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ABSTRACT 
 

Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue 
using images acquired under different loading conditions and a biomechanical model.  Boundary conditions are a critical 
input to the algorithm, and are often determined by time-consuming point correspondence methods requiring manual 
user input. Unfortunately, generation of accurate boundary conditions for the biomechanical model is often difficult due 
to the challenge of accurately matching points between the source and target surfaces and consequently necessitates the 
use of large numbers of fiducial markers. This study presents a novel method of automatically generating boundary 
conditions by non-rigidly registering two image sets with a Demons diffusion-based registration algorithm. The use of 
this method was successfully performed in silico using magnetic resonance and X-ray computed tomography image data 
with known boundary conditions. These preliminary results have produced boundary conditions with accuracy of up to 
80% compared to the known conditions. Finally, these boundary conditions were utilized within a 3D MIE 
reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Preliminary results show a 
reasonable characterization of the material properties on this first attempt and a significant improvement in the 
automation level and viability of the method. 
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1. INTRODUCTION 
 
Breast cancer is second only to lung cancer in cancer-induced mortality among women. For 2009, the American Cancer 
Society projected over 194,000 new diagnoses of invasive breast cancer, 62,000 cases of in situ disease, and an 
estimated 40,000 deaths from breast cancer in that year. Additional statistics continue to highlight the importance of 
early initiation of therapeutic measures, as five-year relative survival rates for women diagnosed with advanced or 
metastatic cancer are only approximately 27%, but as high as 98% for early localized disease1. Noninvasive and small-
diameter tumors are more readily treated and as such, tightly correlated to treatment success and long-term survival2, 3. 
Early detection is therefore both an inherently desirable goal and one which presents demands for more sensitive 
detection techniques.  
 
Detection of breast cancer lesions has traditionally been accomplished by examination via palpation and screening 
imaging by X-ray mammography. Palpation is limited by its subjective nature and a short range of detection into the 
tissue. Mammography, while the current undisputed clinical standard, has had some questionable reliability when used 
in isolation4 and can clearly benefit from additional diagnostic techniques.  For example, the exploitation of a contrast 
mechanism based on elastic properties may have considerable potential as a means for characterizing disease states with 
changes in tissue composition from varied expression of collagen and increased fibroblast activity5, 6. Elastography is 
one such methodology that utilizes a combination of image processing and physical deformation of tissue to create a 
representation of the mechanical properties of structures inside organs such as the breast7, 8. The application of 



 

 

elastography in breast cancer imaging would be to differentiate and identify pathological changes in tissue architecture 
resulting in regional differences in mechanical properties, i.e. stiffness. A relatively new method within the field known 
as 'modality-independent elastography' (MIE) has recently shown potential for supplementing other imaging modalities 
such as magnetic resonance (MR) and X-ray computed tomography (CT) for detection of solid tumors in soft tissue. 
MIE involves imaging a tissue of interest before and after compression, and then applying a finite element (FE) soft-
tissue model within a nonlinear optimization framework in order to determine the elastic properties of the tissue.  
 
A requirement of the MIE method is that appropriate boundary conditions be designated for use in the biomechanical 
model. Conventionally, point correspondence methods facilitated by attached fiducials and assisted by thin-plate spline 
interpolation have been used to create the boundary conditions that nonrigidly map from the undeformed breast surface 
to the deformed breast surface.  A rather tedious task is necessitated in applying and subsequently localizing numerous 
surface markers within the image space, creating a thin-plate spline mapping, determining point correspondence, and 
finally calculating a set of Dirichlet boundary conditions.  Initial attempts to reduce the complexity and level of user 
interaction have focused on the use of energy minimization techniques9, but the ideal method would be fully automated 
and require no fiducials.  This study presents the latest work in creating a method for automatically generating boundary 
conditions through the use of a non-rigid image registration algorithm. We present a Demons diffusion non-rigid 
registration technique used to perform image matching of two sets of pre- and post-deformation images and tested 
against a controlled in silico simulation with known boundary conditions. The generated boundary conditions were also 
used to perform an MIE elasticity reconstruction to evaluate its effectiveness in determining the elasticity contrast of a 
previously characterized system.  
  

2. METHODS 
 
2.1 MIE Workflow 
 
As described in previous work10, the MIE algorithm is comprised of three major components: 1) a biomechanical FE 
model of soft-tissue deformation based on material properties, 2) a similarity metric with which to compare images, and 
3) an optimization routine to update the material properties in the model. 
 
The process of generating an elasticity reconstruction begins with the acquisition of pre- and post-deformation images of 
the breast. The breast is then segmented and its surface geometry can be extracted using the marching cubes algorithm 
and a finite element mesh is created from the surface information. The mesh is partitioned into a desired number of 
'regions' to which elasticity properties are assigned, which defines the resolution of the reconstruction. It is then 
necessary to designate the loading/boundary conditions for the FE model. The ability of the biomechanical model to 
accurately deform the mesh of the breast tissue is dependent on these boundary conditions. The boundary condition step 
in the MIE workflow is highlighted in Figure 1. 



 

 

 
 

Figure 1. Overview of the MIE protocol.  The boundary condition task is seen to be in a central location and has a 
critical impact on the final reconstruction. 

 
Once boundary conditions have been designated, the model is run and the FEM displacement solution for all the nodes 
in the mesh is obtained. The displacements are then used to warp the original pre-deformation image, which is then 
compared with the known post-deformation image to generate an image similarity measurement. A non-linear 
optimization framework is used to update the material properties of the mesh until the similarity metric is within 
tolerance, at which point the elasticity reconstruction image is produced. 
 
2.2 Automatic Generation of Boundary Conditions 
 
The Demons registration algorithm utilizes a diffusion model in which the object boundaries in one image are 
characterized as semi-permeable membranes, and the other image is allowed to diffuse through these membranes11. 
Following the formulation of Ibanez, et al.12,  
 
  (1) 
 
where f(X) is the fixed target image, m(X) is the source image being deformed for the registration, and D(X) is the 
displacement field mapping the source to the target image through an instantaneous optical flow. This can be 
reformulated in an algorithmic iterative form as follows:  
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The displacement field obtained from Equation 2 is smoothed with a Gaussian filter between each iteration in order to 
enforce elastic-like behavior. This aspect of the algorithm’s implementation made it appropriate for modeling the 
boundary conditions of a system being deformed within the confines of an elastic model.  
 
The registration produces displacements at the centroid of every voxel. The displacement vectors are then interpolated 
onto the nodal coordinates of the finite element mesh using a cubic 3D interpolation. The displacements which are 
assigned to boundary nodes are thus designated as the boundary conditions for the elastic model. 
 
For the two data sets, each source image volume was non-rigidly registered to a corresponding deformed image volume 
using an Insight Toolkit (ITK)-based Demons diffusion-based image registration algorithm via MATLAB (Mathworks, 
Natick, MA). Both the CT set and the MR set were run through the registration for 3,500 iterations with a Gaussian 
smoothing kernel standard deviation of 1.5. The resulting boundary displacements were then compared to the known 
boundary displacements used to originally deform the image sets as described further below.  
 
2.3 Image Acquisition, Deformation and Mesh Generation 
 
Two image sets (CT and MR) of normal tumor-free human breast were obtained from the UC-Davis Department of 
Radiology and the Vanderbilt University Institute of Imaging Science, respectively, for use in this work. These images 
are referred to as source images for the remainder of this document. The surface of the breast was segmented from the 
surrounding structures using Analyze 8.1 (Mayo Clinic, Rochester, MN) and was used to create a three dimensional 
finite element mesh using a tetrahedral mesh generation algorithm13. For both the CT set and the MR set, a 2-cm 
spherical tumor was synthetically implanted in the center of the respective mesh and assigned an 

elasticity value six times higher than the surrounding material. This contrast ratio of 6.00:1 was thus 
considered to be the goal for reconstruction in both cases. Each finite element mesh was then deformed by applying a 
depression on one side of the breast. The displacements predicted by the model were then used to deform the CT and 
MR images. Figures 2a and 2b show an axial slice from the undeformed (left) and deformed (right) CT image volume, 
respectively. Figures 2c and 2d show an undeformed (left) and deformed (right) slice from the MR image volume, 
respectively.  
 

 
Figure 2. Representative slices from the two data sets used for the simulations. Slice (a) shows the CT image in its 
undeformed state, and (b) shows the CT image in its deformed state. Slice (c) shows the MR image in its 
undeformed state, and (d) is the MR image in its deformed state. 

 
The depression as seen in Figure 2 was used to create gold standard boundary conditions for testing the accuracy of the 
demons registration algorithm and the deformed target images were used to test the accuracy and fidelity of the 3D MIE 



 

 

reconstructions. The MIE reconstructions have been described below and the accuracy results have been presented in the 
following section.  
 
2.4 3D MIE Reconstruction Using Boundary Conditions Generated Automatically by the Demons Algorithm 
 
The 3D MIE reconstruction algorithm presented in previous work14 was used to localize the lesion by utilizing the 
boundary conditions generated by the Demons algorithm. A priori spatial knowledge of the location of the cancerous 
inclusion was used to constrain the algorithm to two regions of material properties: 1) the tumor, and 2) the surrounding 
normal tissue. Both regions were set to have the same initial material property values. The similarity of the CT set was 
sampled regionally using 136 zones (the MIE method samples similarity to assist in reconstruction), while the similarity 
of the MR set was sampled using 110 zones. The algorithm was allowed to run until convergence, which was defined to 
be a minimum relative change in the image similarity metric. The Demons-derived boundary conditions were utilized for 
the MIE reconstruction and tumor-to-normal-tissue stiffness ratios were compared to their known counterparts of 6:1 for 
tumor-to-normal tissue. The results have been presented in Section 3.   
 
 

3. RESULTS 
 

3.1 CT Simulation 
 
Figure 3 displays the results of the automatic boundary condition method applied to the CT data set as described above. 
Figure 3a shows the mesh after it has been deformed by the originally specified boundary conditions. The lighter areas 
of the mesh represent greater displacements from the original undeformed mesh. The light rectangular area on the right 
side of the mesh corresponds to the artificial depression. Figure 3b shows the mesh after it has been deformed instead by 
the Demons registration boundary conditions.  
 

 
Figure 3. Deformed mesh using the model displacements (a) and using the Demons-derived displacements (b). 
The colorbar indicates the magnitude of the surface displacements in millimeters. 

 
The maximum displacement in the known boundary conditions occurred in the depression and was approximately 13 
mm in magnitude. The Demons registration was able to reproduce this displacement very well as can be seen in a direct 
visual comparison of Figures 3a and 3b.  
 
Figure 4 shows the distribution of error between the original known boundary conditions and the automatically-
generated boundary conditions from the non-rigid registration. This error is defined as the difference in displacement 
magnitude at each node between the two sets of conditions. The lighter areas of the mesh correspond to areas that 
experienced greater error when compared to the known boundary conditions. As seen in the figure, the largest errors 



 

 

were spread across the region of high curvature around the tip of the breast and in the dip of the artificial depression. 
Averaging over all the nodes on the boundary, a mean error of 0.6 mm ±0.3 mm was obtained, which represents an 
average difference of about 17%. The minimum error on the boundary was 0.02 mm, while the maximum error was 
about 1.5 mm. 
 

 

Figure 4. Visualization of error between the Demons-derived boundary conditions and the known boundary 
conditions. The colorbar indicates the magnitude of the surface displacements in millimeters. 

 
Figure 5a shows an axial slice of the breast volume with the tumor in the center (white region shown in the figure). This 
image volume was used as the target image volume for the MIE algorithm and the tumor-to-normal tissue elasticity ratio 
was set at 6.00:1. Figure 5b shows the mesh with the tumor as reconstructed by the MIE algorithm using the automatic 
boundary conditions. The MIE algorithm predicted a tumor-to-normal tissue elasticity ratio of 8.65:1. 
 

 
Figure 5. (a) True elasticity image set showing the tumor in the center (white) used to create simulation (b) MIE 
reconstruction of the domain. Material type 1 (black surrounding region) represents normal/benign tissue. Material 
Type 2 (white central tissue) represents the tumor. The tumor-to-normal tissue elasticity constant ratio found by 
MIE was 8.65:1. 

 
3.2 MR Simulation 
 
Figure 6 displays the results of the automatic boundary condition method described, as applied to the MR data set. 
Figure 6a is the mesh after it has been deformed by the originally specified boundary conditions. As in the CT 
simulation, the lighter areas on the mesh correspond to greater displacements from the original mesh. The lighter area at 
the top of the mesh is the site of the artificial applied depression. Figure 6b shows the mesh after it has been deformed 
instead by the Demons registration boundary conditions. 
 



 

 

 
Figure 6. Deformed mesh using the model displacements (a) and using the Demons-derived displacements (b). 
The colorbar represents the magnitude of the surface displacements in millimeters. 

The maximum displacement in the known boundary conditions had a magnitude of about 12 mm and was located in the 
depression. The Demons registration reproduced this displacement to within about 1 mm.  
 
Figure 7 shows the distribution of error between the original known boundary conditions and the automatically-
generated boundary conditions from the non-rigid registration. The error is defined in Section 3.1. The lighter areas of 
the mesh correspond to areas that experienced greater error when compared to the known boundary conditions. As seen 
in the figure, the largest errors were spread across the region of high curvature, as in the dip of the artificial depression. 
Averaging over all the nodes in the mesh, a mean error of 0.5 mm ± 0.3 mm was obtained, which represents a mean error 
of about 23%. The maximum error that occurred on the boundary was about 1.9 mm, while the minimum error was 
about 0.01 mm.  
 

 
Figure 7. Visualization of error between the Demons-derived boundary conditions and the known boundary 
conditions. The colorbar represents the magnitude of the surface displacements in millimeters. 

Figure 8a shows an axial slice of the breast volume with the tumor in the center (white region shown in the figure). This 
image volume was used as the target image volume for the MIE algorithm and the tumor-to-normal tissue elasticity ratio 
was set at 6.00:1. Figure 8b shows the mesh with the tumor as reconstructed by the MIE algorithm using the automatic 
boundary conditions. The MIE algorithm predicted a tumor-to-normal tissue elasticity ratio of 5.53:1. 
 



 

 

 
Figure 8. (a) True elasticity image set showing the tumor in the center (white region) used for MIE reconstruction 
(b) MIE reconstructed mesh. Material type 1 (large surrounding region) represents normal/benign tissue. Material 
Type 2 (small region in the center) represents the tumor tissue. The tumor-to-normal tissue elasticity constant ratio 
found by MIE was 5.53 to 1. 

 
4. DISCUSSION 

 
In the implementation of the Demons algorithm, no unique difficulties were encountered in its application to the CT or 
MR image sets, demonstrating that automation in the context of modality independence is possible. The only user 
interaction required in this framework was the designation of the input parameters for the registration. Ideally, the 
boundary conditions obtained from the automatic non-rigid registration should equate to the known boundary conditions 
for the mesh that created the deformed target image. The results above show that the average error between these two 
sets of boundary conditions at the nodes was approximately the spacing of a voxel for the CT set, and less than half the 
spacing of a voxel for the MR set. The MR set thus had loading conditions within the working tolerance of the MIE 
algorithm to boundary condition error14 in order to create a reasonable reconstruction. Despite the somewhat higher error 
on the boundary for the CT set, a reasonable reconstruction was obtained. It is likely that this is because the elastic 
nature of the non-rigid registration constrained the model to realistic deformations. For the application of the Demons 
registration-based boundary conditions to the CT data set, the elasticity reconstruction with spatial a priori knowledge of 
the tumor successfully converged to a contrast ratio of 8.65:1. Similarly, the MR data resulted in a contrast ratio of 
5.53:1.  Compared to the known designated material contrast of 6.00:1, there is clearly a discrepancy in these 
reconstruction behaviors that needs to be investigated. The difference, particularly between the different modalities of 
input data, is likely due to a combination of factors including mesh geometry and image quality. In addition, the distance 
of the tumor from the area of greatest displacement likely affects the accuracy of the reconstruction, since the 
displacements of nodes are expected to decrease the further they are located away from the depression. These areas all 
remain avenues of further exploration to fully characterize the behavior of the MIE algorithm.  
 
 

5. CONCLUSIONS 
 

A novel method for automatically generating boundary conditions for a finite-element elastic model from a non-rigid 
image registration has been presented in this work. The Demons algorithm was able to generate physically realistic 
boundary conditions with an acceptable level of accuracy when compared against a controlled biomechanical model. 
These boundary conditions were also used to generate MIE elasticity reconstructions, with encouraging initial results. 
Additional work to validate the effectiveness of this new method of generating boundary conditions is being planned 
with additional image volumes as well as real-world testing using phantom experiments and correlation to material 
testing data and histology.  
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