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ABSTRACT  

Successful estimation of target registration error (TRE) would provide immense opportunities for controlling 
risks associated with navigation during image-guided surgery. While developed theories exist for predicting 
spatial distributions of TRE for rigid point-based registration, similar capabilities in the domain of deformable 
registration are still needed to develop truly reliable image guidance systems for navigation in soft tissue 
organs. Recently, breakthrough work derived two analytic uncertainty metrics based on the dissipation of 
constraint energy over distance to measure the susceptibility of elastic deformable registration to errors 
originating from unknown effects that occur where registration constraints are missing. In this work, these 
registration uncertainties are leveraged to classify error thresholds for detecting spatial regions that become 
vulnerable to inaccuracy in sparse data driven elastic registrations. With a large dataset of over 6000 
registrations, receiver operating characteristic (ROC) analysis was performed to assess discriminatory 
performance of these uncertainty metrics to clinically relevant levels of registration error and to identify 
optimal binary cutoffs for their prediction. Both uncertainty metrics were capable of detecting regions of the 
organ where deformable registration accuracy exceeded the average magnitude of rigid registration error with 
AUC above 0.87. Furthermore, both metrics detected regions of the organ with TRE greater than 10 mm with 
AUC of approximately 0.8. These new capabilities will enhance clinical confidence in image-guided 
technologies in deforming organs through enabling immediate quantification and communication of 
navigational reliability and system accuracy during soft tissue surgery. 
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1. INTRODUCTION 

The ability to predict registration error has been a longstanding need for ensuring the reliability of image-
guided techniques in clinical practice. In soft tissue organs, the process of establishing a mapping between 
preoperative images and the intraoperative organ is usually affected by deformation, which presents a 
challenge when attempting to precisely correlate preoperative anatomy and disease with intraoperative 
presentation during medical intervention. While techniques exist for predicting average distributions of target 
registration error (TRE) for rigid body registration [1–5], methods that establish similar capabilities under 
conditions of deformation for nonrigid image-to-physical registration have been absent from the literature. 

In recent work, Heiselman and Miga [6] demonstrated that it is indeed possible to predict the average 
magnitude and spatial distribution of registration errors associated with elastic registration techniques, 
whereby uncertainty measures were computed based on the dissipation of strain energy associated with 
equivalent boundary conditions collocated with the informational data constraints provided to the registration 
method. This work introduced two uncertainty measures for elastic deformable registration, one retrospective 
metric that utilized internal strain energy measures computed after registration had completed, and one 
prospective metric that utilized external energy approximations to enable more immediate computation prior 
to initiating registration. This work showed that the average value of the constraint uncertainty computed by 
each metric was able to independently predict average TRE across the registered organ to accuracy under 1.0 



 
 

 

 

mm if the baseline magnitude of initial rigid registration error was known. Furthermore, pointwise values of 
uncertainty predicted TRE of clinical targets to below 3.5 mm accuracy using the median value of fitted 
statistical distributions that related uncertainty with registration error. 

However, there remains a particular need for establishing realistic error thresholds for registration that are 
defined and evaluated with respect to clinical relevance. While the previous work by Heiselman and Miga [6] 
can predict the spatial distribution of TRE, these distributions were realized through median probabilities of 
relative errors whose interpretation requires an estimate of initial error prior to registration. When casting 
these findings towards clinical application, a gap persists in relating predicted registration errors to 
comprehensible references such as millimetric lengths compared to oncological margin or scale of 
improvement compared to conventional rigid registration approaches. In this paper, an alternative receiver-
operating characteristic (ROC) analysis is performed on the data and methods introduced in [6] to address 
these limitations by testing whether the novel constraint uncertainty metrics can successfully distinguish 
clinically pertinent error thresholds to offer more relevant and useful feedback to the operating surgeon. 

2. METHODS 

 
Figure 1. Overview of registration error prediction and analysis. (a) Deformable registration of preoperative 
organ anatomy (gray) to intraoperative data constraints (black). (b) Computation of registration uncertainty 
from intraoperative constraints and registration results. (c) Predictive analysis of registration errors. 

2.1 Deformable Registration 

The linearized iterative boundary reconstruction registration method and a large dataset of 6291 registration 
cases utilized in this study were first presented in [7]. Briefly, the dataset consists of three unique, patient-
derived liver volumes each subjected to deformation fields mapped from the motions of 147 imaging targets 
that were embedded in a silicone organ phantom and re-imaged in three distinct states of mock laparoscopic 
deformation produced by varying degrees of mobilization of the hepatic ligaments. This process yielded nine 
different deformed organ states each with known ground truth nodal displacements. Clinical patterns of organ 
surface data obtained from an optically tracked stylus were mapped onto the anterior surfaces, and sixteen 
ultrasound planes and their intersections with the hepatic vasculature and the posterior capsular boundary 
were sampled from the deformed organ to generate sparse intraoperative data constraints for the registration 
method. These data were assembled in a combinatorial manner to produce 699 registration scenarios for each 
of the nine unique deformations. This phantom-to-human approach, inspired by the simulation framework of 



 
 

 

 

Collins et al. [8], addresses a traditional barrier to the investigation of target error in deforming organs caused 
by a scarcity of clinically realistic datasets with known ground truth deformations and sufficient variation in 
the extent of data constraints. 

With these generated data, the registration method begins with a salient feature weighted iterative closest 
point rigid registration [9] to provide a robust initial alignment of intraoperative data with the preoperative 
anatomy. Then, deformable registration is achieved using a linearized basis of elastic deformation responses 
precomputed over the preoperative organ domain to rapidly reconstruct external forces applied to the organ 
that best match the intraoperative deformation state by iteratively minimizing the difference between the 
deformed model and the provided registration constraints [7]. 

2.2 Registration Uncertainty 

As presented in [6], uncertainty in elastic registration can be related to the distribution of data constraints 
provided to the registration algorithm by modeling the energetic dissipation of these constraints as their 
influence propagates over distance. In an elastic medium, the proportion of energy supplied by an applied 
load that reaches a particular location within the domain is bounded by the Toupin decay [10], 

𝑈(𝑟) ≤ 𝑈଴𝑒ି௞௥, (1) 

where 𝑈(𝑟) is the total energy that propagates beyond distance 𝑟 from the applied load, 𝑈଴ is the total energy 
of the excitation, and 𝑘 is a rate constant that depends on the material properties and the shape of the domain 
according to 

𝑘 ∝ ට
ఘఠబ

ఓ∗
, (2) 

where 𝜌 is density, 𝜇∗ is an elastic modulus, and 𝜔଴ is the first characteristic frequency of free vibration. 
Precise details are provided in [6] for computing 𝑘 and 𝑈଴ from quantities measured after the registration has 
been performed (retrospective metric, 𝑘௥ and 𝑈௥

଴), or alternatively prior to initiating registration (prospective 
metric, 𝑘௣ and 𝑈௣

଴). Heiselman and Miga proposed that the constraint uncertainty at any location 𝑥 within the 
domain could be understood as the informational content of the total energy that reaches this position from 
the dominant closest constraint, according to 

𝑆(𝑥) = − ln൫𝑈(𝑥)൯ ≥ 𝑘𝛿 − ln(𝑈଴), (3) 

for 𝛿 = min(‖𝑥 − 𝑥௖‖ଶ) where 𝑥௖ are the constraint positions. In this way, the retrospective and prospective 
constraint uncertainty measures 

𝑆௥(𝑥) ≥ 𝑘௥𝛿 − ln(𝑈௥
଴), (4) 

𝑆௣(𝑥) ≥ 𝑘௣𝛿 − ln൫𝑈௣
଴൯, (5) 

respectively, encode a lower bound on the amount of energetic attenuation the dominant constraint that 
originates at 𝑥௖ experiences before reaching position 𝑥. Consequently, these uncertainties measure the 
susceptibility of any location within the organ to be influenced by additional loads and unknown forces that 
are not accounted by the deformation constraints provided to the registration. Both uncertainty measures are 
nearly instantaneous to compute throughout an organ volume, and were evaluated for each of the 6291 
registration cases. 

2.3 Analysis of Error Prediction 

This paper extends analysis of the data in [6] by evaluating the discriminatory power of the uncertainty 
metrics 𝑆௥ and 𝑆௣ over clinically relevant thresholds for absolute and relative error. In this work, ROC 
analyses are performed to evaluate how effectively the uncertainty metrics are capable of classifying these 
error levels based on binary thresholds for registration uncertainty. Each ROC curve is constructed from over 



 
 

 

 

161 million paired samples of uncertainty measures and observed error values derived from ground truth 
knowledge of each volumetric mesh node in each of the 6291 unique registered cases. 

In [6], it was found that the uncertainty metrics had superior correlation to relative errors as opposed to 
absolute millimetric errors. The relative error capacity 𝐸 at each position 𝑥 in the organ was defined as 

𝐸(𝑥) =
𝑇𝑅𝐸௡௢௡௥௜௚௜ௗ(𝑥)

meanቀ𝑇𝑅𝐸௥௜௚௜ௗ(𝑥)ቁ
∗ 100% (6) 

where 𝑇𝑅𝐸௡௢௡௥௜௚௜ௗ is the TRE after deformable registration and 𝑇𝑅𝐸௥௜௚௜ௗ  is the initial TRE associated with 
rigid registration. This normalization process effectively represents the proportion of error that still remains 
after deformable registration relative to the initial average uncorrected magnitude. 

With respect to error thresholds, ordinarily 10 mm is considered a desirable standard for surgical margins of 
primary liver cancers [11–13]. Therefore, a 10-mm TRE threshold for identifying a clinical bound on 
registration uncertainty is reasonable. However, for the purposes of guiding around and transecting hepatic 
vasculature, accuracy thresholds corresponding to 5-mm or 3-mm would be desirable. With regard to relative 
error, if it can be assured that deformable registration will offer better accuracy than the average magnitude of 
error associated with rigid registration, then the deformable registration can be trusted to make an 
improvement over rigid registration within a specific range of uncertainties; hence, an error capacity of 100% 
is a desirable threshold. Error capacity thresholds of 50% and 30% are also included to identify uncertainty 
levels where below half or less than one third, respectively, of the initial magnitude of error remains. For each 
threshold, AUC and optimal operating cutoffs were computed for 𝑆௥ and 𝑆௣ metrics. To adjust for uneven 
class distribution, i.e. the number of samples with target errors below the threshold tends to be much greater 
than the number of samples with target errors exceeding the threshold, optimal operating cutoffs were defined 
by population-weighted cost balance [14], namely the intersection of the ROC curve with a negative diagonal 
of slope equal to the ratio of sub-threshold to super-threshold samples. 

3. RESULTS 

The evaluated error thresholds, optimal binary cutoffs, and areas under the curve (AUC) for both registration 
uncertainty metrics are shown in Table 1. AUC was found to exceed 0.87 for both uncertainty metrics when 
predicting relative errors of 𝐸 > 100%, indicating that either uncertainty measure is capable of excellent 
discrimination regarding precisely where in the organ TRE after deformable registration will fail to be lower 
than the average error associated with conventional rigid registration. Furthermore, AUC for predicting 
absolute 𝑇𝑅𝐸 > 10 mm was approximately 0.8 for both uncertainty metrics, indicating good performance 
when using the uncertainty metrics to detect egregiously high errors that may still exist after deformable 
registration. ROC curves corresponding to these error thresholds are shown in Figure 2. Figure 3 illustrates 
key examples of how these optimal uncertainty thresholds can be presented to highlight spatial regions where 
registration errors may surpass acceptable levels of performance. 

Error Threshold Relevance Optimal Cutoff, 𝑆௥  [AUC] Optimal Cutoff, 𝑆௣ [AUC] 

𝑬 > 100% Improvement over Rigid 𝑺𝒓 > 7.34 [0.874] 𝑺𝒑 > 27.42 [0.873] 

𝐸 > 50% Initial Error Halved 𝑆௥  > 5.35 [0.755] 𝑆௣ > 20.10 [0.758] 

𝐸 > 30% Initial Error 70% Reduced 𝑆௥  > 4.10 [0.702] 𝑆௣ > 14.93 [0.708] 

𝑻𝑹𝑬 > 10 mm Oncological Margin 𝑺𝒓 > 6.39 [0.792] 𝑺𝒑 > 24.05 [0.806] 

𝑇𝑅𝐸 > 5 mm Vascular Navigation 𝑆௥  > 4.66 [0.695] 𝑆௣ > 17.05 [0.712] 

𝑇𝑅𝐸 > 3 mm Vascular Navigation 𝑆௥  > 2.45 [0.672] 𝑆௣ > 8.67   [0.689] 

Table 1. Error thresholds and optimal cutoffs for registration uncertainty metrics. 



 
 

 

 

 

Figure 2. ROC curves for binary classification of error thresholds utilizing retrospective metric 𝑆௥  and 
prospective metric 𝑆௣ with respect to the bolded categories of Table 1. 

 

 
Figure 3. Organ regions exceeding critical error thresholds based on optimal cutoffs for retrospective 
uncertainty 𝑆௥ . (a) Preoperative liver model (gray) and hepatic vasculature (purple) registered to intraoperative 
data constraints (black); top: registration to sparse anterior surface data only; bottom: registration to sparse 
anterior surface data plus additional constraints from intraoperative ultrasound image planes, including posterior 
surface and intrahepatic vascular features. (b) Retrospective uncertainty computed at every vertex of the 
registered organ models. (c) Highlighted region of the organ (orange) where uncertainty exceeds cutoff 
associated with 𝐸 > 100%. (d) Highlighted region of the organ (yellow) where uncertainty exceeds cutoff 
associated with 𝑇𝑅𝐸 > 10 mm. Additional data constraints may be provided to the registration to improve 
projected accuracy. 

4. DISCUSSION 

In Table 1, predictive capabilities of both uncertainty metrics tended to be superior for relative errors (𝐸) than 
absolute errors (TRE). It has long been observed that absolute levels of TRE achievable with nonrigid 
registration methods frequently depend on the initial magnitude of deformation. This dependence has led to 
the introduction of metrics such as percent correction in more comprehensive studies of deformable 
registration accuracy, especially when methods are evaluated across diverse ranges of initial errors. While 



 
 

 

 

absolute errors are realistically the most vital to clinical practice, relative errors better convey the algorithmic 
effectiveness of deformable registration methods. However, intrinsic limitations surrounding error prediction 
at smaller scales cannot be ignored. Error floors impact nearly every registration method, where input noise 
from intraoperative data, modeling and numerical error, segmentation accuracy, and image resolution 
ultimately contribute to a minimum achievable TRE. While Table 1 seems to show diminished AUCs 
associated with uncertainty predictions across lower error thresholds, the overall predictive findings are still 
remarkable considering the aforementioned sources of error in addition to limitations regarding uncertainty 
computation in a domain where point-to-point correspondence cannot be certain. 

Tradeoffs should also be noted in the choice of operating cutoff along the ROC curve. With respect to the 
clinical objective, true positive rate should be maximized to most conservatively avoid missed detection of 
high error regions. However, successful visualization of errors depends on minimizing false positive rate. 
These directions must contend simultaneously with statistical considerations of imbalanced class distribution 
that originate on the basis that effectual registration methods tend to generate disproportionately few regions 
of high registration error. For example, of the 161 million target error samples, only 8.5% were associated 
with 𝐸 > 100% and 18.1% with 𝑇𝑅𝐸 > 10 mm. This type of imbalance necessitates greater specificity through 
cutoffs with lower false positive rates. The optimal cutoff method described in Section 2.3 appropriately 
compensates for inter-class frequency bias. The cutoff values of both metrics associated with 𝐸 > 100% and 
𝑇𝑅𝐸 > 10 mm reported in Table 1 correspond to specificity values of 99% and 97%, respectively. Operating 
on the left side of the ROC curve is reasonable because regions of high error will tend to remain spatially 
collocated, and therefore perfect sensitivity is not needed for detection of bulk regions of elevated error. 
However, the spatial precision of the error boundaries shown in Figure 3 may deteriorate at cutoffs associated 
with smaller true positive rate. These factors contribute to an overall limitation with respect to determining a 
cutoff choice that satisfies all considerations. It must also be recognized that binary classifiers fundamentally 
struggle with imprecision in the “gray area” around the decision threshold, and therefore the predicted error 
boundaries obtained from this approach should only be treated as spatially approximate. Additionally, the best 
operating cutoff also depends on the underlying accuracy and variability of the specific registration method. 
While prospective testing is needed to fully validate the reported uncertainty thresholds, AUC values indicate 
that the registration uncertainty metrics are suitable for predicting regions of high registration error. 

In all, this work reports a novel approach for analyzing registration uncertainties associated with error 
propagation in elastic deformable registration. ROC analysis was performed to test the capability of these 
uncertainty measures with respect to critical thresholds on absolute TRE and relative error capacity. While the 
derivation of uncertainty metrics and the dataset utilized in this work were recently published in IEEE 
Transactions on Medical Imaging [6], to enhance clinical relevance, this paper extends the analysis of the 
already published work by measuring accuracy characteristics of error prediction using these uncertainty 
metrics according to clinically relevant error thresholds. As such, the analysis presented herein is quite novel 
and represents the first work to predictively detect and classify severe regions of registration error from 
uncertainty measures in elastically deformable registration. 

5. CONCLUSION  

The ability to predict registration errors associated with deformable registration has long been sought. 
Recently, uncertainty metrics based on the spatial dissipation of constraint energy have come forth that 
correlate the spatial distribution of registration constraints with resulting registration error. This work shows 
that these uncertainty metrics are also highly effective at classifying specific thresholds of relative and 
absolute registration errors. These capabilities achieve an intraoperative system for registration assurance that 
can detect perilous levels of error during image-guided navigation. Complete realization of these methods will 
enable highly reliable image guidance systems with embedded certainty and control that should become a 
foundational prerequisite for nurturing the confidence necessary to build more widespread clinical adoption of 
deformable registration techniques in image-guided soft tissue procedures. 



 
 

 

 

ACKNOWLEDGMENTS 

This work was supported in part by NIH-NIBIB grant number R01EB027498. 

REFERENCES 

[1] J. M. Fitzpatrick, J. B. West, and C. R. Maurer, “Predicting error in rigid-body point-based 
registration,” IEEE Trans. Med. Imaging, vol. 17, no. 5, pp. 694–702, 1998. 

[2] J. M. Fitzpatrick and J. B. West, “The distribution of target registration error in rigid-body point-based 
registration,” IEEE Trans. Med. Imaging, vol. 20, no. 9, pp. 917–927, 2001. 

[3] A. D. Wiles, A. Likholyot, D. D. Frantz, and T. M. Peters, “A statistical model for point-based target 
registration error with anisotropic fiducial localizer error,” IEEE Trans. Med. Imaging, vol. 27, no. 3, 
pp. 378–390, 2008. 

[4] M. H. Moghari and P. Abolmaesumi, “Distribution of target registration error for anisotropic and 
inhomogeneous fiducial localization error,” IEEE Trans. Med. Imaging, vol. 28, no. 6, pp. 799–813, 
2009. 

[5] A. Danilchenko and J. M. Fitzpatrick, “General approach to first-order error prediction in rigid point 
registration,” IEEE Trans. Med. Imaging, vol. 30, no. 3, pp. 679–693, 2011. 

[6] J. S. Heiselman and M. I. Miga, “Strain energy decay predicts elastic registration accuracy from 
intraoperative data constraints,” IEEE Trans. Med. Imaging, vol. 40, no. 4, pp. 1290–1302, 2021. 

[7] J. S. Heiselman, W. R. Jarnagin, and M. I. Miga, “Intraoperative correction of liver deformation using 
sparse surface and vascular features via linearized iterative boundary reconstruction,” IEEE Trans. 
Med. Imaging, vol. 39, no. 6, pp. 2223–2234, 2020. 

[8] J. A. Collins, J. A. Weis, J. S. Heiselman, L. W. Clements, A. L. Simpson, W. R. Jarnagin, and M. I. 
Miga, “Improving registration robustness for image-guided liver surgery in a novel human-to-phantom 
data framework,” IEEE Trans. Med. Imaging, vol. 36, no. 7, pp. 1502–1510, 2017. 

[9] L. W. Clements, W. C. Chapman, B. M. Dawant, R. L. Galloway, and M. I. Miga, “Robust surface 
registration using salient anatomical features for image-guided liver surgery: algorithm and validation,” 
Med. Phys., vol. 35, no. 6, pp. 2528–2540, 2008. 

[10] R. A. Toupin, “Saint-Venant’s principle,” Arch. Ration. Mech. Anal., vol. 18, no. 2, pp. 83–96, 1965. 
[11] K. Lafaro, M. S. Grandhi, J. M. Herman, and T. M. Pawlik, “The importance of surgical margins in 

primary malignancies of the liver,” J. Surg. Oncol., vol. 113, no. 2016, pp. 296–303, 2016. 
[12] H. Nitta, M.-A. Allard, M. Sebagh, N. Golse, O. Ciacio, G. Pittau, E. Vibert, A. Sa Cunha, D. Cherqui, 

D. Castaing, H. Bismuth, H. Baba, and R. Adam, “Ideal surgical margin to prevent early recurrence 
after hepatic resection for hepatocellular carcinoma,” World J Surg, vol. 45, pp. 1159–1167, 2021. 

[13] F. Zhong, Y. Zhang, Y. Liu, and S. Zou, “Prognostic impact of surgical margin in patients with 
hepatocellular carcinoma: A meta-analysis,” Medicine (Baltimore)., vol. 96, no. 37, p. e8043, 2017. 

[14] J. P. Marques de Sá, Applied Statistics Using SPSS, STATISTICA, MATLAB, and R, 2nd ed. Springer 
Science and Business Media, Inc., 2007, pp. 250–251. 

 


