of Young’s modulus was varied between 25 kPa and 40
kPa in increments of 5 kPa. The variation of normal displacement region, displacement length, and Young’s
modulus led to an atlas size of 60 solutions for each deformation. Once the atlases were created, initialization for
the ICAt algorithm was determined by performing ICP registrations between the deformed LRS scan data for
each deformation and non-deformed surface of the phantom. Convergence of the algorithm was determined if the
difference in the surface residuals between successive iterations was less than 1e-5 mm or if the surface residual
error remained stable and no longer decreased after several iterations. The scaling factor (λ) in the Tikhonov
regularization parameter defined in Equation 10 was chosen to be 0.1 for both deformation cases. The output
displacements determined from the ICAt algorithm were then used to warp the un-deformed CT images volumes
and the new positions of the tumor centroids were determined. The errors between these centroid locations and
the true tumor centroids as determined by the ICAt registrations were then compared with analogous results to
those received by the incremental FEM implementation proposed by Cash et al.14

3. RESULTS

3.1. Simulation Experiments

A summary of the simulation results is shown in Table 1 and Table 2. In these tables, three separate error
measurements are reported. The scan error measurement describes the true error between the scan region
points was determined by the known point correspondence. The mesh error measurement describes the true
error over all of the nodes within the mesh using the known point correspondence. Finally, the scan residual
error metric (only reported for the ICAt data) describes the RMS closest point distance between the simulated
surface date and the closest points on the mesh. In order to give a reference for the initial deformations, Table 1
shows the measurement of the scan and mesh errors prior to the performance of any registration or deformation
compensation. The data reported in Table 2 shows the results of both the ICAt algorithm and the direct LSQ
method of solution. The data presented shows that for four of the five trials, the ICAt algorithm does not
converge to the true solution and yield significantly larger errors than the ”gold standard” fit to the deformation
atlas.



Before Solution
Scan Mesh

Trial Error Error
1 15.95(50.80) 11.78(63.28)
2 18.98(48.99) 14.13(59.24)
3 16.74(59.93) 9.14 (72.23)
4 20.45(52.62) 13.33(57.94)
5 16.52(56.96) 10.28(69.06)

mean 17.73(53.86) 11.73(64.35)

Table 1. Summary of the scan error (mm) and mesh error (mm) values before the performance of any compensation
methods for the five sets of trial data in the ICAt simulation study. The values shown in parentheses are the maximum
errors.

ICAt Direct LSQ
Scan Scan Mesh Scan Mesh

Trial Residual Error Error Error Error
1 1.16(3.99) 3.33(5.38) 2.57(5.41) 0.19(0.32) 0.25(0.48)
2 1.84(6.53) 6.45(8.79) 5.47(9.87) 0.10(0.18) 0.12(0.21)
3 1.58(4.70) 4.30(5.93) 4.35(6.71) 0.16(0.60) 0.13(0.75)
4 1.67(5.08) 4.10(6.51) 4.92(11.69) 0.11(0.24) 0.12(0.29)
5 0.12(0.38) 0.12(0.38) 0.24(0.53) 0.20(0.63) 0.21(0.77)

mean 1.27(4.14) 3.66(5.40) 3.51(6.84) 0.15(0.39) 0.17(0.50)

Table 2. Summary of the results of the ICAt simulation study which compares the surface error (mm) and mesh error
(mm) values obtained from the ICAt solution and surface error (mm) and mesh error (mm) values obtained from a direct
LSQ solution using the known point correspondence over the five trials. Additionally, the closest point surface residual
(mm) for the ICAt algorithm at convergence is included. The values in parentheses represent the maximum error values
(mm).

3.2. Phantom Experiments

Qualitative results and a summary of the mock tumor target errors for the left lobe deformation (deformation
1) trial are shown in Figure 4 and Table 3, respectively. As shown by the graphical results in Figure 4, the
residual error between the deformed LRS surface and the deformed CT surface via ICAt solution displacements
is drastically improved over both the PBR and ICP alignments. Additionally, the summary of the tumor error
measurements shown in Table 3 shows that the ICAt solution provided considerable improvement over the initial
ICP alignment errors and is comparable with the results shown for the incremental FEM initialized with the
DIRR.

The qualitative results and a summary of the mock tumor target errors for the inferior ridge deformation
(deformation 2) trial are shown in Figure 5 and Table 3, respectively. As shown by the graphical results in
Figure 5, significant improvement in the surface matching was obtained by the ICAt solution in comparison to
the PBR alignment between the surfaces. However, the qualitative results do not show significant improvement
over the ICP alignment between the deformed LRS data and the pre-deformation phantom surface. The mock
tumor target error data shown in Table 3 shows that the results of the ICAt algorithm provided target error
comparable to those received by the incremental FEM implementation.

4. DISCUSSION

The preliminary validation results from the simulation and phantom experiments show promise in the proposed
ICAt algorithm for providing a viable compensation strategy for intra-operative soft tissue deformation. Specif-
ically, the results obtained by the phantom experiments shown in Figure 4, Figure 5, and Table 3 indicate that
the proposed atlas-based approach provided comparable results to those achieved by the incremental FEM ap-
proach developed by Cash et al.14 These results seem to provide further impetus for work on improving this



Figure 4. Qualitative ICAt results for phantom deformation 1 (left lobe deformation). The closest point distances
between deformed LRS data and non-deformed CT surface after point based registration based on sphere fiducials (a),
ICP registration (b), and closest point distances between deformed LRS surface and deformed CT surface based on ICAt
solution (c,d). For reference, the mean residuals for the PBR, ICP, and ICAt registrations were found to be 16.83 mm
(43.44 mm max), 3.65 mm (19.43 mm max), and 1.20 mm (11.11 mm max), respectively.

Figure 5. Qualitative ICAt results for phantom deformation 2 (inferior ridge deformation). The closest point distances
between deformed LRS data and non-deformed CT surface after point based registration based on sphere fiducials (a),
ICP registration (b), and closest point distances between deformed LRS surface and deformed CT surface based on ICAt
solution (c,d). For reference, the mean residuals for the PBR, ICP, and ICAt registrations were found to be 7.23 mm
(28.89 mm max), 1.73 mm (22.31 mm max), and 1.65 mm (20.83 mm max), respectively.

Deformation 1 Deformation 2
Tumor ICP ICP DIRR ICP ICP ICP DIRR ICP

ICAt Model Model ICAt Model Model
1 7.0 4.6 5.6 2.8 3.5 3.2 2.9 3.1
2 6.8 3.6 4.2 2.3 2.0 1.8 1.1 1.2
3 8.4 3.8 3.1 5.5 1.9 1.8 1.2 1.4
4 8.1 2.4 5.3 3.5 5.3 3.6 3.8 5.3
5 5.4 5.3 0.4 4.9 4.1 3.8 1.4 4.5
6 8.0 3.7 4.2 6.9 6.1 3.4 4.0 5.5

mean 7.3 3.9 3.8 4.3 3.8 2.9 2.4 3.5

Table 3. Comparison of tumor target error (mm) phantom experiment results obtained by the ICAt algorithm (initialized
with ICP registration) and the incremental FEM (initialized with ICP and DIRR) for deformation 1 (left lobe deformation)
and deformation 2 (inferior ridge deformation). For reference, the tumor error (mm) is shown after the performance of
an ICP registration (used to initialize the ICAt and incremental FEM).



method since the intra-operative solution times and user interaction are minimized relative to the incremental
FEM method.

While the ICAt solution provided considerable improvement over the initial ICP alignment errors and is
comparable with the results shown for the incremental FEM initialized with the DIRR for deformation 1 (shown
in Figure 4), the improvement in surface and sub-surface target alignment is less significant for the simulated
inferior ridge deformation show in Figure 5. A potential explanation for the relatively poorer performance of
the ICAt algorithm on the phantom data for deformation 2 is that the pre-computed atlas does not contain the
appropriate information to describe the true imposed deformation. While the results are not as accurate as in
the first deformation case, the relative speed improvement over the incremental approach and comparability of
the results in terms of tumor target error values is comforting.

Additionally, the results presented from the phantom study are quite intriguing since the ICAt solution
converged to the true solution for only one of the five trials. One possibility is that the sampling of deformations
within the atlas is too far (i.e. the size of the angular increments is too large). However, if the problem was
inherent to the created deformation atlas, one would expect to see similar errors in the direct LSQ fit. A more
realistic explanation for the behavior of the ICAt algorithm would be convergence to a local minimum. Being
that the size of the deformations is quite large, the initial positioning for such large deformation could possibly
be quite poor and lead to a local minimum convergence of the algorithm. Additionally, it is quite interesting
that the values of the scan and mesh errors for trial 5 are different between the ICAt solution and the direct
LSQ solution even though, presumably, both reflect the same solution. This could be due to a numerical artifact
resulting from the difference in the regularization parameter used in the two methods. Based on the results from
the simulation studies, there may be a need to incorporate a weighting scheme (similar to that used in weighted
ICP methods presented by several groups24, 25) to bias point correspondence in order to increase the robustness
of the algorithm.

Ultimately, the viability of utilizing an atlas-based approach to model updating is reliant on the ability to
pre-operatively compute complete atlases that contain the full array of the deformations imposed by the various
surgical loads. Incomplete atlases will limit the utility of the proposed ICAt algorithm in terms of yielding
pertinent information to guide surgical procedures. Additionally, the presented method uses a very simple linear
objective function without any constraining terms. Other work, such as that presented by Dumpuri et al.,11 have
demonstrated the effectiveness of incorporating shape constraints within the linear model to improve accuracy.
When making the transition from phantom and simulation to clinical data, it will certainly be necessary to
incorporate such constraints into the algorithm.

5. CONCLUSION

The preliminary data provided in validation of the proposed atlas-based approach to model updating in IGLS
indicate that the method should provide a more realistic and viable method to compensate for soft tissue
deformation during surgical procedures. The ability to use a priori information to pre-compute model solutions
with allows for faster solution times and circumvents the need to prescribe boundary conditions within the OR
is very exciting. By increasing our knowledge of the soft tissue deformation imposed by the surgical procedure in
open hepatic resections we hope to be able to create more complete deformation atlases and ultimately provide
model-updated images for guiding these procedures. Future work will entail the incorporation of the biasing of
point correspondence within the registration method to increase the robustness of the algorithm, improving the
linear LSQ objective function to constrain the solutio method and validation with regards to clinical data sets.
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