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ABSTRACT   

The use of deep brain stimulation (DBS) for the treatment of neurological movement degenerative disorders requires the 
precise placement of the stimulating electrode and the determination of optimal stimulation parameters that maximize 
symptom relief (e.g. tremor, rigidity, movement difficulties, etc.) while minimizing undesired physiological side-effects. 
This study demonstrates the feasibility of determining the ideal electrode placement and stimulation current amplitude 
by performing a patient-specific multivariate optimization using electrophysiological atlases and a bioelectric finite 
element model of the brain. Using one clinical case as a preliminary test, the optimization routine is able to find the most 
efficacious electrode location while avoiding the high side-effect regions. Future work involves optimization validation 
clinically and improvement to the accuracy of the model. 
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1. INTRODUCTION  
Deep brain stimulation (DBS) is a potentially effective treatment for neurological movement degenerative disorders such 
as Parkinson’s disease and Dystonia. The technique involves electrically stimulating critical structures of the brain 
believed to affect the involuntary movements using implanted electrodes. The treatment, however, is still in its 
developmental stages and its mechanism is still not fully understood. Currently, the procedure involves first inserting 
intraoperative electrodes in the brain using a stereotactic frame whose trajectories are determined based on general 
locations of the critical structures like subthalamic nucleus (STN) and internal global pallidus (GPi). The exact depth 
along the trajectory for implantation is unknown. As a result, these smaller intraoperative electrodes are stepped 
incrementally into brain and physiological response from the patient recorded to fine tune the precise position. Once a 
position with superior response is obtained, the intraoperative electrodes are removed and a permanent, larger 
stimulating electrode is implanted. When the patient is post-procedurally stable, stimulation parameters (amplitude, 
pulse width and frequency) are then explored to establish the best therapeutic response. This manual process of looking 
for the best electrode position and stimulation amplitude in the operating room may miss potentially more effective 
single and/or multi-electrode configurations as an exhaustive search is intraoperatively time prohibitive and the added 
time compromises the patient. 
 
Previous studies have concentrated on determining the best electrode placement using anatomical locations as their guide 
[1,2]. However, these critical targeted anatomical structures are difficult to distinguished clearly on magnetic resonance 
(MR) or computed tomography (CT) images. Although atlas-based segmentation may help identify these structures, 
errors could stem from registration of patient images to these atlases, limited resolution of the patient images and even 
inaccuracies from the atlases themselves. An alternative approach to help identify electrode placement targets is with 
probabilistic electrophysiological maps that are based on physiology as opposed to anatomy. The maps are based on an 
extensive collection of intraoperative patient data and are nonrigidly registered to the patient-specific preoperative 
images to identify regions in the patient’s brain likely to produce efficacy in the form of symptom relief and those likely 
to produce undesired side-effects [3,4]. The goal of this study is to perform a multivariate optimization for the 
intraoperative electrode selection, placement and stimulation amplitude using electrophysiological maps of the brain and 



 

 

a computational bioelectric brain model. The bioelectric brain model predicts the shape and extent of the electric field 
generated by the electrodes that may invoke action potentials in nearby neurons. While a more complete treatment of this 
problem involves determining the distribution of the electric field along the neuron/axon complex, accounting for tissue-
electrode interface and incorporation of patient-specific anatomical models, the aim of this preliminary work is to test 
the feasibility of optimizing the stimulation field itself in relation to the efficacy and side-effect maps. If possible, the 
next step would be to account for these additional model complexities, and test during intraoperative programming. 
Underlying this development is the hypothesis that an optimum electrode configuration determined intraoperatively will 
translate to improved postoperative therapeutic programming outcomes. In this initial work, the optimization routine was 
tested on 2 simulated condition sets and 1 clinical data set (patient-specific) electrophysiological maps. 
 

2. METHODOLOGY  
2.1 Bioelectric finite element model 

A 3-dimensional finite element model of 5 intraoperative DBS electrodes inserted into brain tissue was created using 
COMSOL version 4.0a (COMSOL, Inc., Burlington, MA). To simulate the electric potential distribution resulting from 
stimulation, Poisson’s equation for conductive media was used [5], 
 

∇ ⋅ σ∇V( )= −I      (1) 
 

where σ is the conductivity, V is the electric potential and I is the current source. In this preliminary work, the brain 
tissue geometry was represented as a cylinder consisting of approximately 80,300 tetrahedral elements and assumed to 
be homogeneous and isotropic with conductivity of 0.3 S/m [6]. Since the primary focus of this study is to optimize the 
electrode(s) placement and amplitude(s) of stimulation, capacitive effects were neglected and electrostatic conditions 
were assumed which allowed for tractable computation time using the multi-physics solver COMSOL linked with 
MATLAB (MathWorks, Inc., Natick, MA). The 5 DBS electrode configuration (FHC, Inc., Type D: Differential 
microTargeting Electrode) consists of a central electrode with the remaining 4 electrodes being placed a distance of 2 
mm anterior, posterior, lateral, and medially, respectively. Each electrode is made up of a conducting contact, an 
insulating shaft and a larger grounded cannula (Figure 1). The size of the brain cylinder was set large enough so as to 
eliminate far-field boundary effects. Current sources were assigned to the 5 contacts and allowed to vary in magnitude. 
The entire electrode was also allowed to vary in position. Since the 5-electrode implant method is constrained to move 
along insertion tracks, variability in position is a one degree of freedom translation in the direction of depth. A full 
remeshing of the geometries occurred with each adjustment in electrode depth. 
 

 
Figure 1. Model of the 5 intra-operative DBS electrodes within the cylindrical brain tissue geometry. The 
conducting contacts are at the tips and separated from the thicker grounded cannula by the insulating shaft in 
between. 

 



 

 

2.2 Optimization 

In this investigation, desired stimulation efficacy zones from efficacy map (E) and undesired side-effect zones from side-
effect map (S) are physiologically triggered when the brain tissue potential at those locations becomes elevated above a 
certain tissue activation voltage (TAV) level (TAV = -0.7 V [7]). It must be stressed that this assumption of a TAV is a 
gross oversimplification of the complex relationship between voltage and neuron activation. In addition to the electric 
potential, neural response is dependent on the size, location and orientation of the neurons, which have wide ranges in 
values and are highly patient-specific. Although accurately predicting the shape and volume of neural tissue activation is 
important, the emphasis of this study is in demonstrating the feasibility of developing an optimization framework for 
determining the ideal electrode selection, placement and stimulation amplitude based on the patient-specific 
electrophysiological atlas.  
 
The goal of the optimization is to position and power the 5 electrodes such that the electric potential distribution 
produced is sufficient to activate high-efficacy zones for therapeutic benefit while avoiding activation of the side-effect 
zones. Towards this goal, the objective function, G, for minimization was written as, 
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where Ei’ and Si’ are the normalized efficacy and side-effect map values for the ith voxel (values range from 0 to 1 with 
values of unity indicating high efficacy or high side-effect, respectively) and are interpolated to 3D image volume grid 
associated with the patient. Normalization by the maximum value in each map was required to equalize the weighing 
factors from both maps. Ai represents the ith voxel  of a binary mask of the tissue activated volume determined by the 
electric potential solved by COMSOL. Specifically, with each candidate depth and electrode amplitude, COMSOL is 
invoked to calculate the potential field, which is then interpolated onto the same 3D image volume as the probabilistic 
maps. The electric potentials at the ith voxel over N voxels are used to generate a binary mask whereby all regions above 
the TAV are assigned unity. The general construction of the objective function in Eq. 2 is to select configurations that 
attempt to improve the ratio of activated efficacious regions over those that are not efficacious while simultaneously 
penalizing configurations that improve the ratio of activated side-effect regions over the activated regions. The first term, 
the constant 1, is present to offset the objective function when no brain tissue is activated. The second term balances the 
brain tissue activation in the more desired over less desired zones so that there is no unnecessary tissue activation in 
lesser efficacy zones that are important when considering power constraints for the DBS power supply. These two terms 
serve to produce the optimum for only the efficacy map. The side-effect map is taken into account by the third term, 
which adjusts for when the undesired zones are activated. 
 
The global minimization function “patternsearch” in MATLAB was used for the multivariable optimum search. It has 
the potential to avoid local minima by being a set-based method rather than gradient-based. Briefly, a set of points for 
evaluation is first determined and their objective functions calculated and polled to find their minimum. If a minimum is 
found, then polling is successful and the domain for the next set of points is decreased. Otherwise, the domain is 
increased to expand the search area. The process is repeated until the convergence tolerance to the objective function is 
reached. The initial guess for electrode depths was set at the center of the maps, which were defined at depth 0 mm, and 
at half maximum amplitude (-7.9 mA) for all electrodes. The optimization was constrained with lower and upper bounds 
for electrode depth at -5 and +5 mm, respectively from the initial implant depth. Their stimulation amplitudes were 
constrained from -15.9 to 0 mA. The overall optimization routine is outlined in Figure 2.  
 
In addition to a patient-specific electrophysiological atlas, simulated efficacy and side-effect maps were generated to 
further evaluate and validate the objective function in Eq. 2. These maps were created using the electric potential 
distributions from the electrodes in the bioelectric brain model to duplicate high and low efficacy and side-effect values. 
The locations of these values were strategically selected to lie between the electrode trajectory paths in the actual 
optimization in order to test more extreme scenarios where multiple electrodes may be optimal. 
 



 

 

 

 
 

Figure 2. A flowchart summarizing the optimization routine. 

 

3. RESULTS  
The first set of simulated electrophysiological maps has high efficacy (colored in red) and low side-effect (colored in 
blue) regions centered at the same position, at -1 mm in lateral direction and -1 mm in depth (Figure 3a and b). All other 
regions have high side-effect values (colored in red). This scenario was designed to have just one optimum solution that 
is from the voltage overlap from 2 adjacent electrodes along X = 0 mm and X = -2 mm trajectory path, and no electrode 
along the X = +2 mm path. The objective function was able to successfully locate those exact 2 electrodes, and 
optimized their depth and stimulation current amplitude for best overlap with the simulated maps (Figure 4).  
 



 

 

 
 

Figure 3. The first test of the objective function using simulated (a) efficacy and (b) side-effect maps. Unity 
represented by red in the colorbar is high probability for efficacy in the efficacy map and high probability for side-
effect in the side-effect map. Low probability for efficacy and side-effect is indicated by blue in the colorbar. The 
dashed lines are the electrode trajectory paths for the optimum routine.  

 

 
Figure 4. The electric potential distribution of the optimized electrode position and stimulation current amplitude 
for the first simulated test. Note the voltages are negative values since the contacts are set as cathodes. For this 
colorbar, red represent zero voltage while blue represent high negative voltage. The dashed lines are the electrode 
trajectory paths for the optimum routine. 

 
The second simulated map set tested the relationship between efficacy and side-effect components in the objective 
function. For the efficacy map, there are 3 high efficacy regions (colored in red) all at depth -1 mm. Observing the 
efficacy map solely, the optimum would result in the simultaneous stimulation of the 3 electrodes at X = 0, -2 and +2 
mm trajectory paths, all at depth -1 mm (Figure 5a). However, the side-effect map prescribed an additional constraint 
such that there is just one region where side-effect value is the lowest (colored in blue in Figure 5b). So the optimum for 
this test is 2 electrodes at X = 0 mm and -2 mm paths. The objective function proposed in Eq. 2 was once again 
successful in this test, selecting those exact 2 electrodes, and optimized their depth and stimulation current amplitude for 
optimum voltage overlap  (Figure 6). Note, the optimization found a higher optimum current amplitude for the electrode 
at X = 0 mm than the electrode at X = -2 mm despite the more intuitive optimum of the same current amplitude for both 



 

 

electrodes. The reason for the lower objective function for different current amplitudes than for the same amplitude 
values is that the penalty due to the activation volume overlap with the side-effect map from one high value amplitude 
electrode is lower than the combined penalties from the overlap with side-effect map from two middle value amplitude 
electrodes.    
 

 
Figure 5. The second test of the objective function using simulated (a) efficacy and (b) side-effect. Unity 
represented by red in the colorbar is high probability for efficacy in the efficacy map and high probability for side-
effect in the side-effect map. Low probability for efficacy and side-effect is indicated by blue in the colorbar. The 
dashed lines are the electrode trajectory paths for the optimum routine. 

 
Figure 6. The electric potential distribution of the optimized electrode position and stimulation current amplitude 
for the second simulated test. Note the voltages are negative values since the contacts are set as cathodes. For this 
colorbar, red represents zero voltage while blue represents high negative voltage. The dashed lines are the 
electrode trajectory paths for the optimum routine. 

 
For the clinical case, the optimum depth and current amplitude for the 5 electrodes are tabulated in Table 1. No power 
was needed for the center, anterior, posterior and lateral electrodes. Only medial electrode was needed. Figure 7 shows 
the optimized brain tissue activation regions (based on the optimum configuration in Table 1) overlaid with efficacy and 
side-effect maps of a candidate patient. Despite having no single electrode trajectory path that passes through the heart of 
the efficacy region (circled in Figure 7a), the optimization routine is able to find the next most efficacious location (in 
red) while avoiding the high side-effect regions (in red to yellow). 
 



 

 

Table 1. Optimum depth and amplitude for the 5 intraoperative electrodes.  
 

 Depth [mm] Amplitude [mA] 
Center 5.00 0.0 

Anterior 5.00 0.0 
Posterior 2.50 0.0 
Lateral -0.31 0.0 
Medial 3.59 -2.0 

 

 
 

Figure 7. Cross-sectional views of the optimized brain tissue activation region (in grey) overlaid with the (a-b) 
efficacy and (c-d) side-effect map (colored). Unity is at the highest efficacy or side-effect. Dashed lines represent 
the electrode trajectories. 

 

4. CONCLUSIONS  
There has been considerable research in the simulation of DBS via finite elements methods [5, 8,9,10], but no work to 
our knowledge has involved the optimization of the surgical procedure itself via a coupled inverse modeling with 
probabilistic map framework as performed here. While aspects are somewhat idealized here, the results suggest that 
computational multivariate optimization of electrode selection, placement and amplitude in DBS based on 
electrophysiological atlases is feasible and can be easily calculated as part of the trajectory planning steps. Ultimately, 
this additional information may provide the best patient-specific electrode configuration for use during preoperative 
planning, intraoperative navigation and postoperative programming phases. The bioelectric brain model used here is 
limited in its simplicity, but future work will involve improving the accuracy of the models with more realistic tissue 



 

 

properties, simulating more realistic stimulation settings with time dependent analysis and incorporating neuron 
modeling to get a more accurate tissue activation volume. Lastly, further testing of the objective function and validation 
with clinical observations will have to be performed too. Nevertheless, this preliminary study offers an exciting new 
optimization framework within the field of DBS therapeutic delivery. 
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