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Abstract 

Although resection and transplantation are primary curative methods of treatment for 

hepatocellular carcinoma, many patients are not candidates. In these cases, other treatment 

methods such as selective internal radiation therapy, chemotherapy, or external beam radiation are 

used. While these treatments are effective, patient-specific customization of treatment could be 

beneficial. Recent advances in personalized medicine are making this possible, but often there are 

multiple phenotypes within a proliferating tumor.  While not standard, one could envision a serial 

longitudinal biopsy approach with more phenotypically-targeted therapeutics if one could detect 

responding and non-responding regions of tumor over time. This work proposes a method to 

determine active regions of the tumor that differentially respond to treatment to better guide biopsy 

for longitudinal personalization of treatment. While PET may serve this purpose, it is not easily 

used for real-time image guidance, is not effective for many types of tumors, and can be 

confounded by inflammatory responses. In this work, ten total patients with imaging sequences 

from before and after treatment were retrospectively obtained. Five of these were selected for 

analysis based on the total liver volume change. A two-phase alignment process comprised of an 

intensity-based rigid registration followed by a nonrigid refining process driven by bulk 

deformation of the organ surface was performed. To assess the accuracy of the registration, two 

metrics were used for preliminary results. The mean closest point surface distance was used to 

quantify how well the surfaces of the registered livers match and was found to be 2.65±3.54mm. 

Anatomical features visible in pre- and post-treatment images were also identified. After 

registration, the mean Euclidean distance between features was found to be 5.22±4.06mm. To 

assess potential areas of tumor change, the registered tumor pre- and post-treatment were overlaid. 

 

 

 

 



1. Introduction 

The average yearly mortality rate for liver cancer has increased for both men and women from 

2011-2015 [1]. The primary curative methods of treatment for liver cancer are surgical resection 

and transplantation [2]. However, in most cases cancer is not discovered until the later stages [3]. 

Infiltration into both lobes, proximity to vascularization, and metastasis can all prevent the surgical 

treatment of liver cancer. In these cases, other forms of treatment including chemoembolization, 

external beam radiation, or selective internal radiation therapy.  

Recent studies have shown intra-tumor heterogeneity occurs in many types of cancer, resulting in 

several different phenotypes being expressed in different regions of the tumor [4-5]. It has also 

been shown that treatments can be targeted for the phenotypes expressed by the tumor [6]. Liver 

cancer is no different [3]. Targeting liver cancer with personalized medicine could be a viable 

treatment for those who are not candidates for resection or transplantation. Tumor reduction of 

50% has been observed when personalizing treatment of liver tumors [7]. However, this approach 

necessitates reliable biomarkers. 

The problem with the implementation of personalized medicine in liver cancer is therefore the 

identification of reliable biomarkers. The most common minimally invasive method of obtaining 

biomarkers is through biopsy. While a biopsy retrieves a portion of the cancerous tissue, often the 

tissue may be necrotic or turn up inconclusive results in biomarker analysis. In addition, if a 

phenotype is obtained from the tumor, the phenotype might not be the most active portion of the 

tumor, resulting in a less effective targeted therapy.  

The current standard of practice includes an imaging sequence and biopsy at discovery of the 

cancer. A treatment is selected, and a second imaging sequence is obtained 3-6 months after the 

initial imaging session. The purpose of this work is to use the imaging sequences that are already 

part of the standard of practice and perform a registration or overlay of the two images to identify 

the regions that are metabolically active and propagating. The identified regions will then be 

biopsied and treatment customized based on the biomarkers. We propose an image-registration 

based method. Through the use of image-based registration methods, the pre- and post-treatment 

tumors can be overlaid so that the clinician can easily determine which regions of the tumor 

potentially responded or continued to persist throughout the course of therapy.  

 

2. Methods 

2.1 Registration Process 

Imaging data from ten patients who underwent chemoembolization of the liver were 

retrospectively analyzed. The imaging data included both Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI). For each patient, two imaging sequences were obtained. One 

sequence was obtained before initiating treatment and the second was obtained between three and 

six months after treatment was started. It is known that liver volume can change, which could 

impact the spatial discrepancies in liver tumors [8]. To control for liver volume change, five of the 



ten initial patients were selected for analysis on the criteria of a total liver volume change of less 

than five percent.  

Liver and tumor were manually segmented from both the pre- and post-treatment imaging by an 

expert. The goal of the registration was to create an overlay of the pre- and post-treatment tumors. 

Volumetric registration was performed based on the liver surface features only.  Internal alignment 

of features was left to smooth deformation interpolating polynomials, i.e. internal intensity features 

did not influence the nonrigid registration. Through this method, the expectation is that volume 

changes in the tumor would reflect true response or proliferation and would be free of intensity-

based non-rigid registration changes.  

For each patient, the liver was segmented from pre- and post-treatment images using ITK-SNAP 

and saved as a binary image mask. The first phase of the registration consisted of a rigid 

registration between the segmented liver surfaces using a method based on normalized mutual 

information [9]. The second phase consisted of non-rigid image registration of the binary liver 

mask images using the adaptive bases algorithm (ABA) [10]. A summary of the registration 

pipeline can be seen below (Fig. 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of the registration pipeline for aligning the pre- (blue) and post-treatment (red) livers and tumors.  
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2.2 Registration Analysis 

To analyze the accuracy of the registration, two methods were used. To assess the fit of the organ 

surfaces, a closest point metric was computed between the two registered full organ surfaces. This 

metric was computed by finding the closest point on the post-treatment surface for each point on 

the pre-treatment surface. The Euclidean distance was then calculated and averaged for all the 

points on the pre-treatment surface.  

The accuracy of the registration for the internal nodes of the liver mesh was measured by manually 

marking making feature targets. Since the data used was from retrospective clinical cases, no true 

targets could be used. However, anatomical features that were easily identifiable and expected not 

to change between the pre- and post-treatment livers could be identified and used for targets, e.g. 

vessel bifurcations inside the liver. The targets were expertly segmented in the same way as the 

liver and tumor. The targets were registered using the previously computed registration based on 

the organ surface data. The distance between the centroids of the registered targets was computed. 

An example of the selected anatomical features can be seen below (Fig. 2).  

 

 

 

 

 

 

 

 

 

3. Results 

Table 1 shows the mean closest point distance between the pre-treatment and post-treatment liver 

surfaces. It also shows the target distance, which is the Euclidean distance between the centroid of 

the registered anatomical feature targets. 

Figure 3 shows an overlay between the registered pre- and post-treatment liver surfaces as well as 

the overlay between the registered pre- and post-treatment tumors (left). It also shows a close up 

of the registered tumors (right). The pre-treatment liver and tumor are shown in blue and the post-

treatment liver and tumor are shown in red. 

Figure 4 shows a qualitative comparison of the segmented pre- (A) and post-treatment (B) tumors 

and a detailed overlay of their positions after registration (C). The segmented slice of the tumors 

can be seen in red. The overlay is posed in the same orientation as the CT slices. The pre-treatment 

tumor is shown in blue and the registered post-treatment tumor is shown in red.  

Figure 2: A visualization of how the anatomical features are picked from the pre-treatment CT (left) the post-

treatment CT (middle) and the error comparison that was used (right). The target can be seen in red on the CT 

images. In the comparison, the pre-treatment liver and feature target are depicted in blue. The post-treatment liver 

and feature target are depicted in red. 



Table 1: Mean closest point distance and target distance. 

Case Number Mean Closest Point (mm) Target Distance (mm) 

1 1.70±2.84 2.82 

2 2.90±3.78 1.44 

3 2.75±3.53 4.86 

4 2.86±3.61 3.97 

5 3.04±3.96 13.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Qualitative comparison of corresponding slices of the pre- (A) and post-treatment (B) images with the 

tumor segmented. Overlay of pre- (blue) and post-treatment (red) tumor from the above segmentations (C).  

  

 

Figure 3: Overlay of the registered pre- (blue) and post-treatment (red) liver surfaces and tumors (a). Close up 

view of the overlaid registered pre- (blue) and post-treatment (red) tumors. 

 

 



4. Discussion 

Qualitatively, the results look promising. As can be seen in both the CT images and the registered 

tumors, there is a large reduction on the left side and a stagnation on the top (Fig. 4). This 

qualitative comparison shows that the model can show the discrepancies in tumor growth.  

While the results seem to be reasonably accurate overall, case 5 shows that the proposed method 

is not as robust as possible. The change in liver volume was accounted for, but the positioning of 

the feature target as well as the quality of the imaging played a role in the accuracy of the 

assessment. Some of the imaging sequences obtained had little contrast and identifying viable 

anatomical feature targets was challenging. In addition, some imaging sequences had axial spacing 

that was rather large (5mm). Furthermore, care was taken to match the resolution and phases 

(arterial vs venous) of the two imaging sequences to control for error introduced by differences in 

scanners. However, due to clinical restrictions, there were several instances where the imaging 

was taken on two different quality scanners.  

The image registration approach is encouraging, but some surface misalignment did exist which 

could account for some misalignment in tumors. Due to the deformation in the liver surface 

between the initial scan and the follow-up scan, there were some instances of the anterior surface 

of the liver matching with the posterior surface of the other model. While this was limited to the 

anterior ridges of the liver surface, it may have been a contributing factor.  

Although controlling the change in liver volume change to less than 5% between the two imaging 

sequences did seem to provide more consistent registration results, more investigation must be 

taken to analyze volume change. The liver volume change was disparate between the two lobes of 

the liver, even when examined as percentage change rather than an absolute change. In addition, 

the change in liver volume did not correlate with change in tumor volume. 

5. Conclusions 

The preliminary results indicate that the registration technique has considerable potential for 

identifying regions of tumor regression, progression, and lack of response during treatment. The 

average closest point distance for the full liver surface indicates a close alignment between pre and 

post-treatment livers. Since the internal displacements are calculated based on the surface 

information only, our close alignment of vessel target structures (low target error in Table 1) 

indicates that the internal displacements are likely representative of the nonrigid deformation 

inside the liver due to natural shape change. However, the predictive value of the accuracy of the 

alignment based on the target error depends on both the correct segmentation of corresponding 

anatomical features and the location of the targets in the liver. Target errors other than case 5 were 

quite satisfactory. This was most likely due to the location of the target with respect to the liver.  
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