
Tumor deformation correction for an image guidance system in breast 
conserving surgery 

Winona L. Richey1, Jon Heiselman1, Morgan Ringel1, Ingrid M. Meszoely2, Michael I. Miga1,3,4,5 
1 Vanderbilt University, Department of Biomedical Engineering, Nashville, TN USA 

2 Vanderbilt University Medical Center, Division of Surgical Oncology, Nashville, TN USA 
3 Vanderbilt University Department of Radiology and Radiological Sciences, Nashville, TN USA 

 4 Vanderbilt Institute for Surgery and Engineering, Nashville, TN USA  
5 Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, TN USA 

ABSTRACT 

Breast cancer is the most common cancer in women, and surgical resection is standard of care for the majority of breast 
cancer patients. Unfortunately, current reoperation rates are 10-29%. Uncertainty in lesion localization is one of the main 
factors contributing to these high reoperation rates. This work uses the linearized iterative boundary reconstruction 
approach to model patient breast deformation due to abduction of the ipsilateral arm. A preoperative supine magnetic 
resonance (MR) image was obtained with the patient’s arms down near the torso. A mock intraoperative breast shape 
was measured from a supine MR image obtained with the patient’s arm up near the head. Sparse data was subsampled 
from the full volumetric image to represent realistic intraoperative data collection: surface fiducial points, the intra-
fiducial skin surface, and the chest wall as measured with 7 tracked ultrasound images. The deformed preoperative arm-
down data was compared to the ground truth arm-up data. From rigid registration to model correction the tumor centroid 
distance improves from 7.3 mm to 3.3 mm, average surface fiducial error across 9 synthetic fiducials and the nipple 
improves from 7.4  2.2 to 1.3  0.7, and average subsurface error across 14 corresponding features improves from 6.2  
1.4 mm to 3.5  1.1 mm. Using preoperative supine MR imaging and sparse data in the deformed position, this modeling 
framework can correct for breast shape changes between imaging and surgery to more accurately predict intraoperative 
position of the tumor as well as 10 surface fiducials and 14 subsurface features. 
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1. INTRODUCTION 

In the United States, over 287,000 people are expected to be diagnosed with breast cancer in 20221. Of these cases, 
approximately two thirds will undergo breast conserving surgery2. Current lesion localization strategies for breast 
conserving surgery (e.g. radioactive seed, magnetic seed, SAVI Scout) use a seed-based marker or guidewire 
preoperatively implanted under serial cross-sectional image guidance. While these methods provide valuable subsurface 
information, they cannot provide full intraoperative tumor boundaries, which are essential to reliably obtain complete 
resection. This difficulty in localizing tumor boundaries intraoperatively leads to uncertainty in the oncological margin, 
incomplete resections, and high reoperation rates of 10-29%3-6. 

Magnetic resonance imaging offers high sensitivity for breast cancer7, 8, and provides improved understanding of 
intraoperative tumor shape and position when scans are performed in a supine position9-11. Several groups have 
demonstrated the utility of viewing information from supine MR during breast conserving surgery12-15. Image-to-
physical image guidance platforms that align these high contrast and high-resolution preoperative imaging with the 
intraoperative patient can predict the full tumor extent in the operating room and assist surgeons with localizing more 
exact tumor boundaries. However, such image-to-physical guidance platforms to date have utilized rigid registration to 
describe breast motions between imaging and surgery that are inherently nonrigid. Although there have been indications 
of  growing interest in preoperative supine MR so that imaging more closely aligns with the supine patient presentation 
in surgery12-15, significant deformations occur between imaging and surgery even in the context of preoperative supine 
MR16. These image-to-surgical deformations arise due to changes in patient positioning, arm motion, and rotation of the 
operating room (OR) table. In particular, while supine imaging is performed with the arms down within the closed MR 
bore, supine operative position places the arm abducted 90 degrees in a T-shape orientation. 



Nonrigid deformation-corrected registration methods offer improvement over conventional rigid registration. A method 
presented by Ebrahimi et al. improved registration error evaluated at the centroid of six tumors from 3–18 mm with rigid 
registration to 1–10 mm using thin plate splines on surface fiducials17. Conley et al. presented a nonrigid finite element 
method (FEM) correction approach utilizing the chest wall from tracked ultrasound and MR-visible surface fiducials 
digitized with a stylus, and demonstrated reduction in the centroid errors of two tumors from 6.5 and 12.5 mm after rigid 
registration to 5.5 and 5.3 mm after correction, respectively18. In the method of Conley et al., displacements on the skin 
surface were estimated via fiducial misalignment after rigid registration. This fiducial misalignment was used in a 
forward FEM solution approach, with displacements prescribed on the superior and inferior boundaries of the organ. 
While this approach reduced errors when compared to rigid registration, the true loading on breast tissue is more 
complex.  

In contrast, inverse modeling approaches aim to reconstruct these complex true loading conditions. Given a set of sparse 
data constraints supplied to the algorithm, the linearized iterative boundary reconstruction (LIBR) method, as presented 
in Heiselman et al.19, solves for a profile of applied distributed loads that produce the observed intraoperative organ 
shape. Here the LIBR method is employed to predict breast deformation from abduction of the arm. The framework 
presented here is tailored to applications in breast conserving surgery, with consideration to the sparse data sources that 
are amenable to workflow in this intraoperative environment.  This work presents this novel deformation correction 
framework to predict breast shape changes due to arm motion in the supine position. 

2. METHODOLOGY 

2.1 Patient Data Collection 

One 71-year-old breast cancer patient was enrolled with informed consent in this study approved by the Institutional 
Review Board at Vanderbilt University. The patient had biopsy-confirmed invasive mammary carcinoma in the left 
breast. Nine MR-visible fiducials were placed on the breast surface. A THRIVE (T1-weighted, high resolution isotropic 
volume excitation) sequence with fat suppression was used to obtain supine MR images. A 16-channel sensitivity 
encoding torso coil (SENSE XL Torso Coil, Philips Healthcare) was placed over the patient’s torso and suspended with 
padding to avoid breast compression. The field of view was 200 mm  200 mm  160 mm, centered around the left 
breast, and the reconstructed voxel size was 0.391 mm  0.391 mm  1 mm. The patient was imaged in the supine 
position with her arm down at her side. This image was used as the preoperative image. The patient’s ipsilateral arm was 
then moved above the head and she was imaged again. This second image was used to obtain mock intraoperative data. 
In both images the breast tissue was segmented semi-automatically in ITK-Snap and the segmentation was manually  
 

  

Figure 1: Validation points in the preoperative data designated from a supine MR image, including locations of tumor, 
surface fiducials, subsurface features (targets) and the nipple (+) on the preoperative breast model.  



corrected. Using a custom built software20, the segmentation was discretized into a 3D mesh of 40,336 tetrahedral 
elements with edge lengths of 4 mm and a total internal volume of 503 cm3. 

In the preoperative (arm-down) supine MR image, the following features can be designated: surface fiducials, nipple, 
and the tumor boundary. These data are shown in Figure 1. The segmented tumor volume was 646 mm3. The roughly 
ellipsoid shape had a major axis of about 26 mm and both minor axes approximately 10 mm. Additionally, the chest wall 
and skin surfaces can be designated and subsampled from the breast model boundary.  

In the intraoperative (arm-up) supine MR image, the same features are identified. The surface fiducials are identified, 
and the chest wall and skin surfaces are subsampled from the breast model boundary to mimic feasible intraoperative 
data collection. The chest wall surface is subsampled to represent chest wall segmentations in seven tracked ultrasound 
images, and the skin surface is subsampled to only include data within the fiducials (the intra-fiducial surface points).  
Additionally, 14 subsurface homologous points are identified in both images to be used for validation. 

2.2 Registration Method 

To correct for nonrigid deformations, the linearized iterative boundary reconstruction (LIBR) method introduced by 
Heiselman et al. 19 is employed. At static equilibrium, linear elasticity is governed by the Navier Cauchy equations, 
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with E = 2100 Pa as Young’s Modulus, 𝜈 = 0.45 as Poisson’s ratio, 𝒖 as the displacements, and 𝑭 as the applied forces. 
In short, the LIBR method iteratively reconstructs the intraoperative position from a superposed formulation of boundary 
conditions. A series of control points are distributed on the surface of the organ and every control point is perturbed in 
each of the three cartesian directions. For each of these perturbations, deformation solutions are pre-computed with a 
forward solved finite element approach. At runtime the optimal linear combination of these deformation solutions is 
determined by minimizing the objective function, 
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where 𝑓௜  represents the distance between an intraoperative data point and the registered preoperative model, 𝑓ா 
represents the strain energy of the deformation, 𝜔ி represents the weight of a feature 𝐹, 𝑁ி represents the number of 
points within feature 𝐹, and 𝜔ா represents the strain energy weight. The parameters for the objective function are the 
weight vector α that encodes the deformation state, 𝝉 which represents the rigid translations, and 𝜽 which represents 
rigid rotations. All features are weighted equally, with 𝜔ி=1.0 m-2, and the strain energy is weighted with 𝜔ா=10-9 Pa-2.  

Framework feasibility is demonstrated with sparse data that could be realistically obtained in the operating room. The 
features used to drive the model are the chest wall, the skin surface, and surface fiducials. The chest wall as segmented 
from the supine MR image is down-sampled to mimic chest wall segmentations in seven ultrasound images with 40 mm 
width and the skin surface is limited to the intra-fiducial skin nodes. The model-data error, 𝑓௜ , for each feature is 
computed based on the type of correspondence, with fiducials treated as corresponding points, and skin and chest wall 
data treated as point-to-surface correspondences as described in Heiselman et al.19.  

The nonrigid model accuracy is compared to two rigid registration approaches: point-based registration using the 
fiducials, and iterative closest point (ICP) registration of the fully tumor surface. For point-based registration, the 
preoperative and intraoperative spaces are rigidly registered using 10 corresponding surface points: nine surface fiducials 
and the nipple. Though ICP registration of full tumor volumes is not feasible intraoperatively, this alignment of the 
tumor surfaces represents the rigid mismatch in segmentations of the tumor in the two MR images. Note that ICP was 
performed directly between segmented tumor volumes, not between the outer breast surfaces. 

The nonrigid model accuracy is evaluated using differing amounts of intraoperative data. The fiducials, intra-fiducial 
skin surface, and seven chest-wall segments are used in all three nonrigid correction approaches. In practice, breast 
cancer patients often have an implanted marker in or near the tumor—either a biopsy clip or a specific localization 
device such as a magnetic, radioactive, or infrared-reflecting seed. These devices can be localized intraoperatively in 



tracked ultrasound images. Analysis is therefore extended, including a subsurface feature as additional point-based input 
to the model. Here, the tumor’s nearest neighbor is considered, with the number of included subsurface features k=1. 
Conversely, when k=0, the model is run as previously described with no subsurface feature points included. Finally, the 
full tumor surface is included as a point-to-surface correspondence. While this data collection is not feasible 
intraoperatively, this analysis provides a nonrigid comparator to the rigid ICP alignment, though the nonrigid correction 
includes a larger distribution of data. No subsurface feature points were included in either of the registration approaches 
that include the full tumor surface as input to the registration. 

2.3 Subsurface Validation: Tumors and Targets 

To evaluate model performance, the predicted tumor location was compared with the observed tumor location in the 
mock-intraoperative image. Boundary nodes of the predicted tumor are evaluated with tumor centroid distance, as well 
as the modified, maximum, average and K95% Hausdorff Distances21. The DICE coefficient is also reported. Alignment 
of the homologous subsurface points was compared where target registration error is reported as the average distance 
between the intraoperative point location, and the model deformed point location.  

3. RESULTS 

With rigid registration, the tumor centroid distance was 7.3 mm. Average target errors across the 14 corresponding 
subsurface features, and average fiducial registration errors across the 10 corresponding surface fiducials are displayed 
in Table 1. As shown in Figure 2, and demonstrated by the 2% DICE coefficient in Table 2, the tumor volumes are 
largely not overlapping with rigid alignment.   

Table 1: Registration error values in millimeters (average  standard deviation) at surface and subsurface features. Rigid registration 
methods include iterative closest point (ICP) and point-based. For nonrigid registration methods, k denotes the number of subsurface 
neighbors included in driving the model.  

 Rigid Correction Nonrigid Correction 

 Point-Based ICP k=0 k=1 Tumor Surface 

Surface Fiducials 7.4  2.0 10.3  6.7 1.0  0.4 1.3  0.7 1.3  0.7 

Subsurface Features 6.2  1.4 4.8  3.5 3.5  1.1 3.3  1.1 3.1  1.4 

 

Table 2: Tumor overlap metrics after registration. Rigid registration methods include iterative closest point (ICP) and point-based. For 
nonrigid registration methods, k denotes the number of subsurface neighbors included in driving the model.  

 Rigid Registration Nonrigid Registration 

 Point-Based ICP k=0 k=1 Tumor Surface 

Tumor Centroid Distance (mm) 7.3 0.5 4.4 3.3 2.4 

DICE Coefficient  2% 84% 32% 40% 62% 

Hausdorff Distance (mm)      

    Modified 4.1 0.6 2.3 1.9 1.3 

    Maximum  9.3 3.1 6.2 4.9 4.4 

    Average  3.9 0.4 2.0 1.6 1.0 

    K95% 7.0 1.1 4.4 3.2 2.4 

 

Iterative closest point (ICP) registration provides a high overlap between the two tumor surfaces with a DICE coefficient 
of 84%, though intraoperative measurement of the full, dense tumor surface is not practical. Importantly, this volume 
overlap comes at the cost of fiducial and target error. Compared to rigid registration, ICP registration error at the 
fiducials is increased by 39%. Though we see an improvement in target error with the ICP registration, note that the 
targets are mainly distributed in the same local region as the tumor, as shown in Figure 1.  



 

Figure 2: Tumor overlap after registration. Leftmost images show the preoperative breast mesh with preoperative tumor 
(blue) and ground truth intraoperative tumor position (black) after rigid point-based registration. For k=1, the mock biopsy 
clip position is displayed as a point with the preoperative location in blue and the intraoperative location in black.  

With deformation correction and no included subsurface feature points (k=0), subsurface feature error becomes 3.5  1.1 
mm, providing 44% improvement over rigid registration. Fiducial registration error becomes 1.0  0.4 with deformation 
correction, providing 86% improvement over rigid correction. At the tumor, point-based rigid registration error was 
reduced 40% to 4.4 mm with nonrigid correction.  

The tumor centroid distance continues to improve when including a subsurface feature near the tumor (k=1), improving 
55% over point-based rigid registration as shown in Table 2. Table 1 shows the small detriment to surface alignment 
with a small improvement in subsurface alignment. In Table 1, subsurface error is still computed at all 14 subsurface 
features, though one of these features is considered a mock biopsy clip (and therefore added to the data driving model 
correction). If this driving feature point is excluded from the subsurface error computation, a true measurement of TRE,  
the subsurface registration error is 3.4  1.0 mm (compared to 3.3  1.1 mm as reported in Table 1).   

Though not feasible in the operating room, including the full tumor surface provides a theoretical best-case scenario for 
the current modeling approach, while the iterative closest point registration offers a theoretical best-case scenario for 
tumor overlap with rigid registration. Although the rigid ICP approach outperforms model correction at the tumor, all 
nonrigid approaches outperform rigid alignment at fiducials and subsurface features.  

5. CONCLUSION 

This work presents a novel deformation correction approach in breast conserving surgery that achieves clinically 
relevant registration accuracy using realistically obtainable intraoperative data. Moreover, this demonstrates an initial 
investigation into the impact of providing subsurface features to a model to improve localization accuracy; including 
subsurface features in a modeling approach has the potential to offer even further improvement. This deformation 
correction framework has the potential to significantly improve intraoperative tumor localization in breast conserving 
surgery by better predicting image-to-surgery breast shape changes.  
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