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ABSTRACT  

Over the last 25 years, the number of papers written that involve image guidance, liver, and registration has, on average, 
doubled every 6-8 years.  While image guidance has a long history within the neurosurgical theatre, it’s translation to other 
soft-tissue organs such as the liver has been slower given the inherent difficulty in image-to-physical registration. More 
specifically, deformations have been recognized to compromise image guidance fidelity in virtually all soft-tissue image 
guidance applications.  As a result, an active area of investigation is the development of sparse-data-driven nonrigid image-
to-physical liver registration techniques to compensate for deformation and provide accurate localization for image guided 
liver surgery.  In this work we have leveraged our extensive human-to-phantom registration testing framework based on 
the work in [1] and Amazon Web Services to create a sparse data challenge for the image guided liver surgery community 
(https://sparsedatachallenge.org/).  Our sparse data challenge will allow research groups from across the world to 
extensively test their approaches on common data and have quantitative accuracy measurements provided for assessment 
of fidelity.  Welcome to the Sparse Data Challenge for image-to-physical liver registration assessment.  
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1. INTRODUCTION  

1.1 Background 

In recent years, the resolve to move image guided techniques within the abdomen has accelerated.  With the most recent 
advances in navigational safety, resection indications have expanded to patients with more advanced disease.  Wedge 
resections, resection of multiple segments, resection combined with ablation, and two-stage resection are being performed 
with greater frequency [2, 3].  In addition, this has spurred advances in surgical delivery and is expanding indications for 
less invasive conventional and robot-assisted laparoscopic liver surgery [4], both of which are associated with less blood 
loss, lower morbidity, less complications, shorter length of stay, and lower cost [5].  As a consequence, re-operations are 
becoming less difficult (e.g. laparoscopic re-hepatectomy [6]), thus remarkably enabling less invasive surgery to become 
a neoadjuvant treatment for those awaiting transplant [7].  In addition, when considering the expanding adjuvant role of 
locoregional therapies (e.g. thermal ablation or irreversible electroporation) [8], truly dynamic treatment options are 
emerging for liver surgical therapy.   

Central to this translation is the registration of the wealth of preoperative imaging information to the physical space 
associated with the patient.  Within the domain of open and laparoscopic surgery, the primary tools of localization have 
been associated with three dimensional digitizers (e.g. optical tracking, electromagnetic digitizers, etc), computer vision 
based systems (e.g. laser range scanning, stereo pair cameras, etc), and intraoperative imaging (primarily ultrasound, and 
to a lesser degree cone-beam computed tomography).  As a result of the more constrained surgical environment, image-
to-physical registrations are usually accomplished with an organ-based registration using surface data, subsurface 
vasculature geometries, or combinations of two data streams [9-14].  Given the availability of the organ surface during 
procedures (open and laparoscopic) and the advances in vision-based digitization strategies, it seems likely that organ 
surface data will be utilized in the future.  As a result, we have designed a sparse-data challenge that involves the 
acquisition of unstructured point cloud data taken of a mock liver surface in a series of deformed states both with and 



 
 

 

 

without added digitization noise and with varied data surface extents reflective of experiences in the operating room (OR).  
More specifically, these data patterns are based on real physical swabbings of patient livers done with a tracked stylus in 
previous work [1, 15, 16].  In addition, in [16], these swabbings were collected within strict time limitations as it is the 
only study to our knowledge that has tested deformation correction within the OR in real time. 

1.2 Purpose 

The purpose of this paper is present our sparse data challenge to the liver registration community.  Briefly described, the 
challenge is based on the publication by Collins et al. (2017) appearing in the IEEE Transactions on Medical Imaging 
(vol. 36, no. 7, pp. 1502-1510) [1].  The underlying rationale is that there are surgical workflow advantages if one could 
align preoperative liver image volume data to its intraoperative physical counterpart using sparse surface data visible 
during the procedure at presentation.  We have developed a novel human-to-phantom framework that allows us to 
transpose real OR data patterns that we acquired clinically using an optically tracked stylus onto a quantitative deforming 
mock-tissue phantom environment.  This framework allows the development and testing of image-to-physical registration 
algorithms in the presence of deformation with quantitative subsurface targets for assessing error and within the context 
of realistic OR data acquisition.  We note that the deformations we have imposed on the phantom mimic patterns of 
deformation we have seen in the OR.  

2. METHODS 

2.1 Platform 

To facilitate the challenge, Amazon Web Services 
(AWS) has been deployed for the development 
platform (Figure 1).  AWS is a cloud computing 
service that provides a simple way to: provision 
and access servers, store data, build databases and 
a broad set of applications services over the 
internet with a friendly interface.  AWS was 
chosen as the platform for the challenge for 3 
reasons: (1) flexibility, (2) security, and (3) 
presence.  With respect to flexibility, AWS 
provided a variety of options with respect to 
operating systems, programming languages, web 
application platform, database, and other 
services.  With respect to security, standard 
password protection, user-designated submission 
accounts, and secure file transfers were easily 
enabled for tracking participants.  With respect to 
presence, one aspect of the sparse data challenge 
is to encourage use of such services to create 
similar approaches to challenges around the 
world.  AWS has more than 10 regions, 36 
availability zones and more than 50 edge 
locations allowing for efficient participation.   

2.2 Phantom Data Summary 

Central to our challenge is the need of a liver shaped phantom with deformation behavior that simulates a mock 
presentation of the liver during open surgery.   The phantom was constructed from 80% Ecoflex® 00-10 platinum-cure 
silicone mixed with 10% Silicone Thinner® and 10% Slacker® Tactile Mutator (Smooth-On Inc., Pennsylvania) using a 
patient-specific CT image volume (Figure 2a).  Once created, we proceeded to embed 1mm diameter stainless steel beads 
(n=159) throughout the phantom (Figure 2b).  The phantom was then placed back into its mold base which was created 
from the preoperative patient configuration.  The mock liver was then subject to high resolution CT scanning to establish 

 
Figure 1.  AWS platform management of challenge which includes 
gateway website, registration, data site. 
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a baseline configuration.  Once complete, mock surgical packing was placed under the posterior side of the mock liver 
with 4 different deformation configurations.  With each configuration, repeat CT imaging was performed and deformation 
quantified by tracking the individual targets.   

Once complete, the methods from [1] were utilized to automatically transpose patterns of organ surface swabbing from 
real operating room cases collected in previous work on to the deformed CT-derived surfaces (Figure 2c).  In addition, in 
order to make these transposed swabbings more realistic, displacement variations in the swab height from the acquired 
deformed CT-surface were produced to simulate the natural variation in acquisition due to stylus-to-tissue contact changes.  
Lastly, we should note that our registration methodology, both rigid [17] and nonrigid [18, 19], utilizes the salient features 
on the liver of the left and right inferior ridge, and falciform ligament region.  
We provide this data as part of each set.  These too are also based on real OR 
experiences.   

2.3 Challenge Data  

With respect to the data provided in the challenge, a binary image volume 
mask of the phantom liver in its undeformed state is provided.  In addition, a 
3D tetrahedral mesh based on that mask in real physical dimensions is 
provided.  The registrant is welcome to use the mesh for their own 
algorithmic development.  Of note, all results will be ultimately reported and 
assessed on this grid which aligns with the mask in the reporting phase.  The 
last file provided for you is a zip-file of 112 sparse data sets representing real 
patterns of data from the OR transposed onto our quantitative phantom 
system.  The data consists of 21 different patterns of swabbed data with 4 
different deformation states for a total of 84 data sets.  In addition, we 
extracted 7 additional novel data sets that were applied to the 4 different 
deformation states creating an additional 28 cases of data.  This last set was 
focused at understanding the influence of non-contact digitization.  We 
randomly assigned each of these to one of the four deformation states with 
the constraint that each state should have only 7 patterns.  These cases are 
used to study algorithm performance in the case of non-contact methods of 
digitization.  With respect to provided data for the challenge, it consists of 
the following: 

Binary Mask (Figure  3a):  A header and raw file have been provided.  This 
can be used to build your own representation of the liver domain.  The binary 
mask provided is 512 x 512 x 631 with spacing of 0.683594 x 0.683594 x 0.8 
mm. The header file is in ascii while the image volume is stored as a binary 
raw volume.   

3D Tetrahedral Grid (Figure 3b):  A 3D tetrahedral domain of the liver 
phantom in its pre-deformed state has been provided to you.  This domain 
was constructed from the binary mask.  It is described by three files: (1) a 
node file that contains on each line an index and the x, y, and z coordinate of 

a b c 
Figure 2. (a) Phantom CT, (b) phantom with embedded bead locations, and (c) sparse data pattern from the operating room 
superposed on the phantom. 

a
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c 
Figure 3. (a) Binary mask, (b) tetrahedral 
mesh, and (c) surface point collection -
blue, green, red, and white points are left 
inferior ridge, right inferior ridge, falciform 
ligament, and extra swabbed points, 
respectively 



 
 

 

 

each 3D point, (2) an element file that contains on each line an index followed by 4 integers that represent the node indices 
that make up each individual tetrahedral element, and (3) a boundary element file that contains on each line an index 
followed by 3 integers that represent the node indices that make up each surface patch triangle on the exterior surface of 
the organ.  The three files that make up the tetrahedral grid are stored in ascii format. 

Zipped Data File (Figure 3c):  The zipped data file is a standard zip archive in the MSWindows environment file that 
contains 112 folders.  Each folder has a consistent set of mock intraoperative liver surface data.  The data in an individual 
folder consists of 4 separate ascii point cloud files.  Each file is the acquired data from a different portion of the phantom, 
namely, (1) left inferior ridge, (2) right inferior ridge, (3) falciform region, and (4) general surface swabbing across the 
surface.  The task for the challenge is to align the grid space associated with 3D mesh to that of each sparse data pattern 
to the best of the participant’s algorithm ability.  It is your choice whether you use any of the geometric references provided.  
We provide here because these have been shown to be salient features that physicians can determine relatively easily and 
without moving the organ in typical presentations.  Taking all 4 data files and merging would provide the extent of data 
acquisition of the anterior liver surface provided.  The spatial extent of the liver surface provided in the challenge varies 
between 20%-44% of the liver surface.     

2.4 Challenge Submission 

Full submission:  A full data submission represents a compressed zip file (use standard zip archive in MSWindows 
environment) that contains one result file per sparse challenge data set for a total of 112 results files to be used for 
submission.  It is critical that each result file have the following naming convention (name is within the single quote):  
‘ResultsSet001.xyz’, ‘ResultsSet002.xyz’, ‘ResultsSet003.xyz’, etc...  Each of these would correlate with the first, second, 
and third sparse data set driven results, and so on, respectively, and would continue until ‘ResultsSet112.xyz’ for a 
complete submission.  All 112 files should be in ascii format and should be stored in one .zip folder file.  With respect to 
each ‘ResultsSet###.xyz’ file, each will consist of 7 columns consisting of:  an index, x nodal coordinate, y nodal 
coordinate, z nodal coordinate, displacement of nodal coordinate in x direction, displacement of nodal coordinate in y 
direction, displacement of nodal coordinate in z direction.  We should note that the first 4 columns will be identical to the 
4 columns in the provided mesh node file from the download.  Once successfully submitted, results will be automatically 
processed by the embedded AWS processing scripts, and the results will be posted on the submission dashboard shortly 
thereafter. 

Partial submission:  We also allow for a partial submission for the purpose of development and accelerating testing for 
participants.  With a partial submission, the notes about the compressed file in the previous section are the same.  The 
primary difference in a partial submission is that only a subset of the 112 results files is submitted in the .zip file.  The 
most important aspect is to ensure that the number reference within ‘ResultsSet###.xyz’ matches the corresponding 
number as relayed in the sparse data challenge sets that are utilized to drive the result.  Once .zip file containing some 
results is successfully submitted, results will be automatically processed, and the results will be posted on the dashboard.  
The dashboard will reflect the percentage of the 112 files submitted in each submission.   

3. RESULTS 

Table 1 is the quantitative results from our nonrigid registration approach over all 112 data sets with each set yielding 
n=159 distributed targets.   

Target Registration Error Results 

Surface Coverage Average Target Registration Error (mm) Median Target Registration Error 
(mm) 

20-28% 4.68 ± 0.86 4.78 

28-36% 4.59 ± 1.16 4.42 

36-44% 4.29 ± 0.95 4.19 

All Data Sets 4.52 ± 1.01 4.44 

Table 1.  Target registration results for sparse data challenge based on methods from [18]. 



 
 

 

 

With respect to the challenge, we have provided the first submission to the site dashboard using our previously published 
algorithm based in [18] which is an improved algorithm from that of [1, 19].  Additional refinements since [18] have been 
developed and will be reported in a later manuscript.  Figure 4 is a representative registration from one data set.  Figure 4a 
is the alignment of the liver phantom surface prior to the application mock-surgical deformations and the acquired swabbed 
data (white points) after deformation has been applied.  Figure 4b shows the reflective deformed CT surface which is the 
deriving data for the white points in their deformed state.  Figure 4c, 4d is the counterparts for Figure 4a, 4b after the 
application of our nonrigid registration algorithm.  We should note that the initial state of the sparse data is significantly 
misaligned with respect to image data.  The results shown in Figure 4a,b is one step within our multi-step nonrigid 
registration framework. We provide here for a reference that shows the effect of deformation.  

4. DISCUSSION 

The structure of the challenge highlighted in Figures 1-3 is 
unique in the extent of the challenge, and the management 
and automation of analysis through Amazon Web Services.  
In addition, the results of our submission for the challenge are 
quite good (average target registration error less than 5mm) 
as illustrated from Table 1 and Figure 4.  With respect to the 
nature of deformation in the challenge, the four deformation 
states span a range of conditions that cover various disease 
presentations, i.e. some deformations within the set are 
relatively moderate as is the case where fibrosis is present 
clinically; while others represent large deformation states and 

 
Figure 4. (a) Rigidly aligned pre-deformed liver phantom surface and the acquired swabbed data (white points) after deformation 
had been applied, (b) same as (a) but the deformed CT data surface used to create sparse point cloud shown.  (c,d) are the 
counterparts of (a,b) but using our nonrigid registration approach. 

 
Figure 5.  Signed closest point distances after rigid 
registration in large deformation challenge sets. 



 
 

 

 

have signed closest point distances ranging from -12 to 11 mm after rigid registration (Figure 5).  These data are remarkably 
similar to the extensive clinical data we have reported in [18, 20].        

5. CONCLUSION 

To our knowledge, this is the only sparse data image-to-physical liver registration challenge that utilizes sparse surface 
data based on real operating room digitization experiences.  In addition, the extensive nature of that data employs 4 
different deformation states, 3 different data extents, and 7 OR contact-based swabbing patterns for each extent which 
leads to 84 data registration challenges for participants.  In addition, we have added another 28 sets that allow for 
performance evaluations within the context of non-contact surface data acquisition.  Finally, with all these data, the site 
simultaneously provides a framework to allow for quantitative target error determination thus enabling the comparison of 
user algorithms.  In closing, while challenges have been forthcoming in many areas, we believe this is the first within the 
context of image-to-physical liver registration. 
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