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ABSTRACT 

The problem of extrapolating cost-effective relevant information from distinctly finite or sparse data, while balancing the 
competing goals between workflow and engineering design, and between application and accuracy is the ‘sparse data 
extrapolation problem’.  Within the context of open abdominal image-guided liver surgery, one realization of this 
problem is compensating for non-rigid organ deformations while maintaining workflow for the surgeon.  More 
specifically, rigid organ-based surface registration between CT-rendered liver surfaces and laser-range scanned 
intraoperative partial surface counterparts resulted in an average closest-point residual 6.1 ± 4.5 mm with maximum-
signed distances ranging from -13.4 to 16.2 mm.  Similar to the neurosurgical environment, there is a need to correct for 
soft tissue deformation to translate image-guided interventions to the abdomen (e.g. liver, kidney, pancreas, etc.).  While 
intraoperative tomographic imaging is available, these approaches are less than optimal solutions to the sparse data 
extrapolation problem.  In this paper, we compare and contrast three sparse data extrapolation methods to that of data-
rich interpolation for the correction of deformation within a liver phantom containing 43 subsurface targets.  The 
findings indicate that the subtleties in the initial alignment pose following rigid registration can affect correction up to 5-
10%.  The best deformation compensation achieved was approximately 54.5% (target registration error of 2.0 ± 1.6 mm) 
while the data-rich interpolative method was 77.8% (target registration error of 0.6 ± 0.5 mm).   
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1. INTRODUCTION 

Hepatic tumors represent an important health care problem in the U.S. [1].  Along with hepatocellular cancer 
(which represents only 4% of primary cancers in the US, however, worldwide is far more prevalent [2]), many primary 
neoplasms metastasize to the liver which is the significant presentation.  Depending on the treatment center, about 72% 
of malignant tumors in the liver are metastatic, and approximately 69% of metastases derive from colorectal carcinoma.  
In fact, the most common tumor treated in the liver is metastatic colorectal carcinoma (MCRC), a condition where 
hepatic metastasectomy can result in long-term survival in properly selected patients.  Considering that approximately 
140,000+ new cases of colorectal cancer will be diagnosed this year [1], with approximately 60% [3] developing 
metastatic liver disease, the impact of a system that facilitates liver resection would be profound.  Recent reports have 
demonstrated that increased and more aggressive hepatic resections have improved five year survival rates for patients 
with MCRC [4-6].  In one study specifically grouping subjects according to extent of resection, five year survival rates 
rose from 38% to 45% with no increase in complication rate [6].  Unfortunately, the patient population eligible for 
resective therapy is limited.  Based on one study involving 2400 subjects presenting with MCRC, only 20% of patients 
were eligible for surgical resection [5].  This discrepancy may result from many factors, but is likely influenced by the 
magnitude and complexity of hepatic resections as they are currently performed.  Interestingly, non-surgical treatments 
are being proposed as an adjuvant with an aim to down-stage metastases to achieve resection candidacy [7].  Increasing 
the number of patients eligible for liver resection therapy by providing enhanced guidance will have direct impact on 
survival for a large population of patients.  The choice seems clear; however, as more aggressive liver procedures are 
performed (multi-segment or lobectomy procedure) complication rates increase.  So while liver resection has shown 



 
 

 

 

promising survival rates and a perioperative mortality rate of less than 5%, a significant increase in postoperative 
morbidity due to hepatic dysfunction and infection has also been reported, even by specialized centers [8, 9].  In one 
recent study, postoperative complications doubled when comparing major to minor hepatectomy procedures [10].  The 
translation of accurate image-guided surgical therapy for open abdominal procedures is a mission critical tool for 
breaking down these surgical barriers and increasing the possibility of favorable outcomes for more patients undergoing 
this aggressive and complex procedure.  

In the past, the translation of image-guided surgery techniques to the abdominal environment has been limited.  
The most widely used approaches are active imaging with the use of ultrasound (US) or laparoscopic imaging.  
Preoperative imaging and planning data integrated for active intraoperative guidance is not commonplace [11-14] and 
only until recently has become commercialized through our industrial collaborator, Pathfinder Therapeutics Inc. (PTI) 
(Nashville, TN, USA).  The difficulty that arises when attempting full scale integration is the presence of soft-tissue 
deformation.  In recent reports, soft tissue deformation during liver resection has been documented with intraoperative 
computed tomography (iCT) and has demonstrated significant effects [15].  While intraoperative magnetic resonance 
(iMR) and iCT are available, these approaches are cumbersome, incur radiation dose in the latter, and are not 
economically scalable to mid-level medical centers.  The work by Lange et al. [14, 16, 17] is looking at a CT-to-US 
vessel based non-rigid registration system for providing the link between image and physical space.  While the 3 cases 
reported performed well, the likelihood of this approach working within the confines of OR workflow is a challenge.  In 
addition, it requires the identification of as many bifurcations as possible with tracked ultrasound and then the 
determination of corresponding bifurcations within the CT.  While the subsurface information would be valuable for 
non-rigid correction, there is a likelihood of misidentification in this highly vascularized organ, and the encumbrance 
may challenge adoption. 
 Given the nature of the procedure, the need to compensate for deformation is evident but as the nature of 
resection is unlike its neurosurgical counterpart, the requirements of compensation need to be balanced with workflow 
and accuracy requirements.  Presentation for open liver surgery (and even laparoscopic to a degree) involves significant 
organ distortion prior to the ability to collect data, but does afford considerable exposure for understanding that 
presentation.  Because the liver regenerates, the margins for surgical resection are more liberal but understanding the 
local vascular environment is critical.  These surgical characteristics serve as constraints to data acquisition and guidance 
procedure execution.  These constraints are the foundation of the ‘sparse data extrapolation problem’.  More specifically, 
the problem of extrapolating cost-effective relevant information from distinctly finite or sparse data while balancing the 
competing goals between workflow and engineering design, and between application and accuracy is the ‘sparse data 
extrapolation problem’. 

2. METHODS 

Data Acquisition 
 
 Current capabilities for data collection for experiments involving image-guided liver surgery include the 
acquisition of: (1) computed tomographic (CT) reconstructed volumes of the tissue/phantom of interest, (2) surface data 

 
Figure 1. Image-to-physical registration. 



 
 

 

 

in the form of a textured point cloud as provided by a novel optically tracked laser range scanner, and (3) tracked points 
and contours acquired by an optically tracked stylus.  We should note that the textured point cloud is a unique feature to 
our approach.  The laser range scanner passes a laser line over the organ of interest which is detected by a CCD and a 3D 
point cloud can be generated via triangulation.  Using the same CCD (new development see [18]), a color-image of the 
field of view is recorded and mapped onto the 3D point cloud.   

With respect to the current procedural steps for performing image-guided liver surgery, a large incision through 
the abdomen is created to expose the anterior surface of the liver.  Typically either wedge or segmental liver resections 
are performed to remove one or more hepatic metastases.  In wedge resections, the tumor and a 2-3cm surrounding 
region of the liver is removed, while in segmental resection, an entire anatomic segment of the liver is removed.  Prior to 
the performance of resection, a laser range scanner is brought into the surgical field and a laser range surface of the 
anterior surface of the liver is acquired.  Using the texture information, salient features are identified (falciform ligament, 
and ridges) and a salient feature registration is executed [13, 19] thus providing a rigid transformation that relates image 
and physical space.  We should also note that a second paradigm is being investigated with respect to this initial 
registration.  Namely, the optically tracked stylus is being used to swab the surface for general surface feature and for the 
individual salient features.  The descriptions are stitched together and a salient feature registration is performed.  The 
pursuit of this direction is in direct response to the ‘sparse data extrapolation problem’ whereby increased workflow 
speed could be achieved by a swabbing-only solution.   

While this registration has provided some level of guidance, the presence of deformation is evident.  Figure 1 is 
an example of an image-to-physical registration with CT volume rendering shown in gray and the laser range scan of the 
liver designated by the colored surface.  While the surface fit is good, it is clear that shape change between the surfaces 
has occurred.  In this case, the signed distances vary between -12.0 and 12.0 mm across the surface. 
 
Sparse Data Solution Methods 
 

In this paper, we present a comparison among three extrapolative methods that we are investigating towards 
deformation compensation in the liver.  The first extrapolative method among the comparison was presented at SPIE 
Medical Imaging in 2007 and iteratively fitted an average shape model to the intraoperatively deformed organ [20].  The 
method was called the iterative closest atlas (ICAt) technique and systematically fit a constructed shape by extracting a 
weighted combination of pre-computed shapes.  This method had the advantage of pre-computing the shapes associated 
with deformation using a finite element model which allowed for rapid registration intraoperatively.  While preliminary 
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Figure 2. Deformation compensation approach. 



 
 

 

 

results were encouraging, the atlas shape models were challenging to generate for surgical data.  There are still powerful 
aspects to this work we are investigating.     

To compare and complement that previous work, we have explored two sparse data solutions that involve 
intraoperative computing of our models.  Figure 2 is the general form of these methods.  The first of these methods was 
presented at SPIE Medical Imaging in 2010 [21].  In this approach, the correspondence function between laser range 
scan data (shown as green points in Figure 2) is used to guide the application of boundary conditions similar to work by 
[22-24].  However, the difficulty in the direct approaches of [22-24] was that sufficient information regarding posterior 
surfaces needed to be specified which was difficult to approximate, and flanking regions around the laser range scan 
partial surface were left unmodified which lead to unnatural looking deformations (i.e. a plug-like effect).  In the strategy 
of Figure 2, a spatial surface filter (dashed red line in the figure) that distributes into the flanking regions of the liver 
surface was created and generated more natural deformations while also having comparable results to the ICAt.  The 
general approach was to generate a radial capture region that was initially quite large (large enough to propagate to the 
posterior region of the liver).  This region would serve as an averaging kernel to distribute the closest-point based 
boundary condition.  With the large kernels, the averaging would result in a small increment of deformation to be 
applied.  As we gradually reduced the kernel size, the liver shape would approach that of the laser range scan.  These 
computations were all compatible with OR timing.  We should also note that the radial spatial filter was modified by a 
norm-sensitizer as it distributed boundary conditions to the posterior side of the liver whereby the boundary conditions 
would change sign.  One advantage of this filter is that it introduces sufficient boundary conditions such that a priori 
assumptions regarding the posterior regions of the liver need not be specified rather the filter approach provides 
sufficient enhancement to the condition number of matrices associated with FEM calculations to allow for rapid 
solutions with standard sparse matrix techniques.  While this method was comparable to ICAt, the results were of limited 
success.  The last method which is presented here is to use the solution to Laplace’s equation along the surface to 
extrapolate into the flanking regions.  We have attempted to use components of this method to assist in non-rigid surface 
registration of the breast where fiducials are not present [25] and have found reasonable results.  Upon completion of the 
solution of Laplace’s equation, the boundary conditions assigned to the posterior regions also undergo a norm-sensed 
application direction change.   

Figure 3 demonstrates the result from the latter two approaches with all surfaces normalized to the max-min 
range of displacements.  Figure 3a illustrates the results at three different iterations associated with the dynamic radial 
spatial filter method from our technique reported in SPIE 2010. It should be noted that each of iterations shown 
represents an increment of displacement (typically about 10-15 applied so the per-increment value is quite small in 
magnitude).  Figure 2b shows the single iteration Laplacian method.  The Laplacian method is currently executed as 

a b 
Figure 3. (a) Initial-mid-and last iteration of BC distribution, (b) single iteration with Laplacian methodology.  Red 
indicates displacements applied to model are needed to move along the surface normal while blue indicates moving 
against the surface normal. 



 
 

 

 

either a single or dual-pass method which makes it considerably faster than the radial method (i.e. only 2 model solves 
are necessary). 
  
 Experimental Methods 

A phantom was constructed from tissue-mimicking material which contained both surface and subsurface beads 
(N=43) as novel targets (Figure 4).   Pre-deformation (2 poses), post-deformation CT images, and laser range scanner 
data were acquired.  Surface-based rigid registrations (iterative closest point – ICP, and salient-feature weighted closest 
point with partial and full surfaces which we call patch iterative closest point - PICP) were performed.  From these initial 
poses, the three sparse data extrapolative methods were used to correct for subsurface deformation using only the laser 
range scanned anterior surface data.  In addition, a surface-data rich result whereby all geometric surface data (i.e. 
anterior and posterior) was included was executed for comparison.  

In the experiment shown in Figure 4, two deformations (left, and right lobe respectively) were performed and 
subsurface targets (implanted radio-opaque beads – Figure 4b) were tracked using repeat CT imaging.  With both image 
sets, a series of rigid registrations were employed that involved: (1) affixed fiducials external to the deformation (white 
balls shown in Figure 4a), (2) iterative closest point registration of before-and-after-deformation anterior surfaces, (3) the 
salient feature surface registration with anterior surface data only - PICP*, and (4) our salient feature registration with 
the entire surface (anterior and posterior) - PICP.  Once complete the 3 correction frameworks were executed and the 
respective improvement to correction is reported. 

3. RESULTS 

Table 1 shows the target registration error using the rigid-body registration methods.  In the first column, the 
deformation mode is designated.  The second column reports the target registration error using external targets (white 
spheres in Figure 3).  The third, fourth, and fifth column reports the target registration error using organ-based ICP, 
PICP*, and PICP, respectively.  The results indicate considerable alignment fidelity by just employing rigid registration 
based on organ geometry; however, regions of the domain are still misaligned to a significant degree.  Table 2 is an 
analysis of the target registration results using the different correction methods.  In Table 2, the first column indicates 
which deformation state was used for the phantom.  The second, third, and fourth columns represent the non-rigid target 
registration error using the iterative closest atlas (ICAt) technique, the iterative radial filter method, and the novel surface 
Laplacian solution technique.  The top section of the table results are associated with the non-rigid method starting from 
an initial rigid pose originating from the iterative closest point algorithm (pose associated with 3rd column of Table 1).  
The bottom results begin from the pose associated with salient feature registration (pose associated with 4th column of 

Organ‐Based ICP Organ‐Based PICP* Organ‐Based PICP

TRE Mean (Max) TRE Mean (Max) TRE Mean (Max)

Deformation  Partial Surface Partial Surface Full Surface

Left Lobe 14.8+8.5(31.0) 4.4+2.0(10.9)  4.1+2.3(11.3) 3.2+1.5(6.8)

Right Lobe 22.8+8.8(42.3) 4.3+2.0(8.8) 4.5+2.1(10.0) 2.7+1.6(6.7)

External Rigid Registration

 
Table 1.  Rigid registration results for phantom data. 

a b 
Figure 4. (a) Anthropometric liver phantom with surrounding digitization framework (b) CT rendered surface 
with applied deformations. 



 
 

 

 

Table 1).  There are some aspects to note.  Each result has the percent improvement (shown in the brackets) in target 
error over the rigid salient feature registration method.  With the modified approach using the surface Laplacian solution, 
the improvement level increases to 42-55% of deformation compensation.  When realizing that these improvements have 
been achieved with using sparse anterior surface data only (no intraoperative imaging), this is very encouraging.  
Another aspect to note with Table 2 is that the results can vary approximately 5-10% based on pose, i.e. the rigid 
registration pose.  Based on this, we will continue to investigate potential rigid registration initial pose algorithms. As far 
as expectation limits, it would be reasonable to assume that results associated with using the entire surface would likely 
be the performance limit.  Table 3 tabulates these and reports an upper limit to be in the 72-78% correction.  We would 
also like to indicate that all methods are consistent with a 0.5-3 minute update being provided within the OR (ICAt, and 
Laplacian method being less than 1 minute, while the radial filter method is on the order of 3 minutes).   

4. DISCUSSION 

The results shown here demonstrate a comprehensive treatment of the process of deformation correction.  It 
demonstrates that a great deal of error can be corrected by simply doing a rigid body surface registration between the 
intraoperative organ presentation and its image counterpart acquired preoperatively.  The results also indicate that further 
non-rigid correction can be provided using computational methods, i.e. an approximate reduction in error by half on 
average in this realization.  The results also show that if complete organ surface data could be acquired the deformation 
correction would rise to a level of approximately 75%.  We anticipate that this upper limit is achievable for surgical 
targets within the focus region for surgery, i.e. usually the region that is presented and laser range scanned (many of the 
more considerable target errors were with targets that flank the LRS and are remote from the surgical focus).   

Another important point is that this algorithmic development has been proposed within the context of the 
‘sparse data extrapolation problem’, i.e. the environment that balances workflow with design, and application with 
accuracy.  The three methods proposed are readily adaptable to the OR environment with minimal interference to the 
surgeon.  The most encumbered is the ICAt whereby preoperative computing has to be conducted prior to surgery.  The 
intraoperative burden on the surgeon is minimal with all 3 methods whereby the only requirements are the acquisition of 
surface data during surgery.  While 100% correction is desirable, even with the use of intraoperative imaging the need to 
non-rigidly register other preoperative data to the intraoperative image domain would still be a challenge and incur error.  
In addition, it is not clear that the added 20-30% TRE error remaining would be worth the added encumbrance of an 
intraoperative CT or MR imaging system.  When we examine the cost-effectiveness of the data-rich environment 
associated with intraoperative imaging in light of the impact to the OR environment as well as the limitations of the 
actual application of surgery, it is not clear that the accuracy improvements are good solutions to the ‘sparse data 
extrapolation problem’.  

Full Surface BCs

Deformation  TRE Mean (Max) [% over PICP*]

Left Lobe  0.9±0.7 (3.3) [71.9]

Right Lobe 0.6±0.5 (1.8) [77.8]  
Table 3. Full surface results (in mm, bracketed result is in %).

ICAt Radial Spatial BC Surface Laplacian

Deformation  TRE Mean (Max) [% over PICP*] TRE Mean (Max) [% over PICP*] TRE Mean (Max) [% over PICP*]

Left Lobe  4.0+2.6 (14.3) [9.1] 2.6 + 2.2 (10.0) [40.9] 2.0 + 1.6 (6.9) [54.5]

Right Lobe 3.3+1.5 (7.4) [23.3] 2.8+2.1 (8.0) [34.9] 2.3 + 1.6 (6.4) [46.5]

ICAt Radial Spatial BC Surface Laplacian

Deformation  TRE Mean (Max) [% over PICP*] TRE Mean (Max) [% over PICP*] TRE Mean (Max) [% over PICP*]

Left Lobe  2.5+1.1 (5.4) [39] 2.9 + 2.4 (10.5) [29.3] 2.3 + 2.1 (8.6) [43.9]

Right Lobe 2.5+1.1 (5.3) [44.4] 3.0+2.1(8.1) [33.3] 2.6 + 1.9 (8.1) [42.2]

Initial Pose from ICP

Initial Pose from PICP

 
Table 2.  Non-rigid results from methods (in mm, bracketed result is in %). 



 
 

 

 

5. CONCLUSIONS 

This paper proposes solutions to the sparse data extrapolation problem for image-guided liver surgery.  The 
results suggest intraoperative deformation correction from computer models and sparse data to be considerable.  This is 
an important step in the translation of image-guided surgery techniques to the abdomen.  Moreover, the algorithms 
explored are a cost-effective solution that potentially improves the application of surgery, is widely adoptable, and is 
relatively easy to integrate into current surgical workflow practices.  While continued investigation towards 
improvement is needed, these do represent beneficial advances that can affect the clinical application of surgery today. 
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