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Abstract. Biomechanical breast models have been employed for applications in image registration and analysis, 
breast augmentation simulation, and for surgical and biopsy guidance. Accurate applications of stress-strain 
relationships of tissue within the breast can improve the accuracy of biomechanical models that attempt to simulate 
breast movements. Reported stiffness values for adipose, glandular, and cancerous tissue types vary greatly. Variations 
in reported stiffness properties are mainly due to differences in testing methodologies and assumptions, measurement 
errors, and natural inter patient differences in tissue elasticity. Therefore, patient specific, in vivo determination of 
breast tissue properties is ideal for these procedural applications. Many in vivo elastography methods are not 
quantitative and/or do not measure material properties under deformation conditions that are representative of the 
procedure being simulated in the model. In this study, we developed an elasticity estimation method that is performed 
using deformations representative of supine therapeutic procedures. Reconstruction of material properties was 
performed by iteratively fitting two anatomical images before and after tissue stimulation. The method proposed is 
work flow friendly, quantitative, and uses a non-contact, gravity-induced deformation source. We tested this material 
property optimization procedure in a healthy volunteer and in simulation. In simulation, we show that the algorithm 
can reconstruct properties with errors below 1% for adipose and 5.6% for glandular tissue regardless of the starting 
stiffness values used as initial guesses. In clinical data, reconstruction errors are higher (3.6% and 24.2%) due to 
increased noise in the system. In a clinical context, the elastography method was shown to be promising for use in 
biomechanical model assisted supine procedures.  
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1 Introduction 

Breast cancer imaging modalities include x-ray mammography, ultrasound, and magnetic 

resonance imaging (MRI). In each modality, unique patient positioning confounds the use of 

diagnostic images for surgical guidance. In x-ray mammography, the patient stands erect with the 

breasts compressed between two plates. During ultrasound exams, the patient is positioned supine 

with the ipsilateral arm placed above the patient’s head. MRI exams of the breast are typically 

performed with the patient lying prone with breasts pendant in the MRI coil chambers. During 

surgery, the patient is positioned supine with the ipsilateral arm placed perpendicular to the body. 
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Each modality has unique benefits for the screening, diagnosis, and staging of breast cancer. 

However, there is limited utility in the use of diagnostic images for localizing tumors during 

surgery. For breast conserving therapy (BCT), which consists of a lumpectomy (removal of tumor 

and small amount of surrounding healthy tissue) followed by radiation therapy, localization of the 

tumor during surgery can be difficult. Reoperations due to the presence of residual tumor after an 

initial resection average 20-40% [1]. Furthermore, ductal carcinoma in situ (DCIS) is associated 

with a 3-fold increase in reoperation rates when compared to invasive carcinomas [2]. DCIS 

lesions have diffuse growth patterns and ill-defined margins when compared to invasive breast 

cancers [3]. Furthermore, DCIS extensions into intraductal tissue can be difficult to determine. 

Due to the mainstream usage of screening mammography, an increasing number of patients are 

being diagnosed with DCIS and early stage cancers. Therefore, precise strategies to localize the 

non-palpable DCIS lesions are needed. While intraoperative ultrasound has been shown to reduce 

the need for re-excisions [4],  ultrasound cannot image most cases of ductal carcinoma in situ 

(DCIS) and is limited in detecting multifocal disease, bilateral breast cancers, and intraductal 

spread characteristics [5].  

While MRI is considered the most sensitive and accurate imaging modality in the context of breast 

cancer [6], [7], the limited specificity of MRI provides some areas of improvement. There is some 

evidence that preoperative MRI causes over treatment and is associated with an increase in the use 

of mastectomy, delay in treatment, and an increase in the number of additional biopsies [8]–[10]. 

Alternatively, several studies have disputed these claims arguing that MRI provides invaluable 

information regarding the extent of disease. In a recent prospective, randomized, multicenter study, 

a significant decrease in reoperation rates was reported between women who received a 

preoperative staging MRI vs. women who did not receive an MRI prior to lumpectomy [11]. Sung 
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et al. published a retrospective analysis that concluded that reoperation rates among BCT patients 

were lower for women who received a preoperative MRI [12]. Several other studies report positive 

findings for improved preoperative staging using MRI [11]–[14]. Overall, the argument 

surrounding the value of preoperative MRI remains somewhat unclear. However, it is generally 

agreed upon that MRI provides the most accurate delineation of the size and extent of cancer and 

offers the highest sensitivity for intraductal extension involved in breast cancers [15]–[17].   

Regardless, these diagnostic MR images are not particularly useful in the context of surgical 

planning and guidance. As previously discussed, preoperative MR images are acquired in the prone 

position with pendant breasts while surgery is performed with the patient lying supine. Several 

studies have reported significant displacements in breast tumors between the prone and supine 

positions on the order 18-60 mm [18]–[20]. These relatively large displacements render diagnostic 

images sub-optimal for use in surgical planning and navigation, which may contribute to studies 

finding little to no benefit of preoperative MRI for surgical use. Due to these realizations, several 

groups have investigated the use of preoperative MR images rendered in positions that more 

closely represent the surgical orientation. Prone-to-supine registration methods of MR images for 

use in guiding breast surgery have been developed [21], [22]. A more direct approach is to use MR 

images taken in the supine position to guide surgery. Supine breast imaging has been a topic of 

interest in several studies [23]–[25]. Furthermore, the use of supine breast MRI in the context of 

image guided breast surgery (IGBS) has been suggested in several frameworks [18], [26]–[28]. In 

the context of IGBS, preoperative supine breast images are registered to the physical space of the 

operating room to act as patient specific maps to assist surgeons in localizing discrete breast 

lesions. The patient specific aspect of these systems involves the creation of biomechanical 

computational models to correct for deformation that naturally occurs between the preoperative 
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image and surgical space breast geometries. In this study, we developed a method to further 

optimize the patient specific parameters of IGBS systems. In Figure 1, the basic steps for IGBS is 

shown. The process begins with preoperative imaging of the breast in the supine position. 

Anatomical and morphological images are obtained at this step. Pre-processing of these images 

include segmentation of the breast tissue into adipose, fibroglandular, chest wall muscle, and 

tumor. From here, a FEM model is created to simulate breast tissue deformation during the 

intraoperative registration step. In the Intraoperative Registration step, the surface of the breast is 

digitized by an optical tracking system and a biomechanically assisted nonrigid registration is 

performed to render the preoperative data into the physical space of the operating room. Once this 

registration is complete, a guidance display of the co-registered preoperative image data is used to 

localize tumors and map out surgical plans. The extra step we have added and that will be 

elaborated upon in this study is during the pre-processing step. Here, we estimate the material 

properties of the patient’s breast tissue to be incorporated into the biomechanical model for 

improved accuracy. In this study, we tested this material property optimization procedure in a 

healthy volunteer and in simulation.  

 

Figure 1 General framework for image-guided breast surgery. The process begins with preoperative imaging of the 
patient breast in the supine position. The Preoperative Imaging panel shows a representative MR volume rendering of 
a contrast-enhanced supine breast of a patient with breast cancer. The rendering shows a tumor with elevated image 
intensity and ring-shaped adhesive surface fiducials used during the Intraoperative Registration step. Pre-processing 
is performed after imaging, prior to surgery. At this step, patient specific stiffness properties are extracted to optimize 
the patient specific model. Intraoperative Registration is performed to transform the preoperative image and patient 
specific model into surgical space. Finally, the Guidance Display is used by the surgical team to localize tumors. 
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2 Methods 

2.1 Overview of Stiffness Estimation Method 

Optimization of patient specific breast tissue stiffness beings with acquisition of two gravity-

loaded supine breast MR images. The baseline image is acquired with the patient lying supine 

with the ipsilateral arm placed above her head. Gravity excitation is produced by placing a foam 

wedge posterior to the breast being imaged. This causes a rotation about the longitudinal axis of 

the body which results in tissue deformation due to a change in tissue weight distributions with 

respect to gravity. From the gravity-excited image, an FEM model is created. In this framework, 

the chest wall is assumed to be a reliably rigid structure and is used to align the baseline and 

gravity-excited images. The chest wall in each image is segmented and a rigid registration is 

performed by maximizing the image similarity between the chest walls in each space. The 

transformation matrix yielded by this chest wall registration is used to transform the baseline 

image into the gravity-excited space. Now, the chest walls in each space are aligned and the 

resulting misalignment of the breast tissue is due to the nonrigid deformation caused by 

differences in gravitational loading. Also from the chest wall alignment, the differences in 

gravitational loading are quantified by using the rotational component of the transformation 

matrix to calculate the relative change in the acting gravity direction. The rotated gravity vector 

is applied as a body force of tissue weight in the biomechanical model. A biomechanical model 

is then solved to obtain a displacement field. The displacement field is interpolated onto the 

gravity-excited image to create a model-deformed image. Material properties are iteratively 

updated until the model-deformed image matches the chest wall-aligned baseline image. A visual 

representation of this process is shown in Figure 2.  
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Figure 2 Overview of the process to optimize patient specific material properties. The algorithm estimates tissue 
elasticity by fitting two acquired anatomical images by minimizing a similarity metric between an experimentally 
acquired image and a model deformed image.  
 
 

2.2 Image Acquisition and Biomechanical Model 

In an IRB approved study, a 21-year-old healthy female volunteer was enrolled to participate in 

this study. A baseline and gravity excited image was acquired in a Philips 3T Achieva MR scanner 

using a SENSE XL Torso Coil (Philips Healthcare, Best, Netherlands) with the following 

parameters: T1-weighted, 3D turbo field echo sequence with fat suppression, a field of view of 200 

mm × 200 mm × 160 mm, reconstructed voxel size of 0.391 mm × 0.391 mm × 1 mm, TR/TE = 

7.422 ms / 3.91 ms, and flip angle = 20 degrees using SENSE parallel imaging (acceleration 

factor=2).  

A FEM tetrahedral mesh was created from the gravity excited image (edge length = 3 mm). The 

difference in gravitational loading was approximated by calculating a gravity vector: grotated = 

gunrotated − R ∗ gunrotated, where gunrotated was assumed to be unit vector normal to the MR table and 
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R is the rotation matrix generated from the rigid chest wall alignment registration. A body force 

of tissue weight, [9.8m/s2 × grotated × ρ], was applied in a biomechanical model that assumes 

isotropic and Hookean linear elastic behavior. Tissue density, ρ, was estimated as 1000 kg/m3. 

Nodal positions corresponding to the chest wall were prescribed a fixed Dirichlet boundary 

condition with the assumption that the chest wall remains static between the two configurations. 

Using these parameters, a forward biomechanical model with an FEM corrotational formulation 

[29] is solved to obtain a displacement field. The displacement field is used to deformed the 

gravity-excited image. An optimization procedure iteratively updates the stiffness properties of the 

breast tissue until the model-deformed image matches the baseline image. Optimization of the 

stiffness parameters were performed using a trust-region-reflective least squares algorithm [30] 

implemented using the MATLAB R2015 (The Mathworks Inc., Natick, MA) lsqnonlin function. 

2.4 Simulation Study 

A simulation study was performed to assess the performance of the method with minimal noise 

contributions and to determine a representative true form of the objective function using similar 

clinical parameters. Model parameters were selected to form a representative simulated clinical 

dataset. These parameters include: 500 and 2000 kPa for the stiffness of adipose and glandular 

tissue, respectively, a Poisson’s ratio of 0.45, tissue density of 1000 kg/m3, and a rotation relative 

to the initial direction of gravity (grotated) of 15 degrees. Using these parameters, a forward model 

was solved and the resulting displacement field was interpolated onto the baseline image to create 

a simulated gravity-excited image. Figure 3 shows representative baseline and simulation images 

and the corresponding deformation that drives the stiffness estimation procedure.  
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Figure 3 Representative images used in simulation study. The top row contains axial, sagittal, and coronal views of a 
baseline image. The middle row shows the same three orthogonal slices of the simulated gravity-induced configuration 
image. The third row (overlay 1) displays the simulated gravity-induced image as a red mask and baseline image as a 
gray mask. The fourth row (overlay 2) displays the simulated gravity-induced configuration and model deformed 
image using optimized reconstructed properties. Overlay 1 demonstrates the type of deformation yielded from the 
gravity induced excitation used in this method. 
 

2.5 Parameter Sweep 

To observe material property optimization performance, a parameter sweep was first performed 

on a moderate search space to obtain an objective function map. The objective function was 

calculated based on an image similarity metric, S=1-CC, where CC is the image correlation 
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coefficient. The correlation coefficient takes a value of 1 if the two images are the same and a 

value of zero if the two images are completely uncorrelated. The root mean squared (RMS) nodal 

displacement error was also calculated during the simulation parameter sweep. The RMS nodal 

displacement errors were not available during the in vivo human subject parameter sweep because 

the known correspondence of tissue features is ambiguous.  The search space for the parameter 

sweeps was 100-800 Pa for adipose tissue and 1000-4000 Pa for glandular tissue. The step size for 

each tissue type was 50 Pa.  

2.6 Optimization and Sensitivity to Initial Guess 

After the parameter sweep was performed, an estimation of the true minimum was obtained. The 

sensitivity of the material property optimization to initial guess was then studied using a range of 

initial guesses for the optimization procedure. The initial guesses were distributed around the 

minimum obtained during the parameter sweep of the human subject data and the ground truth 

values for the simulation data.   

 

3 Results 

3.1 Parameter Sweep 

The parameter sweep in the human study yielded a minimum at 350 Pa (adipose) and 1650 Pa 

(glandular). The similarity metrics (objective function) maps were of similar shape for the 

simulation study and the clinical data. The nodal displacement error map, shown in Figure 4, also 

shows an elongated minimum in the glandular direction. This shallow gradient in the glandular 

direction contributes to errors in the optimization step.  
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Figure 4 RMS nodal displacement errors for simulation parameter sweep. The x-axis contains the range of stiffness 
values sampled for adipose tissue. The y-axis is the range of stiffness values sampled for glandular tissue. The contour 
levels represent the nodal displacement error at that adipose-glandular combination. The contour map also shows the 
0.4 mm and 0.8 mm contour levels which roughly corresponds to the half and full voxel sizes of the image volumes 
used in this study. The diamond shows the location of the minimum displacement error (i.e. the true properties) 

3.2 Optimization and Sensitivity to Initial Guess 

The average percent error for the simulation data was 0.9% for adipose tissue and 5.6% for 

glandular tissue. The average percent error for the clinical data was 3.6% for adipose tissue and 

24.2% for glandular tissue. The percent error for adipose tissue was significantly lower than the 

percent error for glandular tissue. The reason for this can be seen in the objective function map 

where contours in the glandular direction were shallow when compared to the steep gradients in 

the adipose directions. Starting values of glandular tissue had the most influence on the 

optimization results, with lower starting values for glandular tissue resulting in the optimization 

landing on a local minimum.  In simulation, reconstructed stiffness properties converged at the 

global minimum despite initial guess. In clinical data, noise is introduced into the system, resulting 

in convergence of material properties into local minimums.  
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Figure 5 Parameter sweep and optimization results from simulation data (a) and clinical data (b).  Image similarity 
objective function maps are shown for (a) simulation data and (b) clinical data. The grayscale contour levels 
represent the image similarity error at each adipose-glandular combination sampled in the parameter sweep. Plots of 
optimization results are overlaid onto the image similarity maps. Each colored line represents an optimization run 
with different starting values for adipose and glandular tissue. Circles indicate starting points while asterisks indicate 
optimization minimums.  
 

4 Discussion 

We developed a framework to optimize material properties of breast tissue in an effort to 

incorporate patient specific parameters for an image guided breast surgery system. In simulation, 

we show that the algorithm can reconstruct properties with errors below 1% for adipose and 5.6% 

for glandular tissue regardless of the starting stiffness values used as initial guesses. In clinical 

data, reconstruction errors are higher (3.6% and 24.2%) due to increased noise in the system. These 

errors are within an acceptable range as they introduce to less than 0.4 mm errors into the system. 

This can be seen from Figure 4 where displacement errors between 1500 to 2500 Pa for glandular 

( +/- 25% of true glandular value) and 480 and 520 Pa for adipose (+/- 4% of true values) lie below 

the 0.4 mm contour level.  The behavior we see is intriguing and questions remain.  For example, 

in patients with higher glandular content, does the concentricity and sharpness of the functional 

space change dramatically?  Or with gravity-based excitation, are there limitations that prevent 

reconstruction or for that matter, enhance reconstruction?  These types of question will be looked 
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at in the future.  Nevertheless, this work provides encouragement to pursue the testing of this 

framework in a larger human study and provides a step forward in the patient specific models 

created to improve tumor localization for breast cancer surgeries.  
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