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ABSTRACT

Brain shift compromises the accuracy of neurosurgical eaggided interventions if not corrected by either intraagiee
imaging or computational modeling. The latter requiresaioperative sparse measurements for constraining anidgiriv
model-based compensation strategies. Conoscopic hplogran interferometric technique that measures the distand
direction of a laser light illuminated surface point fromeefil laser source, was recently proposed for non-contafeicsur
data acquisition in image-guided surgery and is used herefation of our modeling strategies.

In this contribution, we use this inexpensive, hand-heldoszopic holography device for intraoperative validatién
our computation modeling approach to correcting for braift.sLaser range scan, instrument swabbing, and conoscopi
holography data sets were collected from two patients guileg brain tumor resection therapy at Vanderbilt Uniugrsi
Medical Center. The results of our study indicate that coap& holography is a promising method for surface acdarsit
since it requires no contact with delicate tissues and carackerize the extents of structures within confined spatles
demonstrate that for two clinical cases, the acquired carmppoints align with our model-updated images better than
uncorrected ones lending further evidence that computatiodeling approaches improve the accuracy of image-guided
surgical interventions in the presence of soft tissue aefdions.

1. INTRODUCTION

The success of an image-guided surgical intervention iirggent on the determination of the spatial relationshipdeen

the preoperative patient images and the intraoperative sfahe patient in the operating theater. In neurosurdbry,
relationship is compromised by brain tissue deformatiah strift that occurs during resection. The nature and extent o
the shift is dependent on factors such as gravity, edemarbgpotic drugs, the nature of the pathology, and the riesect
process itself2 In the course of an intervention, the brain can deform ovemaimeter in a non-uniform wat/There are
two primary methods of compensating for brain shift: inraative imaging’ and computation modeling techniques for
correcting the guidance displdy-? In the case of the latter, the intraoperative validatiorhelse models is a challenging
problem. In this paper, we investigate the use of conosdugmgraphy for the characterization of the resection ganit
two in vivo cases toward an intraoperative validation framework féoigheation correction schemes that use sophisticated
mathematical models.

Many authors describe the application of models to imagdeglsurgical interventions. Methods have been proposed
for brain’®*8liver,1°-?2and for general organ deformation strategre* Carteret al.?® provide a review of mathematical
modeling for image-guided surgery. Intraoperative vdl@aof these models, in the absence of an intraoperative MRI
or CT unit, is an open problem. We propose using a low-cogasaracquisition method that relies on the principle of
conoscopic holography for model validation.

2. COMPENSATING FOR DEFORMATIONWITH MATHEMATICAL MODELS

In this section, we give an overview of our specific framewlmkcompensation of deformation in the brain using mathe-
matical models. Note that the topic of this paper is valmlatf the framework; the framework itself has been described
other work (see for example, Chenal 8 and Dumpuriet al.1* 19 and only described here for context. An illustration of
the steps in our framework is provided in Figure 1. The preaipe and intraoperative steps are:
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Figure 1. Deformation correction framework used in study.



Preoper ative Phase

1. Patient Imaging. A magnetic resonance image (MRI) volume is acquired usings@ $canner, a similar scan
is required in conventional surgery that uses image guelafibe MR volumes are T1 weighted and gadolinium
enhanced with a voxel size of 1 mm1 mmx 1.2 mm.

2. Segmentation of brain and tumor. The brain is segmented from neighboring structures usiragiesmatic method®
Manual refinements of the segmentation are typically regiiin the area of the tumor. The tumor is extracted using
manual segmentation. A 3D surface model is constructed tf the brain and tumor using the marching cubes
algorithm?” A 3D surface of the patient’s head is extracted from the MRina# using marching cubes.

3. Mesh construction. The 3D surface model is smoothed and parameterized usinga$t®BF toolkit (FarField
Technology, Christchurch, NZ). Using the 3D surface modelplumetric tetrahedral mesh is generated for use in
our finite element modeéf

4. Atlas generation and boundary condition determination. In our terminology, an atlas consists of a collection
of possible deformations predicted by our model. The de&ions represented in our atlas include: permeability
(caused by mannitol, a hyperosmotic drug administered doae intracranial pressure), gravity (determined by
the head orientation of the patient in the OR and the amouaébrospinal fluid leakage in the procedure), and
swelling (caused by a physiological response). For thekgmations, there are three types of boundary conditions:
fixed (for the areas in proximity to the brain stem that unddijle deformation), stress free (region around and
containing the craniotomy that is free to deform), and slipgp (all other boundaries of the head can only move in
the tangential direction, falx and tentoria). Grey and whitatter elements are assigned their own material property.
The tumor region is assigned another material propertgugisesection is simulated by decoupling nodes belonging
to the tumor material type. Once a complete set of boundanglitions is known, the computational model can be
run and a volumetric prediction of organ deformation geteataWe have found these techniques improve our ability
to model deformation but further refinement is needed.

I ntraoperative Phase

1. Initial registration. A laser range scan (Pathfinder Therapeutics Inc., NashviNg of the patient’s face is ac-
quired prior to sterile field assembly. The scanner coll8Etsurface data as a point cloud and a 2D texture of the
scanned object. The surface is registered using the iteratsest point algorithff to the 3D model of the patient’s
head that was extracted from the preoperative MR volumes 3teip provides the initial physical to image space
transformation. All subsequent LRS acquisitions are ia #ipiace.

2. Paint correspondences. An LRS surface is acquired after the dura is opened and mrimmbor resection, the tumor
is resected, an LRS surface is acquired after resectionLRBgooint cloud is fit with a high resolution surface using
the FastRBF toolkit. Corresponding points are designatetti® pre and post-resection bitmap image from the LRS
acquisition. The corresponding 3D point is determinedgiffire LRS point cloud and the FastRBF toolkit.

3. Inverse model The inverse model is solved using the atlas predictions pridr to surgery, driven by the homolo-
gous points picked in the last step. Simply stated, an ie&hition is obtained by the minimization of least-squared
error between the predictions and the measured displadeniére details of this calculation can be found in Chen
al. The displacement field calculated by the inverse model id tseleform the preoperative MR volume for up-
dating the guidance display.

3. CONOSCOPIC HOLOGRAPHY

Conoscopic holography is a distance measurement methpoged by Sirat and Psaffgtraditionally used in industrial
quality control. The technique relies on analyzing coredtme and destructive interference patterns between ednithd
reflected laser light. A method of optically tracking the ievfor non-contact surface characterization was devel@pe
Vanderbilt University that can be deployed through a lapeopic por! The conoscopic holography sensor (Conoprobe
Mark 3, Optimet Metrology Ltd., Jerusalem, Israel) was ouwifth tracking targets. The conoprobe reports the distance



and direction from the laser source to the object being saénA calibration procedure establishes the transformatfo
the collected conoprobe points into the coordinate frante@bptical tracking system. In an accuracy test, the RM& err
for the tracked conoprobe was found to(b&7 mm 32

4. METHODS

In this study, we investigate the use of conoscopic holdwydpr the characterization of a resection cavity for vatiiola
of mathematical modeis vivo.

4.1 Apparatus

An optical tracking system (Polaris Spectra, Northern iginc., Waterloo, ON, Canada) measured the position and
orientation of all instruments and acquisition deviceshia bperating room (OR). An optically-tracked LRS (Pathfmde
Therapeutics Inc., Nashville, TN, USA), conoprobe (Comder Mark 3, Optimet Metrology Ltd., Jerusalem, Israel),
and surgical instrument (Medtronic, Minneapolis, MN, US#dquired intraoperative data. An optical tracking target
(Medtronic) was attached to the patient. All data acquisgiwere performed in the coordinate frame of the patiertt suc
that all data would be in a common coordinate frame. Figurerahstrates the conoprobe in use in the OR for this study.
The conoprobe was not sterilized since it was operated atargie from the patient.

Figure 2. Conoprobe surface acquisition of patient undeggoesection surgery at Vanderbilt University Medical @sr(Nashville,
TN, USA). The single laser point is visible on the surfaceh&f brain and the optical tracking target can be seen on thapcobe.

4.1.1 Patient Selection

We acquired preoperative and intraoperative data for twiemps. The first patient was a 37 year old-female with a low
grade tumor in the left frontal lobe that required a smalpragimately2.5 cm craniotomy. The second patient was an
83 year-old male with a metastic tumor in the left frontaldabat required a large, approximatély.5 cm craniotomy.
Patient consent was obtained prior to surgery for enroltrimethe study as required by the Vanderbilt Institutionaviees
Board.

4.2 Data Acquisition and Processing

We acquired and processed data as outlined in Section 2 amitkden Figure 1. In short, MR tomograms were acquired,
the surface of the brain and tumor were segmented, and mgdidita built, all preoperatively. In the operating room, an
LRS of the patient’s face, prior to sterile field assemblysywarformed in order to establish initial correspondenomfr
the coordinate frame of the LRS to the coordinate frame ofMRe Conoprobég, LRS, and surgical instrument swabbing

*Due to technical issues, we were unable to acquire pretiesesurface data with the conoprobe in one case.



Figure 3. Pre- (leftimage) and post-resection (right imalgga for case 1 is shown. Conoprobe (white), instrumenbbimg (orange),
and LRS is rendered with the segmented tumor (red). In this,dhe intraoperatively acquired point clouds are shiftetie direction
of gravity. Good agreement of the acquired points is obgkmvdoth the pre- and post-resection data sets. Note thatdrcase, the
SNR of the conoprobe points was not acquired; hence, thextobe points are unprocessed.

data sets were acquired of the brain surface after openenduta (and prior to resection) and after tumor resectioh. Al
data were transformed into the preoperative MR frame us$iad RS to MR transformation computed using the LRS of
the patient’'s face. Homologous points were identified inghe and post-resection LRS bitmap and used to drive our
inverse model.

4.3 Evaluation

The accuracy of conoscopic holography techniques is affieby the absorption properties of the tissue under interro-
gation. The conoprobe software reports the signal-toen@tio (SNR) as a percentage for every point collection. The
manufacturer of the device suggests only using points witBIdR greater than 30%. We did not record the SNR in the
first data set acquired for this study. The noisy points ia tlollection prompted us to contact the manufacturer forcadv
on data collection. In the second data set, only points WwitR §reater than 30% were used in our analysis.

We evaluated the accuracy of the model prediction usingtineaperatively collected conoprobe points and the model-
predicted (deformed) tumor mesh. Using the tumor mesh Gtdjthe preoperative phase in Section 2) and the calculated
deformation field from our inverse model (step 3 of the inp@mtive phase in Section 2), a deformed tumor mesh was
generated. For each point in the conoprobe collection, deast neighbor on the model-predicted tumor mesh was
calculated. For comparison, for each point in the conopaaiiection, the nearest neighbor on the undeformed tumor
mesh was calculated.

5. RESULTS

The pre- and post-resection data for all acquisition metHod case 1 and 2 are rendered in Figure 3 and Figure 4,
respectively. In these figures, the conoprobe points amesiowhite, the instrument swabbed points in orange, the, LRS
and the tumor in red (segmented from preoperative scans).

The distance from the tumor surface to the conoprobe poiitts and without correction computed using nearest
neighbors are summarized in Table 1. The conoprobe calextire rendered in Figures 5 and 6 with their associated
distances.

Table 1. Distance from Tumor Surface to Conoprobe Points afid Without Correction

Distance (mm)
mean sdev min  max

casel nocorrection 547 2.64 0.02 12.77
correction 3.92 214 0.02 9.56

case 2 nocorrection 7.76 2.44 0.09 14.61
correction 200 165 0.00 7.19




Figure 4. Pre- (leftimage) and post-resection (right imatga for case 2 is shown. Conoprobe (white), instrumenbbimg (orange),
and LRS is rendered with the segmented tumor (red). In ttgs,dhe large tumor caused the resection cavity to colldpgerhaking
the cavity appear smaller than the tumor in its preoperatate. Good agreement of the acquired points is observeuthirite pre- and
post-resection data sets.
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Figure 5. Tumor mesh (blue) with and (white) without defotimra correction for case 1. Conoprobe points are renderdhal their
associated distances from the tumor surface.
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Figure 6. Tumor mesh (blue) with and (white) without defotima correction for case 2. Conoprobe points are renderéh their
associated distances from the tumor surface.



6. DISCUSSION

In Figures 3 and 4, the displacement of the point clouds fleanttimor represents the brain shift that occurred from the
preoperative image state to the intraoperative state.>ample, the point clouds in Figure 3 are shifted in the diogcof
gravity; hence, the lack of overlap of the points clouds amddr. In case 2, the preoperative tumor appears significantl
larger than the resection cavity acquitiedsivo due to the collapsing of the cavity after resection. The saffeet is not
observed in case 1 because of the small tumor and craniof@myetative to case 2.

In the post-resection comparison of the acquisition methiodrigure 3, the LRS does not sufficiently describe the full
resection cavity due to the line-of-sight issue descritstier but the instrument and conoprobe swabbing largedylap.
In theory, one could obtain multiple scans of the cavity awbnstruct the full cavity from multiple scans; howevectea
scan requires a minute or so to acquire thus increasing tyetiane.

Note that in case 2, in order to address the spread of conejpaibts in the bottom of the cavity observed in case 1,
the signal-to-noise ratio (SNR) for each conoprobe poimtyidled by the hardware manufacturer’s software, was thsxbr
and points with an SNR below 50% were omitted. No other mdatfmn of the points was performed.

In both cases, the distances from the conoprobe points taitihar surface were significantly improved after correction
Case 2 appears to be a better correction than case 1; hotésés,difficult to conclude with the noisy points from case 1
due to the SNR issue describes above.

7. CONCLUSIONS

The results suggest that the use of intraoperative conashofography for tumor resection cavity characterizatioth
the goal of intraoperative validation of deformation cetien using mathematical models is promising. Additioretignt
data collection and evaluation is underway.
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