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ABSTRACT 

In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively 

to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS 

techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. 

In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We 

study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and 

noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling 

strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical 

intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected 

and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of 

noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and 

resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In 

terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically 

realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types 

of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of 

resampling strategies.  
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1. INTRODUCTION 

Image-guided liver surgery (IGLS) comprises a variety of methodologies aimed at improving precision during hepatic 

surgery by providing physicians with intraoperative guidance of instrumentation. True IGLS requires (1) a preoperative 

volumetric representation of target anatomy, (2) a method to register preoperative image and intraoperative physical 

spaces, (3) a means to localize instrumentation in physical space, (4) a display of the position of instrumentation in relation 

to preoperative imaging, and more recently (5) a method to correct for organ shape change and deformation which occur 

intraoperatively. Open abdominal treatments, such as hepatic resection or ablation, present a particularly challenging 

setting for image guidance techniques due to soft-tissue deformation and the sparsity of available intraoperative data for 

driving registration. The utility of IGLS methods fundamentally hinges on the accuracy of image-to-physical registration. 

Therefore, registration is the predominant source of error in IGLS.  

1.1 Related Work 



The majority of prior IGLS rigid registration methodologies can be divided into two categories: (1) surface-driven and 

(2) vessel-driven. The first category consists of registrations driven by the geometry of anatomical features of the liver (i.e. 

the falciform ligament, inferior ridges, and anterior organ surface). With respect to these surface-based registration 

techniques, they typically rely on an iterative approach to minimizing residual feature error based on estimated surface 

correspondence and assume that the surfaces being registered share a high degree of similarity [1-4]. The current protocol 

for surface-based rigid registration, used in this paper, was introduced by Clements et al. and involves a salient anatomical 

feature weighted iterative closest point (ICP) registration. Homologous features are identified on the preoperative model 

and digitized intraoperatively. Corresponding features are then weighted during ICP in order to bias the alignment. The 

biased weighting scheme is dynamic through iterations of the algorithm allowing the anatomical features to produce a 

robust initial alignment which is then refined by additional organ surface data. While access to these anatomical features 

is routinely available, it is also clear that digitization methods for characterizing these surfaces are still somewhat limited 

[5-7]. The following methods have been reported for sparse surface digitization in image-guided surgery: manual swabbing 

with a tracked probe [8], laser-range scanning [1], segmentation of the organ surface following tracked ultrasound [5, 9-

10], time of flight imaging [11], stereoscopic imaging [12-13], and conoscopic holographic surface scanning [14]. Results 

of a recent study comparing registration results using manual swabbing, laser-range scanning, and conoscopic holographic 

scanning indicated better performance from non-contact digitization methods [15]. However, challenges of integration into 

clinical workflow persist. Therefore, manual surface swabbing remains the only commercial IGLS data collection approach 

for surface-based registration in use today. 

The second major category of IGLS rigid registration methodologies perform registration based on liver vasculature. 

The use of tracked ultrasound has been reported as a means to digitize major vasculature intraoperatively [5, 16-17]. These 

vessel-based approaches typically rely on local alignments between CT-rendered (preoperative) and ultrasound-identified 

(intraoperative) vasculature. However with both surface-based and vessel-based registration approaches, alignments can 

be compromised by deformations arising from perioperative organ shape changes, respiration, organ mobilization, and 

resection [18-20]. To mitigate this, ongoing efforts have been made towards deformation correction in IGLS within both 

of these approaches to registration.  

For example, in [21], ultrasound segmented vasculature are elastically registered to preoperative imaging to nonrigidly 

correct for organ deformation. With respect to surface-based approaches, we have focused on using patient-specific 

biomechanical models generated preoperatively to nonrigidly map intraoperative salient feature and surface data to the 

imaging space [2, 5, 22]. We assume a predetermined parameterized support surface along the posterior aspect of the liver 

which is iteratively deformed. Deformations are propagated into a biomechanical model representing the preoperative state 

of the liver. The method iterates until the residual error between the intraoperatively collected anterior surface digitizations 

and the deformed preoperative model surface is minimized. The result is a reconstructed volumetric prediction of the 

deformed organ based on the preoperative biomechanical model and sparse intraoperative organ surface data. 

Regardless of registration strategy or the source of organ data, data collection is often contingent on physician 

proficiency. As a result, variability in extent, uniformity, and degree of noise (either directly associated with the 

measurement modality or from physician technique) all affect registration but have received limited study due to the 

extreme challenge in collecting clinical volumetric data. Our prior work has shown that increasing the extent of organ 

surface data can improve target registration error (TRE) [22]. Additionally, our recent study comparing methods of surface 

data collection found a difference in registration outcome between contact and non-contact methods of surface digitization 

[15]. Therefore, with manual surface swabbing being the current modality of surface collection in IGLS procedures it is 

important to investigate how spatial variation in surface digitization influences surface-based IGLS registration methods. 

1.2 Objective 

This study has been motivated by an observation of variation in the spatial pattern, density, and noise associated with 

a series of sparse organ surface digitizations in clinical IGLS procedures. The primary objective of this work is to 

investigate the extent to which noise in surface data collection influences the results of an existing rigid and our improved 



nonrigid surface-based IGLS registration techniques. While we report results of our particular registration methods, the 

simulation framework described herein may be applied to study the impact of noise on any surface-based registration 

methodology. We accomplish this goal by applying our human-to-phantom data framework. To briefly describe, we 

transform the surface collection patterns of data from n=5 clinical organ surface acquisitions onto a hepatic deformation 

phantom of which we have full volumetric imaging detailing the undeformed and deformed states and which has been 

designed to deform in a manner akin to what is observed clinically. This technique allows for the replication of multiple 

simulated phantom surface digitizations of which we can directly control the level of noise (or surface digitization error) 

and facilitates the measurement of full volumetric registration error with CT imaging and distributed subsurface CT-visible 

targets. To observe the influence of surface collection noise, we quantify registration outcomes for a series of simulated 

noise which ranges from no noise to roughly nine times the level of noise seen clinically. In addition, we present a method 

of surface data resampling which we use to reduce the influence of noise. We conclude by discussing the results of our 

study in an effort to better comprehend the impact of noisy data collection on registration accuracy in IGLS. 

2. METHODS 

The methods of this work are designed to accomplish three goals: first, introduce our human-to-phantom data 

framework which we use to systematically simulate registrations; second, discuss the registration methods that we are 

investigating and resampling approach that we have developed; third, describe the analysis we perform to study the impact 

of spatial variation in organ surface data quality on surface-based IGLS registration methods. 

2.1 Human-to-phantom data framework 

Five clinically acquired sets of organ surface data (2.1.1) were applied as collection patterns to the intraoperative 

(deformed) state of a hepatic deformation phantom (2.1.2) to provide a platform for systematically observing the influence 

of variation in intraoperative organ surface digitization on registration accuracy. Furthermore, randomized sinusoidal noise 

(2.1.3) was applied to these phantom surface data to provide direct control over the degree of surface noise in a clinically-

realistic fashion by simulating the natural periodic contact that occurs during manual organ swabbing (i.e. compressing 

into or lifting off of the organ surface). 

2.1.1 Patient data collection 

We present a selection of clinical data representing 5 patients that were consented and enrolled in an ongoing study 

approved by the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Review Board and were undergoing 

open liver resection. Prior to surgery, contrast enhanced CT images were acquired and used to generate 3D anatomical 

organ models using surgical planning software (Scout™ Liver, Analogic Corporation, Peabody, MA). Following organ 

mobilization during surgery, a series of anatomical features were digitized by manual surface swabbing with an optically 

tracked stylus into a surgical navigation system (Explorer™ Liver, Analogic Corporation, Peabody, MA). This digitization 

creates a sparse 3D point cloud representing the anterior organ surface and a series of anatomical features (falciform 

ligament and inferior ridges) as seen in Fig. 1.  



 

2.1.2 Phantom data collection 

Phantom data were previously reported in [22]. To summarize, a compliant hepatic phantom consisting of water, 7% 

w/v Polyvinyl alcohol, and 10% w/v glycerin and was subjected to a 12 hour freeze-thaw cycle was created to mimic 

clinical observations of organ stiffness and deformation gathered from a 75 patient multi-center clinical trial [23-24]. A 

series of 47 subsurface plastic beads were embedded within the phantom to serve as ground truth target locations. In the 

same manner as clinical procedure, a preoperative CT scan of the phantom in an undeformed state was acquired to generate 

the preoperative organ model and to identify initial target locations. Next, as seen in Fig. 2, clinical organ mobilization 

was simulated by altering the posterior organ support surface; thus inducing deformation. An intraoperative CT scan of 

the deformed phantom was then captured to acquire the ground truth deformed state of the organ and target locations.  

2.1.3 Creation of human-to-phantom data 

This section describes how five clinical sets of organ surface data were applied as collection patterns to the 

intraoperative surface of the hepatic deformation phantom. Clinical surface data were first aligned with the intraoperative 

phantom in accordance with salient anatomical features using the rigid salient feature weighted ICP registration of [2]. 

Following rigid alignment, an affine ICP registration from [25] is utilized to account for differences in data extent and 

organ size. The aligned and scaled clinical surface data were then projected to their closest point on the intraoperative 

phantom CT, producing five clinically representative patterns of surface digitization applied to the deformed phantom 

surface. At this state, the simulated surface digitizations are a sparse representation of the deformed phantom surface based 

Fig. 1. Anterior organ surface data from a single clinical case are 

presented overlain on the preoperative patient anatomy following 

rigid registration (left) and after being transformed onto the hepatic 

deformation phantom (right). For each, the anterior organ surface, 

falciform, left inferior ridge, and right inferior ridge data are 

rendered in white, red, blue, and green respectively. Surface data 

transformed to the human-to-phantom framework (right) are 

overlaid on the intraoperative phantom CT model. 

Fig. 2. The CT segmented preoperative and intraoperative 

phantom volumes are presented in green and red wireframe 

respectively. The differences in volumes highlight the deformation 

which was induced to simulate clinical organ deformation within 

the phantom. 



on the collection patterns of five clinical IGLS cases and with no error or uncertainty in surface collection (i.e. no noise). 

An example of the human-to-phantom data is shown in Fig. 1. 

2.1.4 Addition of noise 

Realistic periodic noise was added to the phantom surface digitizations to simulate error in data acquisition in a 

clinically-relevant manner. Randomized sinusoidal waveforms were generated in the normal and tangential directions 

independently for each set of phantom surface digitizations as follows:  

�̂� = (sin(2𝜋𝑠𝑓1 + 𝜑1) + a ∙ sin(2𝜋𝑠𝑓2 + 𝜑2) + 𝑅) ∗ �̂� (1) 

where �̂� is vector of noise, �̂� is the normal or tangential direction at each surface point, 𝑓 are random low frequencies 

between 0-10 Hz, 𝜑 are random phase shifts between 0-2π, a is a random amplitude between 0-5, and 𝑅 is uniform 

pseudorandom white noise. This smoothly varying noise was applied in the spatial order of the clinical acquisitions and is 

in qualitative accordance with the pattern and frequency of intraoperative data collection.  By realizing this approach, each 

application of noise to a set of phantom surface digitizations results in a unique set of points representing the intraoperative 

phantom surface. For reference, we have determined an approximation of the level of noise that occurs clinically by fitting 

a cubic polynomial to each of the salient features obtained clinically and measuring the residual error to these fittings.  

2.2 Algorithms 

2.2.1 Rigid registration 

Rigid image-to-physical alignment was calculated using the salient feature weighted ICP registration method of [6]. 

Salient feature registration biases point correspondence estimation at each iteration of ICP to favor corresponding salient 

anatomical features. Point correspondence is estimated using a conventional closest approach.  The registration algorithm 

provides a coordinate transformation that minimizes distance between the preoperative model and intraoperative organ 

surface data. Due to its biased nature, it is robust to variation in organ surface data. 

2.2.2 Nonrigid registration 

This study utilizes a modification of the IGLS nonrigid registration method introduced by [22]. The method assumes 

that the most significant amount of intraoperative organ deformation is caused by changes to the organ support surface. A 

parameterized posterior displacement field, in the form of a bivariate polynomial, is iteratively deformed. The deformation 

field resulting from each iteration is applied as boundary conditions on a biomechanical model of the preoperative patient 

organ. The approach implements the Levenberg-Marquardt algorithm in order to reconstruct the optimal set of polynomial 

parameters that minimize error between intraoperative surface data and the prediction of the deformed model surface. The 

rigid registration algorithm of [2] is used as an initial alignment and new rigid registration parameters are also determined 

at each iteration. With respect to the modifications made to the method of [22], in [22] the posterior displacement field 

was only allowed to move in the direction of the posterior surface normal. We employ an improved extension to this 

method which includes tangential displacements to the support surface parameterization. Additionally, we incorporate 

salient feature weighting to insure that the demarcated landmarks remain anchored. 

2.2.3 Data resampling 

In our experience with clinical IGLS procedures, sparse surface data collection varies between surgeons. In light of 

this variation, we apply a surface data resampling method to approximate and more uniformly sample the underlying 

intraoperative organ surface from which the sparse surface digitizations are collected. In overview, we fit an approximated 

surface to the collected sparse surface data using the method of [26] (Fig. 3). To simplify the problem, we assume that the 

anterior organ surface (from which the sparse surface data were collected), may be treated as a bounded, continuous, and 

unique surface as follows:  

𝑧 = 𝑓(𝑥, 𝑦) (2) 



To be consistent across different initial orientations of surface data, the data is transformed to optimally a 3D least 

squares plane to the x-y plane by aligning the mean surface normal with the z-axis. The values within a discrete grid are 

then fit to the transformed data using the method of [26]. Locally, the grid is fit to the surface data using barycentric 

interpolation: 

𝑓(𝑥, 𝑦) =  ∑ 𝜆𝑖𝑓(𝑥𝑖 , 𝑦𝑖)

3

𝑖=1

 (3) 

where the value at a given location within the grid, 𝑓(𝑥, 𝑦), is reconstructed as a linear combination of the values at the 

vertices of an encompassing triangle, 𝑓(𝑥𝑖 , 𝑦𝑖), weighted by the ratio of areas within the triangle, 𝜆𝑖, where each vertex 

contributes to the given location. The approach then regularizes the grid with a finite difference approximation of the 

Laplacian for each grid node: 

∇2𝑓(𝑥, 𝑦) =  
𝑑2𝑧

𝑑𝑥2
+  

𝑑2𝑧

𝑑𝑦2
= 0 (4) 

∇2𝑓(𝑥, 𝑦) ≈  
1

ℎ2
 (𝑓(𝑥 − ℎ, 𝑦) + 𝑓(𝑥 + ℎ, 𝑦) + 𝑓(𝑥, 𝑦 − ℎ) + 𝑓(𝑥, 𝑦 + ℎ) − 4𝑓(𝑥, 𝑦)) (5) 

where 𝑓(𝑥, 𝑦) is a nodal value and h is the grid spacing. We then applied a weighting scheme which sampled the surface 

more densely in areas that are well fit to the input surface data. The weighting scheme consists of two parts: first, a sparse 

set of points set at 5 mm spacing is underlying the entire extent of the surface; second, all areas of the surface which are 

within 1 mm of true data are sampled at a more dense 0.25 mm spacing. Finally, the fit surface was trimmed to more 

accurately represent a single region accurately bounded by the outer contour of the input surface data.  

 

Fig. 3. The goal of the surface data resampling method is to 

preprocess sparse data to normalize quality across acquisitions. 

After collection, a discretized surface is fit to the data using an 

interpolant to fit locally and surface Laplacian to smooth using the 

gridfit method by [26]. The surface is then trimmed to the bounds 

of the initial data using a dilate and fill technique. Finally, a 

weighting scheme is applied which densely packs points within a 

sphere of influence of raw data while enforcing a sparse, uniform 

sampling across the entire domain. 



2.3 Simulation design 

This work serves to investigate the extent to which noise in surface data collection influences the results of existing 

rigid and nonrigid surface-based IGLS registration techniques. In this simulation (Fig. 4), for each clinical surface pattern 

(of the n=5 clinical data collections reported), surface data were aligned, scaled, and their collection patterns projected 

onto the intraoperative phantom CT surface (as described in section 2.1.3). For each clinical pattern now applied to the 

phantom, 25 distinct surface digitizations were simulated by temporally applying unique random sinusoidal noise patterns 

(as described in section 2.1.4). This was repeated for each case across a series of noise magnitudes, resulting in 125 unique, 

clinically representative digitizations of the intraoperative phantom surface for each level of applied noise ranging from 0 

to 10 mm at 0.1 mm increments. Rigid (section 2.2.1) and nonrigid (section 2.2.2) registration methods were then used to 

determine predictions of the intraoperative subsurface targets. Surface data resampling (section 2.2.3) was then applied to 

the simulated surface collections. The resampled data were then used to drive rigid and nonrigid registration methods to 

determine predictions of subsurface target locations.  

It is important to emphasize that all simulated surfaces exist as surface digitizations of the same hepatic phantom which 

underwent mock clinical deformation as documented within CT. From this CT data, subsurface beads embedded within 

the phantom and tracked throughout deformation provided true positions of targets for the evaluation of registration 

accuracy as TRE. TRE was calculated as the distance between registration predicted target locations and true observed 

target locations from the intraoperative phantom CT. To be explicitly clear, for each magnitude of noise that was 

investigated we have collected a distribution of 125 average TRE values for each of the following registration scenarios: 

raw data rigid registration, raw data nonrigid registration, resampled data rigid registration, and resampled data nonrigid 

registration.  

The Wilcoxon signed-rank test was used to determine significance at particular noise levels between registration results. 

The Wilcoxon signed-rank test is a non-parametric paired difference test that is used when the population cannot be 

assumed to be normally distributed. The rank-sum test was used to test the null hypothesis that the distributions of average 

TRE for given methods of registration were equivalent with a significance level of α = 0.05 in the case of no added noise. 
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Fig. 4. Schematic of the proposed study. (A) For a given clinical case (n=5), surface 

data is aligned, scaled, and projected onto the intraoperative phantom CT surface with 

a randomly determined noise pattern and a prescribed magnitude of noise. (B) Rigid 

and nonrigid registration methods are applied, while quantifying subsurface TRE. (C) 

The simulated surface is then resampled and (D) registrations are recalculated. This 

process is repeated with 25 unique applications of noise per clinical case at each 

magnitude of noise – resulting in 125 samples of unique organ surface data driving 

registration at each noise level. The magnitude of noise is scaled from 0 to 10 mm at 

0.1 mm increments. 

Set noise magnitude (0-
10 mm at 0.1 mm steps) 

After 25 
iterations 



3. RESULTS 

An analysis of the impact of surface acquisition noise on the accuracy (as TRE) of surface based rigid and nonrigid 

registration methods is shown in Fig. 5. The magnitude of surface noise is presented along the x-axis, where 0 mm of noise 

represents surface points collected directly from the intraoperative phantom CT surface. The highlighted region between 

1.5-2.5 mm represents noise representative of clinical IGLS procedures as determined in section 2.1.4. For a given noise 

level and registration scenario, the graph represents the average case TRE resulting from the 125 surface simulations. 

Results indicate that: (1) regardless of input data or registration method, TRE increases as surface noise increases; (2) 

regardless of input data, nonrigid registration results in lower TRE than rigid registration; and (3) resampled data results 

in lower TRE for rigid registration at all levels of noise and for nonrigid registration when noise is below 6.5 mm. When 

considering the case of no noise: (1) for both raw and resampled data, nonrigid registration produced significantly lower 

TRE (p < .001); (2) rigid registration with resampled data (8.4 ± 0.0 mm) produced significantly lower TRE (p < .001) 

than rigid registration with raw data (10.7 ± 0.0 mm); (3) nonrigid registration with resampled data (5.3 ± 0.2 mm) produced 

significantly lower TRE (p < .001) than nonrigid registration with raw data (6.2 ± 0.3 mm). It is particularly striking to 

highlight the improvement provided by the nonrigid registration using resampled surface data in comparison to the 

procedural standard method of rigid registration with raw data.  

An analysis of the impact of surface acquisition noise on variation in the results of surface based rigid and nonrigid 

registration methods is shown in Fig. 6. Again, the magnitude of surface noise is presented along the x-axis and the range 

noise representative of clinical IGLS is highlighted in grey. For a given noise level and registration scenario, the graph 

represents the coefficient of variation (the ratio of standard deviation and mean) resulting from the 125 surface simulations. 

These results give insight into the underlying variation for a given registration scenario that results from differences in 

input data. These results indicate that: (1) there is much greater variation in nonrigid registration results than in rigid 

Fig. 5. A line plot of the average TRE over the 125 simulated cases 

at each level of noise. The x-axis represents the magnitude of noise 

added to the intraoperative data collection. Rigid registration 

results are presented in shades of red and nonrigid registration 

results are presented in shades of blue. Results from raw data and 

resampled data are presented as dark and bright respectively. The 

grey shaded region represents noise levels representative of 

clinical IGLS surface data collection. 
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registration results; (2) increased noise in surface data collection leads to increased variation, regardless of registration 

method; (3) in terms of rigid registration, resampling does not introduce a large degree of variation; and (4) in terms of 

nonrigid registration, resampling reduces variation.  

4. DISCUSSION 

To our knowledge, this study represents the most comprehensive analysis of the impact of intraoperative data quality 

on surface based registration methods for IGLS. The presented results represent the first effort to characterize the impact 

that clinically relevant noise in surface digitization has on surface based sparse data drive registration techniques using a 

unique human-to-phantom data framework. Furthermore, the proposed human-to-phantom data framework and clinically 

relevant noise model introduce a significant advancement towards the rapid, early stage validation of image-to-physical 

registration methods for hepatic surgical navigation. This framework provides a wealth of realistic data in a fully 

characterized phantom environment, avoiding the burden that would be required to collect such whole data clinically. 

Future work will strengthen the clinical accuracy of the validation framework by incorporating additional phantom shapes 

(derived from varying clinically acquired anatomy), applications of deformation, and sparse surface data patterns. Lastly, 

the results discussed below shed light on the significance of the nature and quality of sparse surface data collection in 

surgical navigation. 

The results presented herein (shown in Fig. 5, 6) indicate that noise in sparse surface data collection by manual 

swabbing influence the ability of IGLS registration methods to form accurate predictions of intraoperative anatomical 

locations. This observation is particularly noteworthy considering our experience in observing that surface data density, 

extent, pattern, and relative noise vary across patient presentation and physician utilization of the IGLS system. Fig. 5 and 
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Fig. 6. A line plot of the coefficient of variation over the 125 

simulated cases at each level of noise. The x-axis represents the 

magnitude of noise added to the intraoperative data collection. The 

y-axis represents the coefficient of variation, which is the ratio of 

the standard deviation and the mean. Rigid registration results are 

presented in shades of red and nonrigid registration results are 

presented in shades of blue. Results from raw data and resampled 

data are presented as dark and bright respectively. The grey shaded 

region represents noise levels representative of clinical IGLS 

surface data collection. 



6 demonstrate that, when considering the registration approaches evaluated in this study, increasing noise in data collection 

decreases accuracy and increases variation. When looking at Fig. 6, it is clear that higher variance is seen in the nonrigid 

registration approach in comparison to the rigid registration approach (for both raw and resampled data). This behavior 

makes it quite apparent that the nonrigid registration method is more sensitive to variations in surface data quality. That 

being said, the evaluated nonrigid registration method consistently provided better accuracy than rigid registration across 

all levels of noise. When considering noise representative of clinical collection (i.e. 1.5 mm) nonrigid registration provided 

an improvement in TRE of 41% and 37% for raw and resampled data respectively. Despite the larger percentage 

improvement observed in raw data when applying nonrigid registration, the magnitude of error resulting from resampling 

is significantly reduced as seen in Fig. 5. Results from our surface resampling technique show our ability to systematically 

improve accuracy and reduce variance of both registration methods evaluated in this study for all reasonable levels of 

noise. The resampling approach improved rigid and nonrigid registration TRE by 21% and 14% respectively at clinically 

representative noise (i.e. 1.5 mm). Particularly striking, resampling combined with nonrigid registration, at clinically 

representative noise levels, improved TRE by 50% when compared to the current commercial rigid registration approach. 

5. CONCLUSIONS 

This study represents an important advancement in understanding how the quality of input data influences the outcome 

of IGLS sparse data driven surface based registration. The work demonstrated that the accuracy and variance of current 

IGLS registration approaches are degraded by increasing clinically-realistic noise in surface data collection. Further, the 

study establishes that surface data resampling can be used to normalize data quality across collections and that it improves 

the accuracy and reproducibility of the reported IGLS registration methods. While further work is required to fully optimize 

the application of surface data resampling, these results present an advancement towards minimizing the impact of input 

data quality on surface based surgical navigation systems for the hepatic environment. 
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