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ABSTRACT  

The quality of brain tumor resection surgery is dependent on the spatial agreement between preoperative image and 
intraoperative anatomy. However, brain shift compromises the aforementioned alignment. Currently, the clinical standard 
to monitor brain shift is intraoperative magnetic resonance (iMR). While iMR provides better understanding of brain shift, 
its cost and encumbrance is a consideration for medical centers. Hence, we are developing a model-based method that can 
be a complementary technology to address brain shift in standard resections, with resource-intensive cases as referrals for 
iMR facilities. Our strategy constructs a deformation ‘atlas’ containing potential deformation solutions derived from a 
biomechanical model that account for variables such as cerebrospinal fluid drainage and mannitol effects. Volumetric 
deformation is estimated with an inverse approach that determines the optimal combinatory ‘atlas’ solution fit to best 
match measured surface deformation. Accordingly, preoperative image is updated based on the computed deformation 
field. This study is the latest development to validate our methodology with iMR. Briefly, preoperative and intraoperative 
MR images of 2 patients were acquired. Homologous surface points were selected on preoperative and intraoperative scans 
as measurement of surface deformation and used to drive the inverse problem. To assess the model accuracy, subsurface 
shift of targets between preoperative and intraoperative states was measured and compared to model prediction. 
Considering subsurface shift above 3 mm, the proposed strategy provides an average shift correction of 59% across 2 
cases. While further improvements in both the model and ability to validate with iMR are desired, the results reported are 
encouraging.  
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1. INTRODUCTION  
Critical to the success of image guided neurosurgery (IGNS) is the ability to accurately locate surgical tools in the context 
of preoperative imaging data. The quality of brain tumor resection procedures has greatly benefited from the evolution of 
IGNS over the years. More specifically, IGNS technology has been leveraged by surgeons to better localize tumor regions, 
assess tumor margins, plan surgical approaches, and navigate the surgical field in real-time. However, soft tissue 
deformation during neurosurgery, also known as brain shift, can significantly jeopardize the quality of IGNS by creating 
a misalignment between the preoperative imaging data and the intraoperative brain anatomy of the patient. Studies have 
shown cortical surface deformation up to 24 mm, and subsurface deformation ranging between 3 and 7 mm during surgery 
is quite common 1-4.  

To address brain shift, several approaches have been proposed. One method is direct intraoperative imaging, namely 
ultrasonography (US), computed tomography (CT), and magnetic resonance (MR). Intraoperative US and CT, though 
powerful, do have limitations with respect to soft tissue contrast and workflow usage; also, in the case of iCT, radiation 
exposure is a concern 3-6.  With respect to adopted technologies, currently the only widely adopted solution for monitoring 
brain shift has been iMR 6. The impact of iMR is shown in Nimsky et al., which reports that in 55 of 200 cases (27.5%), 



 
 

 
 

the usage of iMR aided in modifying surgical strategy (e.g. further resection when residual tumor was revealed on iMR) 
in a variety of procedures 7. Similarly, a wider review by Maurer et al. reports that the need for iMR-enhanced brain tumor 
resection was found in approximately 30% of cases 8. Both studies suggest that the cost-to-benefit ratio of iMR needs to 
be considered, and provide impetus for complementary technologies such as model-based approaches for brain shift.  

Going further, the essence of most computational modeling approaches that have minimal encumbrance is the desire 
to drive such platforms with sparse intraoperative information and to use some form of biomechanical model built on 
preoperative patient-specific data.  The exact instrumentation make-up or even the selection of constituitive model is a 
subject of intense interest within the literature 9. While the research in modeling brain shift continues to evolve, one of the 
greatest challenges facing these approaches that is not often discussed is the difficulties associated with validation. A 
number of studies have employed different validation designs. A common approach is to use realistic phantoms that 
attempt to recreate surgical deformations such as in Reinertsen et al. and DeLorenzo et al. 10, 11. While phantom validation 
study is a viable first step to simulate a more controlled environment where factors can be easily manipulated to gauge 
correction performance, a full validation requires the examination of model behavior within the clinical environment. 
Another validation approach is to compare the model prediction with postoperative MR image volumes. In Dumpuri et 
al., subsurface landmarks among preoperative, postoperative and model updated MR images were used as measurements 
of subsurface deformation—a comparison between the measured deformation and model predicted deformation provides 
an assessment of the model’s ability to recover intraoperative brain shift 12. Though the use of postoperative imaging data 
provides a better evaluation of the model-based approach in patient data, the natural recovery of brain shift over time casts 
some uncertainty in the conclusions drawn from such studies 1, 12.   

Ideally one would want to validate the model with intraoperatively sampled data. One study by Simpson et al. 
attempted to swab the tumor resection cavity immediately following resection, and then register the cavity to the 
preoperative MR both with and without model-based correction 13.  The results demonstrated improvement in all cases, 
with 6 of the 8 cases having an average correction ranging from 63% to 77% 13.  

Another common approach is to use iMR data as a source of comparison. A few groups have attempted to validate 
their model-based methods via iMR. Skrinjar et al. is an early effort to validate a model-based brain shift correction 
algorithm with iMR in two patient cases by identifying 14 landmarks in each case 14. More recently, Zhang et al. used iMR 
to examine their linear elastic model-based method with 25 landmarks in five patients 15. Other groups, such as Joldes et 
al. and Vigneron et al., have similarly used iMR to validate their model-based approach; however, they have chosen to 
avoid using landmarks for validation, noting potential subjective errors in landmark designations, and have used other 
measurements such as modified Hausdorff distance as a metric of model accuracy assessment 16, 17. In this study, we are 
reporting our validation experience in two patient cases with iMR, as the latest development in the ongoing validation 
effort of our deformation atlas based approach.  

 

2. METHODOLOGY 
2.1 Overview   

This preliminary validation study has 4 stages: (1) generation of a patient-specific finite element mesh; (2) generation of 
a deformation atlas; (3) deformation correction, or model prediction of volumetric deformation; (4) quantitative assessment 
of the model performance in recovering intraoperative brain shift. For this study, preoperative and intraoperative MR 
images of two patients were acquired via Siemens 3T scanners at Brigham and Women's Hospital (Boston, MA). For each 
patient, the approximated craniotomy size and location were provided as well. Both patients provided written consent prior 
to imaging for this Brigham and Women’s Hospital Institutional Review Board approved study.  

 

2.2 Mesh Generation 

The brain volume and tumor volume were manually segmented from the preoperative MR image volume of the patient 
using ITK-Snap 18. The segmented brain was used to extract a surface via a marching cubes algorithm followed by a 
surface smoothing step. A custom-built mesh generator was then used to produce a volumetric tetrahedral mesh. For the 
two cases considered, the average size of the mesh was approximately 80,000 linear tetrahedral elements and 
approximately 17,000 nodes.   



 
 

 
 

Furthermore, the patient brain image volume was rigidly registered to an atlas brain volume that has been expertly 
segmented via an in-house implementation of normalized mutual information, followed by a non-rigid registration using 
the adaptive bases algorithm 19. The rigid and non-rigid registrations were applied to critical structures segmented from 
the atlas brain volume, including the falx cerebri, brain stem, and tentorium cerebelli, mapping them to patient space for 
patient specificity. Before proceeding to atlas generation, a visual inspection is performed using Paraview to verify the 
locations of the brain mesh, tumor (in red), craniotomy (in blue), critical structures such as falx, tentorium, and brain stem, 
shown in Figure 1 20.  

 
Figure 1. Mesh of a patient specific brain, with tumor (red) and craniotomy nodes (blue) included. Atlas falx, tentorium and 
brain stem are registered to the patient space by applying rigid and non-rigid registrations.  

 

2.3 Atlas Generation  

Following the generation of the patient-specific mesh, displacement and pressure boundary conditions were prescribed in 
accordance with our previous publications 1, 12, 21-23. Briefly, for displacement boundary conditions, the brain stem area 
was given fixed Dirichlet conditions with no displacement; the region of the head that experiences the highest elevation, 
defined as above an empirically determined plane, was assigned stress free, which permits movement away from the 
cranial wall; the falx and tentorium were designated with slip condition, i.e. movement tangent to the dural septa is 
permitted, yet movement in the direction normal or through the septa is prohibited. The remaining brain surface is also 
modeled with a slip condition. As for pressure boundary conditions, nodes above the CSF drainage level were assumed to 
be constant at atmospheric pressure, while nodes below the CSF level were not permitted to allow drainage, i.e. no flux.  

Our deformation atlas-based approach simulates three types of brain shift, namely gravity-induced, mannitol-induced 
and swelling-induced shifts. For gravity-induced shift, 3 different empirically determined CSF levels were modeled and 
were considered with and without the tumor in the mesh, yielding 6 potential configurations at a given head orientation. 
For mannitol-induced shift, 3 different empirically determined permeability conditions were considered with and without 
the tumor in the mesh, producing 6 possible configurations at a given head orientation. To accommodate for potential 
deviation from the preoperative approximation of the head orientation, 60 probable head orientations were considered, 
covering ± 20º from the preoperative estimation. Thus, 360 sets of boundary conditions were simulated for gravity-induced 
shift and similarly 360 sets were modeled for mannitol-induced shift, totaling 720 potential surgical presentations. Lastly, 
3 different vascular-based solutions were simulated for swelling-induced shift; to adjust for potential deviation from 
preoperative approximation of the craniotomy size, 3 different craniotomy sizes (75%, 100% and 125% of the size of the 
planned craniotomy) were considered, resulting in 9 additional sets of boundary conditions. Moreover, in swelling-induced 
shift, the craniotomy region was also designated as stress free. The material properties used in describing the boundary 
conditions may be found in Sun et al. 1. In summary, a total of 729 unique boundary conditions were generated that 
represent an exhaustive distribution of potential intraoperative brain shift.  



 
 

 
 

For each boundary condition set, a full volumetric deformation solution was estimated by solving the partial 
differential equations associated with a biphasic biomechanical model, which is based on Biot’s theory of soil 
consolidation and has been extensively documented in our previous works 1, 23-25.  The resolution of the partial differential 
equations is done through the Galerkin Method of Weighted Residuals expressed on linear three dimensional basis 
functions associated with tetrahedral finite elements 26.  Temporal integration is handled by a fully implicit time stepping 
scheme 26.  The matrix storage and solution libraries were provided by the Portable, Extensible Toolkit for Scientific 
Computation (PETSc) 27. The output of this stage is the generation of the deformation atlas containing 729 potential 
intraoperative brain deformation solutions.  

 

2.4 Deformation Correction  

Patient iMR imaging data were rigidly registered to the preoperative imaging data via normalized mutual information. 
Homologous cortical surface points were selected to provide measurements of surface deformation using 3D Slicer and 
Analyze 9.0 (AnalyzeDirect, Overland Park, KS) 28. A pair of such homologous surface points is illustrated in Figure 2, 
where Figure 2(I) shows a surface feature point on the preoperative MR scan, and Figure 2(II) demonstrates the 
corresponding surface point selected on the registered intraoperative image.  

 
Figure 2. Homologous surface point selection example: (I) a surface point on the preoperative MR image; (II) the 
corresponding surface point selected on the registered intraoperative MR image.  

The surface points were selected near the planned craniotomy, as the exposed cortical surface would be the only source of 
intraoperative surface information available during a surgery. Once homologous surface points were established, the 
surface displacement between the preoperative and intraoperative states was computed. This surface deformation was then 
used to drive the inverse problem, whose objective is to minimize the least squared errors between the measured surface 
deformation and the predicted deformation that is a combinatory fit drawn from the deformation atlas, or in equation form: 

 min Mw-u 2 � wi	≥	0 and wi	≤	1m
i=1      (1) 

where M is the subsampled deformation atlas obtained in Section 2.3 (specifically, M consists of solutions across the atlas 
but only at the nodes where corresponding measurements are made), u is the surface deformation measured by the selection 
of homologous surface points above, and w is the weighted coefficients. The additional constraints placed on w in Equation 
(1) prevents extrapolation and ensures reasonable model prediction of deformation 1. Once the optimal combination was 
determined, the full volumetric displacement prediction was used to update the preoperative MR image. A computer with 
Intel Core i7-4790 CPU @ 3.60GHz with 8 GB of RAM was used to complete the deformation correction process for the 
two cases investigated.  

 

2.5 Model Performance Assessment—Validation  

To evaluate the model’s ability to recover intraoperative brain shift, subsurface targets near the tumor region, which are 
of significant interest to the surgeons, were examined. Similar to Section 2.4, homologous subsurface points were selected 
using 3D Slicer and Analyze 9.0 (AnalyzeDirect, Overland Park, KS), shown in Figure 3, where Figure 3(I) shows a 



 
 

 
 

subsurface landmark on the preoperative image, and Figure 3(II) illustrates the corresponding feature on the intraoperative 
image 28.  

 
Figure 3. Homologous subsurface point selection example: (I) a subsurface landmark on the preoperative MR image; (II) the 
corresponding subsurface feature selected on the registered intraoperative MR image.  

The selections of homologous subsurface points provide a measurement of subsurface deformation near the tumor region. 
Additionally, using the volumetric deformation solution obtained in Section 2.4, the selected subsurface targets on the 
preoperative image were mapped onto the model updated image. The transformed points were used to compute the 
magnitude and direction of the predicted shift. Then the model predicted shift was compared to the measured shift to 
quantify the accuracy of model correction. In equations:  

 dactual = xi	– xp,  yi	– yp,  zi	– zp    (2) 

 dactual  = xi	– xp
2
 +	 yi	– yp

2
 +		(zi	– zp)2   (3) 

 

 dpredicted = xm	– xp,  ym	– yp,  zm	– zp    (4) 

 dpredicted  = xm – xp
2
 + ym – yp

2
 + (zm – zp)2   (5) 

where d is displacement, subscript i indicates intraoperative space, p presents preoperative space, and m represents the 
model space after the preoperative image is updated. The residual error of the deformation correction, e, is computed by 
comparing the results from Equations (2) – (5), and is defined as:  

 e = dpredicted	– dactual = xm	– xi,  ym	– yi,  zm	– zi    (6) 

 

 e  = xm	– xi
2 + ym	– yi

2
 + (zm	– zi)

2   (7) 

The overall percent correction, which reflects the accuracy of the brain shift compensation strategy, is defined as:  

 Percent correction = 1 – e

dactual
   (8) 

 

 



 
 

 
 

3. RESULTS 
Two patients were analyzed in this preliminary validation study. A total of 48 subsurface landmarks were selected in two 
cases for validation, and the direction and magnitude of the subsurface shift were obtained by homologous subsurface 
point selections described in Section 2.5. The subsurface shift is stratified into 3 subgroups—low shift defined as below 3 
mm, moderate shift between 3 and 6 mm, and high shift above 6 mm. This stratification scheme is similar to the work of 
Bucholz et al. and is slightly modified to ensure relatively similar sample sizes in the subgroups 29. Here we consider the 
model performance in moderate and high shift groups; the exclusion of low shift will be discussed in Section 4. Of the 48 
subsurface targets selected, 39 resulted in subsurface deformations exceeding 3 mm—25 targets in the moderate shift 
group and 14 in the high shift group. Overall, average subsurface shift above 3 mm (moderate and high shift) across two 
cases is 5.5 ± 1.5 mm, and details of the subsurface shift in each case as well as in each subgroup are shown in Table 1.  

Table 1. Subsurface shift in two cases analyzed, stratified into 3 subgroups: moderate shift (3 -6 mm), high shift (above 6 
mm) and all shifts above 3 mm. The number of points in a particular subgroup is shown in parentheses.  

Patient ID 
Moderate Shift  

3 - 6 mm 
(mm) 

High Shift  
> 6 mm 
(mm) 

Above 3 mm 
(mm) 

1 4.6 +/- 0.5 (10) 7.7 +/- 1.2 (3) 5.3 +/- 1.5 (13) 

2 4.6 +/- 1.0 (15) 6.9 +/- 1.0 (11) 5.6 +/- 1.5 (26) 

Combine 4.6 +/- 0.8 (25) 7.1 +/- 1.1 (14) 5.5 +/- 1.5 (39) 

 

Figure 4 illustrates the result of the deformation correction described in Section 2.4 on one of the patient-specific brain 
meshes.  

 
Figure 4. A deformed brain mesh. White semi-transparent mesh is generated from patient preoperative MR image, and the 
blue mesh is deformed based on the optimal solution of the inverse problem drawn from the deformation atlas.  

To evaluate the performance of our brain shift correction algorithm, two quantitative measurements are assessed for 
subsurface targets: the residual error after the correction in Equation (7) and percent correction described in Equation (8). 
Overall, the residual error across two cases for moderate and high shift is 2.2 ± 1.2 mm; specifically, the residual error for 
moderate shift (3 – 6 mm) is 2.3 ± 1.4 mm, and the residual error for high shift (above 6 mm) is 2.2 ± 1.0 mm. Details of 
the residual error, compare to the measured subsurface deformation, can be found in Table 2.  



 
 

 
 

Table 2. Residual error, described in Equation (7), in two cases analyzed, stratified into 3 subgroups: moderate shift (3 -6 
mm), high shift (above 6 mm) and all shifts above 3 mm. The number of points in a particular subgroup is shown in 
parentheses.  

 Moderate Shift (3 – 6 mm) High Shift (> 6 mm) Above 3 mm 

Patient ID 
Average  

Shift 
(mm) 

Residual Error 
(mm) 

Average  
Shift 
(mm) 

Residual Error 
(mm) 

Average  
Shift 
(mm) 

Residual Error 
(mm) 

1 4.6 1.9 +/- 1.1 (10) 7.7 2.6 +/- 1.4 (3) 5.3 2.1 +/- 1.2 (13) 

2 4.6 2.5 +/- 1.5 (15) 6.9 2.1 +/- 1.0 (11) 5.6 2.3 +/- 1.3 (26) 

Combine 4.6 2.3 +/- 1.4 (25) 7.1 2.2 +/- 1.0 (14) 5.5 2.2 +/- 1.2 (39) 

 

The percent correction relates residual error to the measured subsurface deformation, and is the second measurement used 
to gauge the model performance in recovering intraoperative brain shift. For two cases analyzed, the overall percent 
correction, described in Equation (8), is 59.0% ± 27.7% for moderate and high shift. Specifically, the percent correction 
for moderate shift (between 3 and 6 mm) is 50.8% ± 31.3% and is 68.5% ± 13.0% for high shift (above 6 mm). The model 
performance in compensating brain shift across two cases is illustrated in Figure 5.  

 
Figure 5. Assessment of shift correction accuracy in two cases. Evaluations, in terms of percent correction expressed in 
Equation (8), are performed in subgroups of moderate shift, high shift, and all shifts above 3 mm.  

The detailed breakdown of model performance, evaluated by percent correction, which is defined in Equation (8), in 
each case is shown in Table 3.  

  



 
 

 
 

Table 3. Percent correction, described in Equation (8), in two cases analyzed, stratified into 3 subgroups: moderate shift (3 -
6 mm), high shift (above 6 mm) and all shifts above 3 mm. The number of points in a particular subgroup is shown in 
parentheses.  

Patient ID Moderate Shift  
(3 - 6 mm) 

High Shift  
(> 6 mm) Above 3 mm 

1 58.6 +/- 29.1 (10) 66.7 +/- 11.9 (3) 61.3 +/- 26.1 (13) 

2 45.5 +/- 32.8 (15) 69.0 +/- 13.8 (11) 57.9 +/- 28.9 (26) 

Combine 50.8 +/- 31.3 (25) 68.5 +/- 13.0 (14) 59.0 +/- 27.7 (39) 

 

A paired Student’s t-test of the measured subsurface deformation prior to model correction and the residual error after 
model correction yields a p-value less than 0.001, indicating the differences resulting from the model correction are 
statistically significant.  

 

4. DISCUSSION 
The results of this preliminary validation indicate that the developed deformation atlas based modeling approach to 
compensate for intraoperative brain shift has the potential to become a complementary technology to iMR in addressing 
brain shift in neurosurgery. When considering moderate and high shift in two patient cases, the brain shift correction 
algorithm is able to reduce subsurface deformation from 5.5 mm to 2.2 mm, representing an approximately 59% brain shift 
recovery. The model performs slightly better in the high shift range, as the average percent correction is greater yet the 
standard deviation is smaller for high shift targets. Although promising, our experience with these two patients suggests a 
need for improvements in both our brain shift correction algorithm and our validation study design.   

There are several aspects of the validation study design that can be improved. Firstly, the manual designation of 
homologous points can introduce subjective human errors to the validation results, particularly in finding corresponding 
features on the intraoperative image volume. For surface homologous point selection, this uncertainty in selecting the 
corresponding point on the intraoperative scan directly impacts the model prediction, as the surface deformation is the 
driving force of the inverse approach depicted in Section 2.4. For subsurface homologous point selection, the 
aforementioned uncertainty can similarly impact the validation outcome, as percent correction calculation in Equation (8) 
depends on the measured subsurface deformation.  Going further, in the two patient cases analyzed herein, the voxel 
spacing of the preoperative MR image volume was 0.4688 × 0.4688 × 1.4 mm for Patient 1, and 0.9766 × 0.9766 × 1 mm 
for Patient 2. At the very least, partial volume effects in the selection of features would lead to error in corresponding 
landmark identification (surface and subsurface), and based on the voxel size could easily contribute error on the order of 
1 mm, which leaves low shift targets particularly vulnerable. For future validation, it is necessary to carry out a study to 
investigate the uncertainty in selecting homologous points on intraoperative images and thus gauge the window of potential 
error introduced by the manual point designation process.  

To alleviate the concerns of human errors in designating homologous surface points, future validation studies should 
also employ more active and real-time monitoring of intraoperative surface deformation during surgery, such as the 
deployment of laser range scanner (LRS), stereovision, or optical tracking during surgery. LRS, stereovision, or optical 
tracking can provide a more continuous and accurate assessment of surface deformation. The utilization of LRS and 
stereovision to measure cortical surface deformation has been an active research project in our laboratory and will be a 
natural incorporation in our future validation effort 30-33.  

Moreover, although we have taken precaution in ensuring the quality of rigid registration of the intraoperative MR 
image volume to the preoperative space—the preoperative image volume and the registered intraoperative image volume 
were fused and compared in Analyze 9.0 (AnalyzeDirect, Overland Park, KS), and the alignment of the structures that 
typically experience little deformation (e.g. orbits and brain stem) was examined—we should note that small errors in the 



 
 

 
 

initial registration can have impacts on the surface and subsurface deformation measurements. A registration sensitivity 
study needs to be carried out to fully understand the propagation of registration uncertainty toward the model accuracy in 
compensating for intraoperative brains shift.  

Lastly, as a preliminary step toward a more comprehensive validation study, the sample size of this study is limited 
and a greater sample size—both in the number of patients and the number of subsurface landmarks examined—will provide 
further confidence in our model-based approach. Similarly, additional data will allow for the further refinement of 
correction algorithms as well as for determining other aspects that influence shift, e.g. the need for heterogeneity and 
anisotropy in normal and cancerous brain tissue.   

With the errors and limitations expressed above in mind, we observe that the model performance experienced 
significant variability and inconsistency in the low shift range (less than 3 mm). Without fully assessing the aforementioned 
errors, the conclusion drawn regarding the low shift correction ability of our model is unconvincing. However, we should 
note that this should not be interpreted as that our model-based approach being incapable of recovering low shift 
deformation but rather as a likely failure of obtaining high fidelity measurements to drive the correction approach. A future 
validation with more salient subsurface targets, and with a better understanding of the impact of the aforementioned errors 
on the model solution, can better address our model’s performance in the low shift range.  

 

5. CONCLUSION 
A preliminary validation study of two patients is conducted to examine a deformation atlas based modeling approach to 
address brain shift in neurosurgery with the current clinical standard, iMR. The results of this study are promising: the 
developed brain shift correction strategy, based on a biomechanical biphasic model, reduces the subsurface brain shift 
from 5.5 mm to 2.2 mm, which translates to an approximately 59% brain shift recovery when considering moderate and 
high shift above 3 mm. The preliminary validation results demonstrate the viability of using a model-based approach to 
compensate for intraoperative brain shift without significantly disrupting the existing clinical workflow. Future work will 
involve a study of larger sample size, improvements in validation study design, such as employing active and real-time 
monitoring of intraoperative surface deformation, and investigate the impact of various errors on the model solution, as 
well as refinement on the existing correction algorithm.  
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