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In Vivo Quantification of Retraction Deformation
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Abstract—The use of coregistered preoperative anatomical
scans to provide navigational information in the operating room
has greatly benefited the field of neurosurgery. Nonetheless, it has
been widely acknowledged that significant errors between the op-
erating field and the preoperative images are generated as surgery
progresses. Quantification of tissue shift can be accomplished with
volumetric intraoperative imaging; however, more functional,
lower cost alternative solutions to this challenge are desirable. We
are developing the strategy of exploiting a computational model
driven by sparse data obtained from intraoperative ultrasound
and cortical surface tracking to warp preoperative images to
reflect the current state of the operating field. This paper presents
an initial quantification of the predictive capability of the current
model to computationally capture tissue deformation during re-
traction in the porcine brain. Performance validation is achieved
through comparisons of displacement and pressure predictions
to experimental measurements obtained from computed tomo-
graphic images and pressure sensor recordings. Group results
are based upon a generalized set of boundary conditions for four
subjects that, on average, account for at least 75% of tissue motion
generated during interhemispheric retraction. Individualized
boundary conditions can improve the degree of data-model
match by 10% or more but warrant further study. Overall, the
level of quantitative agreement achieved in these experiments is
encouraging for updating preoperative images to reflect tissue
deformation resulting from retraction, especially since model im-
provements are likely as a result of the intraoperative constraints
that can be applied through sparse data collection.

Index Terms—Image-guided neurosurgery, retraction, subsur-
face deformation model.
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I. INTRODUCTION

T HE REGISTRATION of case-specific preoperative im-
ages to patient and instrument locations in the operating

room (OR) [1]–[8] may be inadequate for image guidance due
to brain deformation which occurs concurrent with surgery.
The extent of intraoperative brain shift has been documented
in several recent studies [9]–[14]. These reports indicate that
the fidelity of preoperative-based image guidance can be
significantly compromised and suggest that a new generation of
adaptive image-guided systems are needed; of which, intraop-
erative magnetic resonance (iMR) has emerged as an attractive
option. While the ability to perform whole-volume imaging
during surgery is appealing; iMR is potentially disruptive to
traditional OR protocol and not necessarily amenable to up-
dating all forms of preoperative data [e.g., functional magnetic
resonance imaging (fMRI), single photon emission computed
tomography (SPECT), positron emission tomography (PET),
etc.] that might be important to clinical decision making in the
OR without additional image processing [15]. Another possible
strategy for achieving dynamic image-guidance was recently
described by Robertset al. [16] and could serve to complement
iMR or perhaps eliminate the need for whole-volume imaging
in the OR during many procedures. In this approach, compu-
tational models of brain biomechanics are used in conjunction
with intraoperative data acquisition to provide a three-dimen-
sional (3-D) nonrigid volumetric transformation for all image
data. As a complement to iMR, this scheme could be used to
generate interscan updates or to compensate for out-of-field
deformation during intraoperatively acquired single-plane or
partial-volume imaging.

Several groups have investigated the potential value of phys-
ical models in this context and have pursued related ideas
which are underpinned by biomechanical concepts [17]–[21].
The advantage of modeling is the ability to incorporate the
physical and structural properties of tissue preoperatively (e.g.,
through magnetis resonance elastography and diffusion tensor
imaging) in combination with knowledge of the mechanical
influences imposed on the brain during surgery. Initial work
was two-dimensional [17], [19], [22] but quickly progressed
to 3-D in terms of both lumped element [18] and continuum
mechanical [20] realizations. While significant advances have
been reported, issues pertaining to fast processing [23], [24]
and biophysical constituitive laws [25] remain as important
areas of investigation.

The challenge in the modeling approach is to develop a com-
putationally tractable framework that is advanced enough to
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translate complex intrasurgical events into sufficiently accurate
estimates of tissue mechanical response which can be used to
maintain image-to-patient correspondence throughout surgery.
Toward this end, we have implemented a 3-D biphasic com-
putational prescription of brain deformation based on consol-
idation physics and have begun the process of both extending
our ability to model increasingly invasive neurosurgical inter-
ventions and validatingin vivo the accuracy of resulting de-
formation estimates in animal and human systems. In previous
work, we have evaluated model predictions of detailed tissue
displacement maps and pressure fields induced in the porcine
brain by uni-axial piston translation and balloon catheter infla-
tion [26], [27]. Initial modeling attempts in humans have fo-
cused on capturing brain shift due to gravitational sag which has
been found to be a significant component of tissue motion in the
OR. In all of the studies, model predictions have compensated
for nearly 80% of the brain deformation observed which has
been encouraging and represents a major step forward relative
to navigating with preoperative image to OR field registration.
More recently, we have reported computational strategies for es-
timating displacement due to both tissue retraction and resection
and demonstrated their successful employment in a clinical case
study, although no quantitative validation has been undertaken
to date [28].

The goal of this paper is to provide the first quantitative as-
sessment of our tissue retraction model using the porcine brain
system. Specifically, we develop a new incremental formulation
for model deployment which is important during retraction
where, unlike previous uni-directional piston experiments, the
loading conditions possess a directional dependency that varies
incrementally over time. In addition, we report on the use of
more generalized boundary conditions for the hydrodynamic
component of the model at the retractor site which involve
transport coupling coefficients that provide anti-symmetrical
pressure responses across the retraction boundary—behavior
which again is more complex than that encountered during
previous pig experiments. Overall, the results are encouraging
and demonstrate through detailed comparisons between exper-
iments and model predictions that the model-driven updates
can compensate for approximately 80% of the induced tissue
motion during retraction.

II. M ATERIALS AND METHODS

A. Computational Model and Mesh Generation

The field equations for the tissue model we are using can be
written as

(1a)

(1b)

where
force/unit volume ( /m );
pressure source strength ( );
shear modulus ( );
Poisson’s ratio;
displacement vector ();
pore fluid pressure ( );

ratio of fluid volume extracted to volume change of the
tissue under compression;
hydraulic conductivity (ms/kg);
amount of fluid which can be forced into the tissue
under constant volume ( ).

There is a growing literature on low impact biomechanics of
the brain (e.g., [20], [25], and [29]–[31], among others) despite
the fact that historically brain tissue mechanical response during
surgery has received modest attention. Equations (1a) and (1b)
were originally developed by Biot [32] in the 1940s for soil me-
chanics but have been recently adapted and applied to the brain
[29], [30], [33]. This model is attractive because of its linear
(i.e., computationally efficient with a small number of physi-
cally motivated tissue property parameters) multi-phasic (i.e.,
recognizes the important influence of the hydrodynamical com-
ponent of the brain) character which mimics the porous media
response of a sponge—an intuitive approximation argued on
biophysical principles by Hakim [34]. However, it also has clear
limitations [35], for example, it does not explicitly include the
vascular compartment within the brain or account for the vis-
coelastic behavior of retracted tissue over time scales relevant
to surgery (e.g., see [28]). In fact, an important element of the
effort reported here is the degree to which the approximations of
brain deformation from surgical loading embodied in this con-
solidation model hold upin vivo.

In previous numerical implementations of this computational
framework (e.g., [33]), a linear formulation of the consolidation
equations has been employed in terms of total field variables.
Following the weighted residual treatment of (1a) and (1b), the
continuum equations can be converted into discrete matrix form

(2)

where is the stiffness matrix,
with , and representing

the calculated cartesian (total field) displacement and pressure,
and is a collection of known boundary and body force condi-
tions. To achieve the complete solution to a series of successive
surgically induced deformations, this translates into continuous
modification of the boundary condition data in order to repre-
sent the entire history of surgical events. The formulation has
the advantage that the solution has no path dependence (i.e., is
order-independent). However, extrapolation to large-strain me-
chanics or trajectory dependent deformation cannot be accom-
plished with this approach, of which, the latter becomes impor-
tant when modeling surgical retraction.

As a result, we have altered our current strategy to accommo-
date an incremental formulation

(3)

In this treatment, a series of solutions experiencing incremental
strains is combined to determine the total displacement and
pressure throughout the domain, i.e.,

(4a)

(4b)

with and being the initial state. To strictly follow this in-
cremental strategy and account for geometric nonlinearities, the
computational domain would need to be repetitively deformed
to reflect its new state at each step. However, one strategy to al-
leviate the computational overhead associated with re-meshing
is to use the original stiffness matrix from the initial state at each
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increment, i.e., . Hence, we as-
semble a single stiffness matrix on the undeformed mesh as in
(2) and use these coefficients to repeatedly solve (3) for each
increment of applied forcing (here, each retraction increment as
described in Section II-C). Although this leads to a departure
from the true-path loading, the approach maintains computa-
tional tractability; and we have found that the modification to
computing incremental field variables increases the fidelity of
our model-based technique [36]. While the linear incremental
strategy is an improvement, it is also important to recognize that
it does not necessarily yield the same solution as modeling the
nonlinear mathematics associated with large deformation me-
chanics.

B. Retraction Technique and Boundary Condition Description

Although the retraction of brain tissue during surgery
is common, detailed studies on the effects of retraction on
tissue are few [37]. The simulations that do exist are largely
concerned with realistic visual behavior for surgical simulation
[38] and are not intending to produce accurate force/stress
estimation in an effort to understand the mechanical impact
on the parenchyma. We have recently presented a strategy
to accurately reflect the effects of retraction on tissue which
maintains computational tractability with the potential of
providing intraoperative feedback to the surgeon [28]. While
our methods have not been optimized to conserve compute
time (current updates require on the order of tens of minutes),
near-real-time intraoperative image processing and updating
will likely be important and schemes which do achieve refresh
rates on the order of tens of seconds using parallel computing
have been demonstrated [23], [24].

Our approach begins with the generation of a computational
mesh of the subject’s brain using preoperative images (CT or
MR) manipulated through AnalyzeAVW1 . The boundary is
discretized into triangular patches using the marching cubes
algorithm. Custom mesh generation software creates a volu-
metric mesh with tetrahedral elements [39], having increased
discretization in the region of surgical focus. (All meshes in
this study contained at least 19 000 nodes, resulting in minimal
discretization errors with total displacement variances below
0.1 mm [26].)

In the experiments reported here, the area of focus was
located along the superior midline of the pig brain, resulting
in the geometric coincidence of fissure and retractor. A plane
describing the position and orientation of the retractor and in-
terhemispheric fissure was determined using baseline CT scans
or, when necessary, a coregistered pre-operative MR series of
the corresponding subject. The plane was incorporated into
the mesh using a splitting technique for retraction described
by Miga et al. [28]. Unit vectors extending from the centroids
of intersecting tetrahedral elements to the closest patch on the
retractor plane are determined to be either positive or negative
with respect to the direction normal to the fissure or the
direction of retraction. For each transected elemental vertice, a
coincident node is created and moved a distance equal to the
width of the retractor in the direction of its surface normal.

1AnalyzeAVW v3.1-Biomedical Imaging Resource, Mayo Foundation,
Rochester, MN. Software was provided in collaboration with the Mayo
Foundation. Codman Microsensor ICP Transducers were donated by Johnson
& Johnson.

(a)

(b)

Fig. 1. Graphical illustration of boundary conditions. (a) Cut-away view of the
craniotomy and shaded region associated with the brain stem. (b) Model zones
associated with the removal of the dura and the placement of the retractor.

The new nodes define an additional surface representing
tissue parallel to the duplicated surface, creating a fissure and
providing two independent degrees of freedom corresponding
to the tissue on either side of the retractor. In all subjects, the
interhemispheric surface of the left hemisphere was in virtual
contact with the compressive, front side of the retractor, while
the right hemisphere was initially in virtual contact with the
space-creating, back side of the retractor.

A pictorial representation of the distribution of boundary
conditions for a typical model is shown in Fig. 1. Fig. 1(a) is a
surface mesh description that includes a cut-away view of the
craniotomy while Fig. 1(b) illustrates various zones within the
model which support different boundary data. In the region of
the craniotomy where the dura was removed [superior dense
section of points in Fig. 1(b)] as well as in the modeled fissure,
stress-free conditions have been prescribed with no drainage.
The surface in contact with the retractor front [dark, superior
to inferior directed subsection in Fig. 1(b)] was prescribed
to move a known displacement in a direction normal to the
retractor blade which was measured from intraoperative CT
data. In these measurements, the compliance in our defor-
mation delivery system (retractor blade translation assembly,
see Section II-C) caused small changes in its trajectory from
increment to increment.
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The advantage of the formulation in equation (3) is that the
application of model boundary conditions can be altered incre-
mentally to more accurately describe the measured deformation
trajectory. We have found this subtle adjustment improves our
ability to predict the deformation path development in our ex-
perimental system [36]. On the retractor back (not shown in
Fig. 1), we have specified that the tissue displaces with the re-
tractor during its early movements and subsequently separates
at larger retractions which was empirically evident in the in-
traoperative CT data. The cause of this behavior is not com-
pletely clear but may result from some initial blood clotting
which loosely binds the tissue to the retractor during the initial
stages or from a tearing of the tissue inferior to the retractor at in-
creased retraction, freeing the opposite hemisphere. It is also the
case that tissue under normal conditions experiences an internal
pressure which is released upon separation from its surround-
ings which may account for the observed motion by allowance
for some expansion into the void created by retraction.

In recent work by Migaet al. [26], a mixed boundary condi-
tion relating subarachnoid pressure to interstitial pressure was
provided for far-field drainage conditions. In this work, a similar
boundary condition is applied which relates the communication
of pressure immediately under the retractor,, to the adjacent
interstitial fluid in the tissue by a transport coupling coefficient,

, and is written

(5)

As with displacement, the conditions for pressure are equal but
opposite in sign on the front and back sides of the retractor
for initial deformation increments, while pressure is decreased
for subsequent deformations. In previous work [27], [26]
a boundary calibration curve relating pressure to applied
deformation was directly enforced which did not allow for
strain-induced pressure rises immediately under the defor-
mation source. In regions outside the craniotomy [sparsely
dotted areas distal from the retractor location in Fig. 1(b)], the
tissue has been allowed to slip along the cranial cavity with
no drainage specified. The pressure in the brain stem area
[darker, but less dense dotted area inferior to the craniotomy
in Fig. 1(b)] was assigned to be zero to reflect conditions
associated with herniation observed in this region of the human
brain. Tissue properties used in the model are similar to those
we have employed in previous studies ( 1027 ;
0.46; 1.0 E-11 ms/kg).

C. In Vivo Experimental Procedures

To measure controlled surgical displacements, the experi-
mental porcine protocol developed previously and described
by Miga et al. [26], [27] was used as the foundation for the
procedures employed in this study. Following anesthesia,
a craniotomy was performed approximately centered both
medial and anterior/posterior, leaving the dura temporarily
intact. Four subjects weighing 34–45 lbs., were involved.
All procedures were approved by the Institutional Animal
Care and Use Committee at Dartmouth College. Using a 14
gauge needle, 20–22 stainless-steel beads (1-mm diameter)
were implanted into the parenchyma near the interhemispheric
fissure in a grid-like fashion using fluoroscopic imaging for
guidance. Fixation of the beads in the tissue was determined by

(a)

(b)

Fig. 2. Procedures used during thein vivo porcine experiments.
(a) Fluoroscopic image of marker locations in the parenchyma.
(b) Interhemispheric retractor attached to the translation system integrated into
the stereotactic frame holding the subject. The placement of pressure sensor
probes directly into the parenchyma can be seen.

fluoroscopic examination performed intermittently throughout
the implantation procedure, as illustrated in Fig. 2(a). The
exposed dura on the hemisphere designated for retraction was
carefully removed. A retractor was inserted into the hemi-
spheric fissure, in line with the grid of beads. The retractor was
then mounted to the stereotactic frame holding the subject [see
Fig. 2(b)]. The apparatus allowed for unidirectional translation
of the retractor laterally away from the midline by rotating a
calibrated lead-screw mechanism. Acquisition of a baseline CT
scan (0.3 mm 0.3 mm 1 mm) was taken prior to successive
translations (3, 6, 8, and, optionally, 10 mm) of the mounted
retractor. Registration was provided by the stereotactic frame,
thus allowing detailed spatial trajectories for all implanted
beads to be recorded. Interstitial pressure was also recorded in
both hemispheres with an invasive probe (Johnson & Johnson
Codman Microsensor ICP Transducers) inserted directly into



PLATENIK et al.: IN VIVO QUANTIFICATION OF RETRACTION DEFORMATION MODELING 827

(a) (b)

(c) (d)

Fig. 3. Anatomically coronal CT scans of incremental retraction. (a) Baseline. (b) Step 1): 3 mm. (c) Step 2): 6 mm. (d) Step 3): 8 mm.

the parenchyma in two of the four experiments as illustrated in
Fig. 2(b).

III. RESULTS

We have organized our presentation of the results into three
subsections. Because of the relatively large amount of data (four
subjects, three to four retractions/subject, 20–22 beads/subject),

we have summarized model comparisons in terms of average
and maximum error metrics across subjects for each retraction.
However, it is also informative to examine the spatial details of
the data-model match in an individual subject. As a result, in the
first subsection we report the experimental data predominantly
in averaged form, then in the second subsection quantify specific
comparisons between model calculations and measured quanti-
ties for a single subject and conclude with the third subsection
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(a)

(b)

Fig. 4. Bead trajectory comparison across subjects.x: Subject 1.o: Subject
2.4: Subject 3.�: Subject 4. (a) Coronal view (X–Y plane). (b) Axial view
(X–Z plane). The initial retractor position is represented by the solid line in
each plane and the direction of retraction is shown.

which reports summary data across the animal group used in the
study.

A. Experimental Data

Fig. 3 shows a typical sequence of CT scans illustrating
bead movements created during a series of retraction steps.
The movement of the blade, brain parenchyma and implanted
beads in the retracted hemisphere is clearly evident compared
to the relatively modest motion of the beads visible in the
contralateral side. Fig. 4 presents orthogonal views of bead
trajectories across all four subjects. While each experiment
contains elements of displacement that exhibit individual
characteristics, the overall deformation fields are reasonably
similar within the four brains despite some differences in brain
volume and retractor placement. Specifically, there is an overall
preference for posterior and inferior movement (i.e., toward the
brain stem) secondary to the dominant lateral displacement in
the retraction direction for many of the beads, although there is
some anterior/superior motion in a few isolated instances.

TABLE I
MEASUREDRETRACTOR DISPLACEMENTS: TOTAL AND INCREMENTAL

(INC) IN MILLIMETERS FOR EACH SUBJECT

TABLE II
AVERAGE AND MAX MEASURED BEAD DISPLACEMENTS: MAGNITUDE

(U ) AND x(U ), y(U ) AND z(U ) DIRECTIONAL COMPONENTS IN

MILLIMETERS FOR ALL FOUR SUBJECTS. STANDARD DEVIATIONS (�) ARE

ALSO REPORTED FORAVERAGED RESULTS

Reported in Table I is the measured blade movement for each
retraction event for all four subjects. Two subjects underwent
a series of three retractions while the remaining two subjects
experienced a fourth retraction; therefore, averaged results are
based on a sample of 4 for retraction steps 1)–3) and 2
for retraction Step 4. Both the accumulated total and incremental
distances the blade moved are tabulated. Table II contains the
average and standard deviation in the bead displacements in
terms of total magnitude and Cartesian directional components
for each retraction step across the subject pool. Although the
mounted translational apparatus was designed to be unidirec-
tional, slippage in linked components and the retractor’s in-
herent flexibility resulted in slightly angled displacements of
the blade. Even so, the majority of displacement occurred in
the nominal retraction or direction with smaller movements
recorded in the and directional displacements between sub-
jects.

B. Individual Subject Comparisons

Fig. 5 shows comparisons of measured and computed bead
locations presented in orthogonal views for Subject 3. The com-
plete trajectories from all four retractions are included. It is im-
portant to analyze individual bead errors for a given retraction
to determine the degree to which the model correctly estimates
the local deformation field. Fig. 6 reports measured and com-
puted bead displacement as a function of bead number for the
second retraction in this same subject. It compares not only mea-
sured and computed values of total displacement magnitude but
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(a)

(b)

Fig. 5. Subject 3 comparison between measured and calculated bead
trajectories.4-measured.o: calculated. (a) Coronal view (X–Y plane), (b)
axial view (X–Y plane). The initial retractor position is represented by the
solid line in each plane and the direction of retraction is shown.

also the three directional (Cartesian) components of the defor-
mation at each bead location. The error in displacement mag-
nitude and the magnitude of the difference error vector are also
shown in order to gauge both the size and directional quality of
the match between measured and computed motion. The model
also has a hydrodynamical component and pressure fields can
be compared in Subject 3 as well. Fig. 7 shows the pressure
traces recorded during this experiment along with their com-
puted counterparts.

Given some appearance of systematic differences in the ex-
perimental versus computed displacements in Fig. 6 (e.g., over-
predictions in , opposite direction in ), it is tempting to con-
sider boundary conditions specific to an individual experiment
in order to investigate whether these discrepancies can be elimi-
nated. Fig. 8 shows the analogous comparison to Fig. 6 for such
a case. In the latter figure, nodes representing tissue at the edges
of the craniotomy in the retracted hemisphere were constrained
to slip only along the edge direction. Specifically, nodes on the

craniotomy edges parallel to the retraction direction were free to
move in that direction whereas nodes on the edge normal to the
direction of retraction were free to move parallel to that edge.
In addition, tissue next to the walls of the cranium just above
the brainstem were not allowed to move inferiorly nor laterally
to simulate the gradual curvature of the skull confining this re-
gion near the base of the brain. These constraints were added
based on empirical observations of the tissue behavior measured
during bead movement in the CT-scans. While physically rea-
sonable, they have not been supported by independent validation
nor were they found to generalize effectively across the full set
of experiments reported here.

C. Group Comparisons

Table III reports the average and maximum differences in the
experimental and calculated displacement vectors for each re-
traction event for all subjects in the study. The data is presented
in terms of average and standard deviation in the Cartesian di-
rectional and total magnitude error components. These errors
accumulate with each retraction, however, it is possible to as-
sess an individual retraction increment by comparing with the
known location of the bead at the start of a specific retraction
event. Per event differences are recorded in Table IV and indi-
cate that the errors associated with any given retraction incre-
ment are similar, being approximately 0.2–0.3 mm. In terms of
percentage errors or percent recapture of tissue motion, Table III
can be recast in the form of Table V by subtracting the average
relative error in each direction or total magnitude from 100 per-
cent. The Table V measures are the same as we have used in the
past [40] to quantify the overall model performance from the
perspective of recovering tissue motion for updating preopera-
tive images intraoperatively during image-guided neurosurgery.

IV. DISCUSSION

Figs. 4–7 indicate that we can acquire a large amount of
detailed information on tissue motion due to retraction using
our bead tracking technique. This provides a rich environment
for comparing model calculations with measured displacements
in vivo. We have attempted to distill the large amount of data
into summary form by reporting tables of average and max-
imum measures of tissue response and model performance
while at the same time reporting representative details from
individual experiments which are important for highlighting
the spatial characteristics of the model-data comparisons. The
results demonstrate that the model quantitatively captures the
overall brain deformation behavior during retraction. The per-
cent recapture figures of merit in Table V report a rate of
75%–80% which is quite similar to those observed in previous
experiments that exploited simpler, less surgically realistic de-
formation sources (e.g., unilateral piston translation [26]). This
is encouraging given the more complex challenges associated
with modeling of tissue retraction; however, it is also clear
that there is room for additional improvement.

The individual subject comparison shown in Figs. 6 and
8 reveal that the majority of the bead errors are less than
1mm, although there are some consistent discrepancies. For
example, the y displacements either show little movement or are
predominantly positive experimentally indicating a tendency
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Fig. 6. Comparison of measured and computed bead displacements during the second retraction event for Subject 3 using the general boundary conditions. Total
displacement magnitude (top row, left),x displacement (top row, right),y displacement (middle row, left) andz displacement (middle row, right) comparisons are
shown for each bead location. The average percent errors relative to the mean displacement in total magnitude,x displacement,y displacement andz displacement
are 15%, 20%, 28%, and 22%, respectively. The error in displacement magnitude (bottom row, left) and the magnitude of the difference error vector (bottom row,
right) are also shown on a per bead basis.

for the beads to move superiorly during retraction whereas
they move inferiorly (downward) in the model for the most
part. The anterior/posterior (i.e., displacement) motion is
generally consistent between the model and the measurements;
however, the model underpredicts the degree of overall move-
ment observed experimentally. The majority of beads follow
closely their trajectories in the model relative to reality with
one or two exceptions (e.g., bead 4). Interestingly, the model

tends to overpredict this movement which is in the primary
direction of retraction in almost every case.

Subjectspecificboundaryconditions (e.g.,Fig.8)can improve
the degree of data-model match by as much as 10% or more. In
the particular case illustrated here, all components of the error
vector improve with the most dramatic gains occurring in the
and directions. For example, beads 2 and 4 in the(retraction)
direction are notably improved in Fig. 8. Complete analysis
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(a)

(b)

Fig. 7. Pressure data for Subject 3. (a) Experimentally measured pressure. (b) Calculated pressure.

of subject-specific boundary condition results (not shown), in
terms of the percent recapture of deformation measure reported

in Table V, shows that the lower bound generally improves
to better than 85% of the total motion.
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Fig. 8. Same as Fig. 6 with subject-specific boundary conditions in which case the average percent errors relative to the mean displacement magnitude, x
displacement,y displacement, andz displacement have been reduced to 12%, 8%, 16%, and 26%, respectively. Similar reductions in the errors in displacement
magnitude (bottom row, left) and difference vector magnitude (bottom row, right) are also found.

Hydrodynamically, both the anteriorly and posteriorly po-
sitioned sensors in the retracted hemisphere exhibit pressure
spikes at the onset of retraction that decay to a steady level
posteriorly which is elevated anteriorly for each successive
retraction event. A clear pressure gradient exists antero–pos-
terior in this hemisphere which increases with retractions.
However, on the opposite side, pressure decreases initially for
the first two retractions and rises toward baseline anteriorly
while falling posteriorly during the relaxation period, but
remains negative suggesting that the tissue in this hemisphere
is under tension. The antero–posterior spatial gradient is simi-

larly directed. Computationally, some of this overall behavior
is present, although certain details are missing. Specifically,
the spikes in the retracted hemisphere and even the initial
dips in the contralateral side followed by transient decay
(or rise) to an elevated steady-state is evident. The peak
values are generally underpredicted and the decay rates are
typically too slow. The transient dynamics are constrained
by the numerical stability of the computational model which
is inversely related to the square of the spatial discretization
[41]. In the cases shown here, we were unable to increase
the temporal resolution and concomitant pressure decay rate
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TABLE III
CUMULATIVE AVERAGE AND MAX DISPLACEMENT ERRORS: MAGNITUDE

(U ) AND x(U ), y(U ), AND z(U ) DIRECTIONAL COMPONENTS IN

MILLIMETERS FOR ALL FOUR SUBJECTS. STANDARD DEVIATIONS (�) ARE

ALSO REPORTED FORAVERAGED RESULTS

TABLE IV
PER EVENT AVERAGE AND MAX DISPLACEMENT ERRORS: MAGNITUDE

(U ) AND x (U ), y (U ), AND z (U ) DIRECTIONAL COMPONENTS IN

MILLIMETERS FOR ALL FOUR SUBJECTS. STANDARD DEVIATIONS (�) ARE

ALSO REPORTED FORAVERAGED RESULTS

TABLE V
PERCENTCAPTURE OFDEFORMATION: MAGNITUDE (U ) AND CARTESIAN

DIRECTIONSx (U ), y (U ), AND z (U )

to better match the experimental time course without intro-
ducing numerical instabilities—the remedy for which would
be increased mesh resolution. Nonetheless, the model appears
to perform reasonably well in terms of the measured pressure
behavior.

When subject-specific boundary conditions are applied there
is clear improvement. For example, thedisplacements of
several beads with large errors (e.g., beads 2, and 4) and the

displacements overall which exhibit less negative (inferior)
movement computationally are better matched. These gains
were achieved by modifying the conditions around the edges
of the craniotomy and near the base of the skull as described in
the previous section. They served to reduce the overprediction
of motion in the retraction and inferior (toward the brainstem)
directions within the model.

Overall, the 75% (improved to 85% with individualized
boundary conditions) motion compensation captured with the
model is encouraging but likely not sufficient for neurosurgery,
although it would clearly be better than relying only on
preoperative images, which is often the case in practice. The
dependence on individual boundary conditions to the level of
10%–20% may be expected. While we have not completed a
formal sensitivity study, we have experimented with many more
boundary condition options than reported here and consistently
found variations in the resulting displacement fields on this
order. This places the burden of deriving the data required to
drive the computational model on the OR, for example, by
tracking the position of the retractor blade. Intraoperative data
may play another important role if also used to constrain the
model, which, along with improvements in the underlying
model, itself, will likely be the most productive avenues for
achieving tissue motion estimates that are commensurate with
the accuracy desired during neurosurgery.

V. CONCLUSION

A series of validation experiments for a computational
model of tissue retraction have been completedin vivo using
the porcine brain. Detailed measurements of tissue motion
and interstitial pressure were compared to model calculations
across a four subject set with each consisting of up to four
separate retraction events. An incremental displacement for-
mulation was employed which readily accommodated changes
in retractor blade orientation during successive retractions.
This improved the degree of data-model match by accounting
for some of the geometric nonlinearity associated with sizable
total deformation. Boundary conditions at the retractor blade
surface pertaining to the hydrodynamical component of the
model were also improved and found to be able to reasonably
represent rather complex pressure dynamics which behaved
quite differently in the two hemispheres. These advances bode
well for the model and its ability to capture tissue deformation
from complicated surgical procedures such as retraction.
Certainly, the 75%–80% motion recapture rate found in these
experiments would constitute a significant improvement over
not using any form of tissue motion compensation in the OR.

With subject-specific boundary conditions error can be re-
duced even further, typically 10% or more, at least in the ex-
periments reported here. This suggests that there are aspects
of the physical motion which require additional study. While
overall there was a considerable amount of consistency across
the experiments performed in each subject, some individual-
ized behavior is not unexpected. For example, there was vari-
ation in brain volume and retractor blade location (in partic-
ular, depth of insertion) that may play a role in the unaccounted
data-model match discrepancies. Future experiments could well
benefit from MR imaging of the brain under retraction where
higher definition of the parenchyma could be exploited to im-
prove our understanding of how the cortical surface is moving
both in and around the craniotomy and near the brain stem where
we found tailored boundary conditions can make a difference.

Additional retraction experiments with tissue motion lateral
to medial and anterior to posterior are also warranted. These
would create other interactions between the cranium and tissue
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at the closed and open surfaces that should be captured with
the model. However, relative to a lateral to medial retraction,
the experiments reported here are more complex in that the
two hemispheres experience different types of loading condi-
tions. Lateral to medial retraction would leave both hemispheres
essentially in compression much like our previously reported
piston translation studies; hence, we would expect to observe a
high degree of data-model agreement in this configuration. The
pressure response remains an element of the system which has
not been fully characterized. While the general model behavior
emulates that observed in the porcine brain, we exploited the
calibration curve generated during the piston translation study
to drive the pressure conditions associated with the retractor
blade displacement, although we did so through a more realistic
boundary relationship involving a coupling coefficient rather
than directly enforcing a pressure value at the tissue-blade inter-
face as before. Nonetheless, we might expect improved model
performance with better empirically derived pressure calibra-
tion as a function of blade displacement by using an instru-
mented retractor with pressure sensing capabilities in the future.
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