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ABSTRACT 

The current protocol for image-guidance in liver surgeries involves rigid registration algorithm. Systematic studies 
have shown that the liver can deform up to 2cms during surgeries thereby compromising the accuracy of the surgical 
navigation systems. Compensating for intraoperative deformations using computational models has shown promising 
results. In this work, we follow up the initial rigid registration with a computational approach. The proposed 
computational approach relies on the closest point distances between the undeformed pre-operative surface and the 
rigidly registered deformed intra-operative surface. We also introduce a spatial smoothing filter to generate a 
realistic deformation field using the closest point distances. The proposed approach was validated in both phantom 
experiments and clinical cases. Preliminary results are encouraging and suggest that computational models can be 
used to improve the accuracy of image-guided liver surgeries. 
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1. INTRODUCTION 
Image-guided surgery has been used with success in the treatment of brain tumors, breast cancer and more recently 
in deep brain stimulations. These advancements in medical imaging have only been recently translated to open 
abdominal surgeries and partial hepatectomies. As in other image-guided surgical applications, image-guidance in 
open abdominal surgeries relies on the establishment of an accurate relationship between the patient’s pre-operative 
image space and the intra-operative organ space/physical space. This process of establishing a relationship between 
the image-space and the physical-space is known as registration. The current protocol for registration in partial 
hepatectomies involves an initial pose estimation provided by a point based registration of anatomical landmarks 
which is then improved by using rigid surface registration techniques which use the pre-operative surface segmented 
from the diagnostic images and the exposed intra-operative surface [9, 6]. While these image-to-physical space 
alignments are relatively straightforward, non-rigid tissue deformation (also known as intra-operative shift) during 
hepatectomies compounds the procedure and compromises the accuracy of guidance systems that rely on the 
aforementioned rigid registration techniques. The existing methods for intra-operative shift compensation can be 
classified into two main categories: (i) Intra-operative imaging techniques such as intra-operative magnetic 
resonance (iMR) and intra-operative computed tomography (iCT) imaging, intra-operative ultra-sound (iUS) and (ii) 
computational modeling. While iMR techniques have shown promise for complex hepatic surgeries [1] so far it has 
been limited to research institutions. Though iUS is used during hepatic surgeries more often than not iUS provides 
poor resolution images.  

Computational models have been used to compensate for shift in neurosurgeries [11, 8, 7] and are relatively new to 
the field of hepatectomies and liver surgeries. Recently, we proposed an approach [5] utilizing a template of pre-
operatively computed model solutions in the context of partial hepatectomies. The success of the algorithm proposed 
by us in [5] relies on the assumption that it is possible to account for all possible forces that cause the liver to 
shift/deform during hepatectomies. However our anecdotal observations in the operating room have shown that the 
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surgeon manipulates and mobilizes the liver in a manner he/she chooses fit to get better access to the tumor causing 
random deformations to the liver. These observations point out that it is highly improbable to account for all possible 
forces that cause the liver to deform during surgery. Therefore, in this work we propose a “direct” approach to 
account for the intra-operative shift by combining a cheap and efficient intra-operative imaging method with a 
computational model. The proposed algorithm relies on the acquisition of a three-dimensional representation of the 
exposed intra-operative surface. In that context, we use a commercially available laser range scanner and we have 
demonstrated in the past that this scanner can be used to acquire intra-operative surfaces during brain tumor 
resection therapies [10] and liver surgeries [4]. The proposed algorithm has been evaluated in a series of phantom 
experiments and two patients undergoing partial hepatectomies at two different clinical sites. Quantitative and 
qualitative results have been presented in the Section 4. 

2. METHODS 
2.1 Computational Model 

 In this work, we assume the liver to be an isotropic solid with a linear stress-strain relationship, governed by the 
following equation: 
 

 
where σ represents the stress tensor and B the external forces acting on the object. Since we assume the liver to have 
a linear relationship between stress and strain, σ = Cε where C represents the material stiffness matrix and is 
dependent on Young’s modulus (E) and Poissons ratio (ν). Using Gallerkin weighted residuals and linear basis 
functions to solve the above equation, the system of equations to solve displacements {u} at every node in the 
tetrahedral mesh can be represented as  
 

The first step in using the computational model is to segment the liver from the patient’s abdominal scan and create a 
marching cubes description of the surface. This surface is then fed to a tetrahedral mesh generator which creates a 
three-dimensional volumetric mesh of the patient’s liver. A key component to any computational model/finite 
element model is the application of forces (also known as boundary conditions) that are used to drive the model and 
predict intra-operative shift. This part of our algorithm has been discussed in detail in Section 2.3. 

2.2 Initial Rigid Alignment of the intra-operative liver surface to the pre-operative images 

A successful image-space to physical-space alignment is critical for this work and this section describes in brief the 
rigid surface registration technique used to align the exposed intra-operative surface to the pre-operative image sets. 
Our group has been researching the incorporation of a commercially available laser range scanner to acquire three-
dimensional surfaces of the exposed liver during surgery [4]. Initial attempts at establishing image-space to physical-
space relationships in our group focused on using the standard iterative closest point algorithm (ICP) [2] to rigidly 
register the surface acquired using laser range scanner to the pre-operative liver surface (obtained via segmentation 
from the patient’s diagnostic images). Clements et al. [6] reported an approach using weighted salient anatomical 
features to increase robustness of the rigid surface registrations. These salient anatomical features are identifiable in 
both the pre-operative image set and the intra-operative surface acquired using the laser range scanner. Falciform 
ligament (which divides the left and right lobes of the liver) and the inferior ridges are good examples of such 
anatomical features. These features are used to bias the point correspondence estimation in the traditional ICP 
algorithm. Clements et al. [6] demonstrated the robustness of this weighted feature ICP algorithm in a series of 
phantom experiments and also demonstrated that this algorithm performed better than the point-based registration 
algorithms and the traditional ICP algorithm in a series of clinical cases. Figure 1 shows an example registration 
obtained using the weighted patch ICP algorithm. Figure 1a shows the pre-operative surface segmented from the 
diagnostic images and the salient features identified on the segmented surface. Figure 1b shows the intra-operative 
surface obtained using the laser range scanner and the salient anatomical features identified on that surface. Figure 
1c shows the registered intra-operative surface overlaid on the pre-operative liver surface.  
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Figure 1. Example result of the rigid registration reported in [6]. Note how the salient anatomical features align after registration 

(in Figure 1c). 
 
2.3 Improve the rigid alignment using a computational model  

Once the rigid alignment has been established we use the closest point distances between the registered intra-
operative surface and the pre-operative liver surface to guide the application of boundary conditions necessary to 
drive the computational model described in Section 2.1. Figure 2 shows an example of the closest point distances 
between the registered intra-operative surface and the patient’s pre-operative surface. It should be noted that the two 
surfaces were aligned using the weighted patch ICP algorithm. Positive values in the figure indicate the weighted 
patch ICP algorithm places the intra-operative surface to be on top of the pre-operative surface and negative values 
indicate that the algorithm positions the intra-operative surface underneath the pre-operative surface. 
 
 
 
 
 
 
 
 
 
 
Figure 2. Example result of closest point distances (in meters) between the registered intra-operative surface and the pre-

operative surface. Registration was performed using the rigid registration algorithm reported in [6]. Positive values mean that 
the intra-operative surface is on top of the pre-operative surface and negative values indicate that the intra-operative surface 
is underneath the pre-operative surface. 

 
It can also be seen from the figure that these closest point distances are sparse in nature. In other words these 
distances are available just for a few nodes on the finite element mesh. The proposed algorithm uses a smoothing 
filter based on spatial connectivity between the nodes to smooth the closest point distances to flanking nodes/nodes 
outside the extent covered by the intra-operative surface. Given a rigid alignment between the pre-operative surface 
and the intra-operative liver surface and a three dimensional tetrahedral volumetric mesh, the algorithm proceeds as 
follows: 
      
 Step 1. Obtain signed closest point distances between the nodes in the three-dimensional finite element and the 

rigidly registered intra-operative surface. It should be noted that these distances exist only for nodes that are 
covered by the spatial extents of the registered intra-operative surface. Nodes that lie outside are assigned a zero 
value for the closest point distances. 

 Step 2. Establish a radius of connectivity for every node on the finite element mesh and use that connectivity to 
generate an average distance by summing all the closest point distances from the previous step. Therefore in 
flanking regions (regions outside the spatial extents of the registered intra-operative surface) zero’s are part of 



 
 

 
 

that average and therefore the distances computed in this step are lesser than the ones computed in the previous 
step. A signed distance value is this computed for every surface node in the finite element mesh. 

 Step 3. The distance that is calculated in step 2 for each node is thought of as a displacement boundary 
condition occurring normal (i.e. perpendicular) to the organ surface. 

 Step 4. These displacement boundary conditions are applied to the computational model described in Section 
2.1 and a volumetric deformation field is computed using Equation 2. 

 Step 5. The volumetric deformation field is used to deform the finite element mesh and steps 1 through 4 are 
repeated till the average closest point distances between the registered intra-operative surface and the pre-
operative surface lies below a threshold value. 

The algorithm was tested in a series of phantom experiments and four patients undergoing partial hepatectomies at 
four different clinical sites and results have been presented in Section 4. 

3. DATASETS USED FOR VALIDATION 
3.1 Phantom Validation 

A series of phantom experiments were performed using a liver phantom created using Smooth-On Ecoex 00-10 
(Smooth-On, Easton, PA). The phantom was rigidly attached to a plexiglass base using a Teflon screw. Seven Teflon 
spheres surrounding the phantom were affixed at varying heights to the plexiglass base. Forty-three stainless steel 
beads were distributed randomly in the phantom to serve as sub-surface targets for error computation. A stripe of 
white paint was placed on the phantom in the falciform ligament region to facilitate the delineation of this salient 
anatomical feature. Computed tomography (CT) scans of the phantom were obtained in the undeformed state. These 
scans were used to generate (a) the pre-operative surface for rigid alignment and (b) the volumetric tetrahedral mesh 
used for the computational model. Deformation then imposed on the phantom using a surgical towel underneath the 
inferior ridge of right lobe. Surface of the deformed state were acquired using a CT scan and a laser range scanner 
(LRS) from RealScan 200C,3-D Digital Corporation, Bethel, CT Surfaces.  It should be noted that the surface 
acquired by the laser range scanner was a partial surface description of the anterior part of the phantom. Figure 3 
shows the experimental set up. Figure 3a shows the deformation applied to the right lobe of the phantom and Figure 
3b shows the distribution of 43 sub-surface stainless beads. 
 

 

 

 

 

 

 

Figure 3. (a) Experimental set-up for the phantom datasets. Deformation was applied using a surgical towel placed underneath 
the right lobe. A white stripe was painted in the falciform region to facilitate the delineation of that salient anatomical 
feature. Seven Teflon spheres that surround the phantom were used as landmarks for point-based registration. (b) 
Distribution of the 43 stainless beads that serve as sub-surface targets for error computation. 

Teflon spheres that surround the phantom were localized in the CT and LRS datasets served as landmarks for point-
based registration. The deformed surfaces were initialized using this point-based registration and then aligned to 
their undeformed counterpart using the weighted patch algorithm described in [6]. The computational algorithm 
described in Section 2.3 was then used to improve this rigid surface alignment. Sub-surface target errors were 
computed for the rigid point-based registration, weighted patch ICP registration and the computational model and 
results have been presented in the following section.  

3.2 Clinical Validation 

Two patients undergoing partial hepatectomies were selected randomly from a 75 patient clinical conducted by 
Pathfinder Therapeutics Inc. Patient 1 underwent the hepatectomy at University of Pittsburgh Medical Center and 
Patient 2 at Memorial Sloan Kettering Cancer Center. Surface and volumetric tetrahedral mesh were generated from 
the undeformed pre-operative diagnostic images and intra-operative surfaces were acquired using the laser range 
scanner described above. Four anatomical landmarks were identified on the pre-operative CT images and on the 
intra-operative surface using a tracked pen probe. A point-based registration was performed using these four 



 
 

 
 

Table 1. Target registration errors for the rigid registration algorithm (Columns 2 and 3) and the proposed computational 
approach (Column 4) 

Table 2. Closest point distances after rigid registration (Row 1) and the proposed computational approach (Row 2). Patient 1 
underwent a partial hepatectomy at University of Pittsburgh Medical Center and Patient 2 underwent the surgery at 
Memorial Sloan Kettering Cancer Center 

landmarks to establish an initial alignment. The surfaces were then rigidly registered similar to the phantom 
experiments and the computational algorithm was used to improve the rigid alignment. Since sub-surface targets 
were not available for the clinical cases, closest point distances between the undeformed and rigidly registered 
surfaces were compared to the closest point distances between the undeformed surface and the model predictions and 
have been reported in the following section. 

4. RESULTS 
4.1 Results for Phantom experiments 

Table 1 reports the errors at the forty-three sub-surface stainless beads that were used as targets. Column 2 in the 
table reports the target registration error (TRE) for the point-based registration using the Teflon spheres that 
surrounded the phantom. Column 3 reports the TRE using the weighted patch algorithm and Column 4 reports the 
error between the model predicted positions for the sub-surface targets and those that were predicted using the 
weighted patch ICP registration. 

 

 

 

 

 

Table 1 shows that the model outperforms the rigid registration algorithm by 78% when the entire deformed surface 
is used to drive it and it outperforms the rigid registration algorithm by 33% when the partial surface description 
from the LRS is used. 

4.2 Results for Clinical Cases 

Table 2 reports closest point distances after rigid registration (row 1) and model prediction (row 2). Averaging over 
both patient cases, the model improves the closest point distances after rigid registration by 64% 

 

  

 

 

5. DISCUSSION 
Previous studies have demonstrated reasonable success in using closest point distances to predict intra-operative 
deformations during liver surgeries [3] and brain tumor resection therapies [8]. There are two important features that 
distinguish the proposed algorithm from the aforementioned studies: (i) we use sparse intra-operative data used to 
drive the computational model. In other words, the closest point distances between the registered intra-operative 
surface and the pre-operative liver surface are available just for a few nodes on the surface of the brain and, (ii) the 
spatial averaging filter allows us to approximate boundary conditions for regions where intra-operative data is not 
acquired. The spatial averaging filter also ensures that the closest point distances between the registered intra-
operative surface and the pre-operative liver surface are applied in an incremental fashion, thereby preventing 
unrealistic deformations.  

Sub-surface targets were not available for the clinical cases reported here and therefore closest point distances 
between the undeformed and deformed surfaces were used to measure accuracy of the proposed approach. Since 
surgeons are more concerned with the sub-surface vasculature it should be noted that the closest point distances 
between the surfaces is not a reliable metric. We have acquired post-operative scans and are currently investigating 
the appropriateness of using sub-surface vessels as targets for the proposed approach. 

Deformation 
Post-PBReg Post-wICP Post-Model 

(mm) (mm) (mm) 

Right - Full Surface 22.8+8.8(42.3) 2.7+1.6(6.7) 0.6+0.5(1.8) 
Right - Partial 
Surface 22.8+8.8(42.3) 4.5+2.1(10.0) 3.0+2.1(8.1) 

  

Patient 1 Patient 2 
(mm) (mm) 

wICP 4.8+3.9 (24.3) 3.9+2.6 (11.3) 

Model 1.9+3.0  (20.0) 1.3+0.9 (7.1) 



 
 

 
 

An interesting observation from the results reported for the phantom experiments is that the proposed computational 
approach performs significantly better when the entire deformed surface is available to drive the model. Given that 
we do not have access to iCT and iMR techniques, an entire surface description of the deformed intra-operative 
surface is not available to us. We are limited to partial surface descriptions acquired using a laser range scanner. The 
results presented for the phantom experiments in Table 2 suggest that there is a modest improvement (about 33%) 
when using partial surfaces with the computational approach. It should however be noted that the computational 
approach relies on the closest point distances between the undeformed and deformed surface after rigid alignment. 
Therefore, it is reasonable to assume that increasing the accuracy of the rigid registration algorithm will affect the 
outcome of the computational approach. We are currently investigating methods to improve the accuracy of the 
weighted patch algorithm. There is however no doubt that the model outperforms the rigid registrations and 
preliminary results not presented here show that the computational approach is compatible with the surgical time 
constraints. Given this, we are highly encouraged by the results presented here and are working on improving the 
accuracy of the proposed approach. Once we establish the fidelity of the proposed approach in more clinical cases, 
we also plan to update the pre-operative images using the deformation field predicted by the computational approach 
and compare these updated images to the post-operative scans. 

6. CONCLUSIONS 

Preliminary results reported here indicate that a registration algorithm followed by the proposed computational 
approach improves the accuracy of guidance during liver surgeries. The proposed approach needs to be validated in 
more clinical cases before it can be used in the operating room. 
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