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Abstract—The efficacy of deep brain stimulation (DBS) depends 

on electrode placement accuracy, which can be jeopardized by 
brain shift due to burr hole and dura opening during surgery. 
Brain shift violates assumed rigid alignment between preoperative 
image and intraoperative anatomy, negatively impacting therapy. 
Objective: This study presents a deformation-atlas biomechanical 
model-based approach to address shift. Methods: Six patients, who 
underwent interventional magnetic resonance (iMR) image-
guided DBS burr hole surgery, were studied. A patient-specific 
model was employed under varying surgical conditions, 
generating a collection of possible intraoperative shift estimations 
or a ‘deformation atlas.’ An inverse problem was driven by sparse 
measurements derived from iMR to determine an optimal fit of 
solutions of the atlas. This fit was then used to obtain a volumetric 
deformation field, which was utilized to update preoperative MR 
and estimate shift at surgical target region localized on iMR. 
Model performance was examined by quantitatively comparing 
intraoperative subsurface measurements to their model-predicted 
counterparts, and qualitatively comparing iMR, preoperative MR, 
and model updated MR. A nonrigid image registration was 
introduced as a comparator. Results: Model-based approach 
reduced general parenchyma shift from 8.2±2.2 to 2.7±1.1 mm 
(~66.8% correction), and produced updated MR with better 
agreement to iMR than that of preoperative MR. The average 
model estimated shift at target region was 1.2 mm. Conclusions: 
This study demonstrates the feasibility of a model-based shift 
correction strategy in DBS surgery with only sparse data. 
Significance: The developed strategy has the potential to 
complement and/or enhance current clinical approaches in 
addressing shift.  
 

Index Terms—Brain shift, computational modeling, deep brain 
stimulation, image-guided neurosurgery 

I. INTRODUCTION 
HE quality of deep brain stimulation (DBS) therapy is 
highly dependent on the accurate placement of electrode 
contacts into the region of interest, e.g. subthalamic nucleus 

(STN), a common target structure for Parkinson’s disease (PD). 
This task is particularly challenging considering the size of 
DBS target structure (e.g. the STN is ~6×4×5 mm) and the 
dimensions of the DBS electrodes (e.g. length and diameter of 
electrode contacts of Medtronic 3389 (Medtronic Inc., 
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Minneapolis, MN, USA) are 1.5 and 1.27 mm respectively) [1, 
2]. Accurate placement of electrodes is critical in achieving 
effective therapy: Balachandran et al. indicated that modulation 
treatment may be rendered ineffective due to misplacement of 
electrodes by 3-4 mm; Anderson et al. and McClelland et al. 
similarly argued that mistargeting of greater than 3 mm would 
significantly and negatively impact the clinical efficacy of DBS 
therapy [2-4]. While Ivan et al. further suggested misplacement 
by as little as 2 mm can cause inadequate treatment and poor 
outcome; similarly in Kremer et al., where intraoperative CT 
(iCT) was utilized for the verification of DBS electrode 
position, lead repositioning was performed if a deviation of 
greater than 2 mm from intended target was detected [5, 6]. 
Moreover, accurate targeting can aid and facilitate achieving 
optimal postoperative programming to minimize side effects 
and prolong battery life (e.g. reducing the need for higher 
current to compensate for suboptimal lead placement), 
potentially reducing the frequency of battery replacement 
surgery [2, 3].  

Compounding the challenge of accurate electrode placement 
is brain shift, which is introduced by burr hole (small 
craniotomy ~14-mm in size) and dura opening during surgery 
[5]. Brain shift compromises the spatial alignment between the 
preoperative imaging data, which are used for surgical 
planning, targeting and navigation, and intraoperative patient 
anatomy. Previously groups have observed brain shift in DBS 
burr hole surgery: Winkler et al. reported brain shift of 2 mm in 
the STN (n=1) [7]; Khan et al. observed average displacement 
of 1.8 and 1.6 mm at anterior commissure (AC) and posterior 
commissure (PC), respectively, and up to 4 mm in deep brain 
structures (n=25) [8]; Elias et al. found 7.6% of patients with 
AC shift over 2 mm and 13.6% with AC shift over 1.5 mm 
(n=66) [9]. Most of the above and similar studies used preop- 
and postop-magnetic resonance (MR) images to estimate shift 
of critical deep brain structures. Intraoperative shift estimation 
was achieved in a comprehensive study by Ivan et al. via 
interventional MR (iMR) [5]. The study found shift ranging 0.0-
10.1 mm (n=44) with the greatest shift in the frontal lobe; the 
study also found 9% of patients with shift over 2 mm in deep 
brain structures and 20% with shift 1-2 mm [5]. An additional 
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finding shared among these studies was that the majority of 
shift was in the direction of gravity.  

The potential detrimental impact of brain shift is typically 
confronted clinically by two approaches, namely 
microelectrode recording (MER)-assistance or iMR-guidance. 
Awake-MER assisted procedure is a widely used technique and 
is considered the gold standard. However, MER requires: (i) 
prior to surgery, patients must be off medication, which 
negatively affects their ability to tolerate the procedure; (ii) 
during surgery, patient participation is required, thus limiting 
treatment availability to those who cannot tolerate such distress 
[10, 11]; (iii) MER can involve multiple electrode passes to 
optimize lead placement, and an increased number of passes has 
shown to increase the risk of intracranial hemorrhage and other 
complications [10-12]. These deficiencies of MER are 
addressed in iMR-guided procedures where direct target 
visualization and brain shift monitoring are possible with 
patients under general anesthesia [10, 13]. However, burdens 
associated with cost, training and workflow posed by iMR must 
be considered.  
 An alternative approach, albeit less explored, to address brain 
shift in DBS burr hole surgery is to employ a biomechanical 
model-based method. Model-based approaches that leverage 
sparse data obtained via low-cost and convenient intraoperative 
instrumentation to account for deforming neuroanatomy, if 
accurate, could complement and/or reduce the reliance on 
current clinical approaches (e.g. for centers without iMR-
guidance systems) while overcoming the above deficiencies 
without disrupting existing clinical infrastructure or workflow. 

Efforts to employ model-based brain shift correction strategy 
in DBS are limited. Early work was reported by Bilger et al., 
where brain shift due to cerebrospinal fluid (CSF) loss was 
simulated [14]. The later work of Bilger et al. was then further 
developed in Hamze et al. for DBS trajectory planning with a 
linear stress and strain description of the brain [15, 16]. 
Independently from the group above, model-based approach 
proposed by Bennion et al. attempted to consider different 
material models for different structures such as dural septa and 
ventricles [14-17]. However, these studies suffered from the 
same limitation: the lack of realistic in vivo patient data for 
validation, as they largely focused on the feasibility of forward 
model solution, or preliminary validation with limited 
synthetic/simulated data [14-17]. Recent work using 
preoperative MR and iMR in [18], and preop- and postop- 
computed tomography (CT) in [19], both used model-based 
approaches in a single patient to investigate shift compensation 
in DBS. The results provided in both studies showed promise 
for a model-based approach. It should be noted the former in 
[18] is a preliminary version of this work with one patient 
presented at SPIE Medical Imaging 2018.  

Here we further developed and examined a model-based shift 
correction strategy in 6 patients who underwent iMR-guided 
DBS surgery. These patients were considered as having 
experienced significant asymmetric shift, both observed 
clinically and measured by high fidelity iMR data. While the 
construction of the finite element model in the proposed 
approach relies solely on the preoperative MR without the 
dependency of iMR, the aforementioned iMR imaging data 
afforded the comparison between iMR measured shift 

(considered gold standard measurements) and corresponding 
model predicted shift, specifically here, model performance 
was retrospectively examined: (i) quantitatively by comparing 
intraoperative subsurface general parenchyma shift 
measurements to their model-predicted counterparts, and (ii) 
qualitatively by comparing iMR, preoperative MR, and model 
updated MR.  

The objective of this study is to demonstrate the feasibility of 
a model-based shift correction strategy for DBS surgery using 
only sparse data, which would enable possible intraoperative 
deployment of the method, and provide a model updated MR 
that more accurately represents the intraoperative patient 
anatomy to aid surgical navigation and targeting, as well as 
direct visualization.  

II. METHODOLOGY  

A. Data 
Six patients who underwent iMR-guided DBS burr hole 

surgery at University of California, San Francisco (UCSF) and 
experienced significant asymmetric brain shift were studied. 
Preoperative and iMR imaging volumes were acquired with 
patient consent and IRB approval. The specifications of the 
imaging data are shown in Table I. The details of the surgical 
procedure may be found in [5].  

Here case 1 was a unilateral implantation while the remaining 
five cases were bilateral. It should also be noted here that 
preoperative MR and iMR imaging data were acquired with the 
patient’s head immobilized in a head frame and with no patient 
or table movement between image acquisitions.  

 

 
 
An example of the acquired data is shown in Fig. 1, where 

significant asymmetric shift is readily observable. Moreover, 
the corresponding crosshairs indicate subsurface deformation 
occurring at the lateral ventricle. Midline shift is also observed. 
Here it should be noted that the insertion path of the electrode 
leads and resultant imaging artifacts are visible (red arrows) on 
the iMR imaging volume.  

 

TABLE I 
PREOPERATIVE MR AND IMR IMAGING DATA INFORMATION  

 Preoperative MR  iMR 

Case # Dimension Spacing 
(mm) Dimension Spacing 

(mm) 

1 240×240×
85 

1.00×1.00
×2.00 

256×256×
107 

1.02×1.02
×1.50 

2 240×240×
80 

1.00×1.00
×2.00 

256×256×
107 

1.02×1.02
×1.50 

3 256×256×
75 

1.02×1.02
×2.00 

256×256×
120 

1.02×1.02
×1.50 

4 256×256×
120 

1.02×1.02
×1.50 

256×256×
120 

1.02×1.02
×1.50 

5 240×240×
85 

1.00×1.00
×2.00 

256×256×
107 

1.02×1.02
×1.50 

6 240×240×
85 

1.00×1.00
×2.00 

256×256×
107 

1.02×1.02
×1.50 
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B. Biomechanical Model-based Deformation Atlas  
Fundamental to the developed deformation-atlas model-

based approach is the construction of patient-specific finite 
element (FE) biomechanical model and the appropriate 
boundary condition assignment that reflects the understanding 
of the physics of shift phenomenon in DBS burr hole surgery.  

 
To construct the biomechanical model, patient brain volume 

was manually segmented from the preoperative MR image. A 
surface was then extracted from the segmented brain via a 
marching cubes algorithm. The surface mesh was provided to a 
custom-build mesh generator to obtain a volumetric tetrahedral 
mesh [20]. An atlas brain volume was rigidly and nonrigidly 
registered to the patient image [21]. Subsequently the rigid and 
nonrigid transformations were applied to the brain stem, falx 
and tentorium segmented from the atlas image to obtain patient 
specific representations of these structures, shown in Fig. 2(a) 
[21-24]. Once patient specific FE mesh was obtained, 
displacement and pressure boundary conditions were assigned 
based on an algorithm developed and tested in previous work 
for tumor surgery but significantly modified to the unique 
nature of shift in DBS herein [18, 24-27].  

Specifically, previous reports have observed and 
hypothesized that contributing factors to brain shift in DBS, in 
particular asymmetric shift, are gravity, CSF loss and 
intracranial air invasion or pneumocephalus [5, 8, 28-32]. In the 
model-based approach reported here, displacement and 
pressure boundary conditions were designated: (i) brain surface 
above a preset level was stress free (i.e. freely deforming); (ii) 
brain stem region was fixed in displacement; (iii) the rest of 
brain surface and tentorium were given slip conditions 
(tangential movement allowed but no normal motion); (iv) 
nodes above a fluid drainage level had a defined pressure 
reference value and below had a Neumann condition, i.e. no 
drainage allowed. Material properties used in the model may be 
found in [24]. 

To accommodate the unique shift phenomenon in DBS, the 
following conditions were also prescribed: (i) to simulate 
asymmetric shift, CSF loss was also modeled in an asymmetric 
manner, i.e. one hemisphere was fully saturated. Furthermore, 
in the biphasic biomechanical model employed here [33], CSF 
loss precipitates brain tissue sag, i.e. CSF loss decreases 

buoyancy, thus causing the brain tissue to sag due to gravity. 
(ii) With the observation of ventricular shape change (e.g. in 
Fig. 1, specifically hemispheric asymmetric deformation), 
additional boundary descriptions were given to the ventricle. 
The lateral ventricle was segmented from preoperative MR and 
modeled as a void and further divided into four segments 
spatially, shown in different colors in Fig 2. Different assigned 
Dirichlet pressure conditions (direct pressure values that are 
specified) [34] were considered for these segments in order to 
describe an apparent presence of a pressure gradient due to 
pneumocephalus. (iii) Based on previous studies, it has been 
suggested that material properties near/of the lateral ventricle 
warrant additional consideration, therefore the elements 
surrounding the structure of the lateral ventricle in the FE mesh 
were determined and given a stiffer material property [17, 35]. 
(iv) While our previous protocol had assigned slip displacement 
boundary condition to falx [18, 24], such assignment would 
prevent movement in the normal direction, thus disabling the 
model to recover midline shift such as observed in Fig. 1. 
However entirely removing this constraint is also unreasonable 
due to the natural structural integrity presented by the falx [26]. 
To reconcile, elements surrounding the patient-specific falx 
representation were determined and given stiffer material 
property, thus allowing normal motion yet offering resistance 
due to falx structure similar to [36]. To supplement the 
descriptions of the above steps in boundary condition 
generation, a sample of the boundary conditions deployed is 
shown in Fig. 2(b)-(d), where Fig. 2 (b) depicts displacement 
boundary condition: green represents stress free condition, 
black represents slip condition and red or brain stem region has 
fixed displacement. Fig. 2(c) describes fluid drainage, 
specifically asymmetric drainage simulated in the model where 
orange represents the tissue submerged in CSF. Fig. 2(d) 
depicts pressure boundary condition, where dark green 
represents the reference pressure, black represents no drainage 
condition, lastly four segments of the ventricle (illustrated in 
different colors of neon green, pink, blue and red corresponding 
to Fig. 2(a)) are given additional Dirichlet pressure 
considerations described previously. 

With the aforementioned modifications, a DBS-specific 
model-based approach that accounts for neuroanatomical 
constraints, gravity, asymmetric CSF loss, and 
pneumocephalus interaction was realized. The deformation-
atlas approach calls for a collection of possible intraoperative 
shift solutions reflecting systematically varying surgical 
conditions. Thus here, 3 different CSF drainage levels and 21 
CSF fluid configurations, as well as 5 modestly varied head 
configurations relative to gravity were created assuming the 
patient was in supine position (i.e. direction of gravity shown 
as the blue vector in Fig. 2) [5]. Additionally, for the ipsilateral 
ventricle associated with asymmetric shift, the ventricle was 
separated into two segments. Each segmental partition was 
assigned a Dirichlet pressure condition with 3 different possible 
nonzero pressure levels considered. Given the combinations 
available, this provided a total of 9 pressure configurations in 
the solution distribution. With respect to the two segments 
associated with the contralateral ventricle, both were given 

 
Fig. 1.  Comparison of preoperative MR and iMR imaging data on a 
corresponding slice. Significant asymmetric shift can be observed. Subsurface 
shift, e.g. at the lateral ventricle, is indicated by the crosshairs. Midline shift is 
also observed. The insertion path of the electrode leads and resultant imaging 
artifacts can be observed (red arrows) on iMR imaging data.  
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pressure value of zero. To some degree, the absolute pressure 
values are secondary to the proposed established gradient due 
to the pneumocephalus. The prescribed gradients however 
reflected ranges within 7.5 mmHg.  

 
Finally, with conditions reflecting the aforementioned 

configurations defined, specifically a total of 2835 biophysical 
driving states, a biphasic biomechanical model was driven to 
resolve the volumetric displacement field for each 
configuration; collectively the solutions form the deformation 
atlas. While the duration of this pre-computing phase (i.e. 
deformation atlas construction) varies based on numerous 
factors such as mesh size, on average the time to generate such 
deformation atlas was ~ 4 hours. 

C. Inverse Problem Approach  
An inverse problem approach was employed to estimate 

intraoperative brain shift. Specifically in (1), the objective 
function is designed to minimize the difference between the 
sparse intraoperative shift measurement and the optimized 
model prediction (i.e. a linear combination of the deformation 
atlas obtained above) in a least-squared manner [37]: 
min‖Mw-u‖2 ∃ wi ≥ 0 and ∑ wi ≤ 1n

i=1  (1) 
where M is an m×n deformation atlas (m represents the number 
of measurement points, and n is the total number of solutions in 
the deformation atlas), w are the combinatory coefficients, and 
u are the measured intraoperative displacements. Here 
constraints on the coefficients safeguard reasonable prediction 
and prevent extrapolation outside of the represented atlas.   

In this study, the sparse intraoperative measurement used to 
drive the inverse problem was derived from iMR data, i.e. 
homologous surface and subsurface points were designated on 
preoperative and iMR images (e.g. in Fig 3) in a process similar 
to [27, 38]. In particular, corresponding discernible subsurface 
features in Fig. 3(a) and (b) were found in the anterior frontal 
lobe on the ipsilateral side at various depths on preoperative 
MR and iMR. An example of the distribution of designated 
subsurface points is shown as red points in Fig. 3(c). Fig. 3(c) 
also illustrates the spatial relations of these points to the 
approximated surgical target region, i.e. electrode implant, 
shown as the blue point, localized via iMR and a process 
explained in details later.  

 
The number of designated surface and subsurface points used 

for this study is summarized in Table II.  

 
The rationale for the use of surface and subsurface sparse 

data, instead of the whole iMR dataset, is twofold: (i) while we 
have previously demonstrated the ability to collect inverse 
problem driving data without significantly disrupting workflow 
[24, 39, 40], it is always desirable to reduce the quantity of data 
needed to drive the model in order to minimize workflow-
related burdens posed by the model-based approach; and (ii) the 
small size of burr hole impedes the ability to use surface data in 
the operating room (OR), an input source that most model-
based methods rely on, therefore subsurface input was also used 
here in anticipation of a data acquisition approach that would 
provide subsurface information without presenting the cost and 
workflow burdens of iMR, i.e. a transcranial or burr hole 
ultrasound (US) driven approach.  
 The utilization of subsurface data however required 
modification to the inverse problem approach used previously, 
which was driven exclusively by surface data [24, 27, 39]. 

 
Fig. 2.  (a) Computational domain of the patient specific biomechanical model. 
Patient specific falx, tentorium and brain stem structures determined via an 
automated process using rigid and nonrigid image registration between patient 
imaging data and an atlas image. The lateral ventricle is further partitioned into 
four segments (illustrated with different colors) for additional boundary 
condition considerations. (b)-(d) An example of boundary conditions 
considered, where the blue vector represents the direction of gravity with the 
patient in supine position. (b) Displacement condition: green is stress free 
nodes, black is slip condition nodes, red or brain stem region is for fixed 
displacement. (c) Fluid condition: asymmetric drainage simulated in the model 
where orange represents the tissue submerged in CSF. (d) Pressure condition: 
dark green is Dirichlet reference pressure, black is no drainage condition and 
four segments of the ventricle (different colors of neon green, blue, pink and 
red) are given additional Dirichlet pressure considerations to simulate the 
effect of pneumocephalus.  

 
Fig. 3.  (a) and (b) Homologous subsurface point designation (red dots) on 
preoperative MR and iMR, respectively. (c) Distribution of designated 
subsurface points (red) and its spatial relation to approximated surgical target 
region (blue) in translucent brain mesh with the incorporation of the lateral 
ventricle also shown.  

TABLE II 
SUMMARY OF HOMOLOGOUS POINTS  

Case # Total points Surface points Subsurface points 

1 27 12 15 
2 19 11 8 
3 27 11 16 
4 29 14 15 
5 27 12 15 
6 31 15 16 

Overall 160 75 85 
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Specifically, in the fitting process of previous work, the 
optimization constructed the M matrix in (1) based on the mesh 
nodes closest to the measurement points. If such approach were 
used for subsurface measurement points, the model’s predictive 
accuracy would be impacted by the mesh resolution. The 
magnitude and trajectory of measured shift could be affected in 
the process of finding the closest mesh node to a measurement 
point. Thus, a new implementation of the inverse problem to 
accommodate input data of both surface and subsurface 
measurements was created. This new approach centers around 
constructing the M matrix in (1) at the measurement point 
instead of the closest mesh node. To achieve: (i) for a 
subsurface measurement point, the mesh element containing 
this point and thus the four nodes forming this tetrahedral 
element were determined. The barycentric coordinate 
coefficients of this local tetrahedron were computed and 
displacement solutions at the four vertices in the deformation 
atlas could then be interpolated and mapped to the measurement 
point via weighted combination; and (ii) for a surface 
measurement point, the surface triangle closest to the point 
based on projection distance was found and the three nodes 
forming this triangle were determined. Similar to the treatment 
of subsurface data, local barycentric coordinate coefficients 
were computed based on the measurement point projected onto 
the triangle and displacement solutions at the projected point 
were subsequently obtained. Another advantage provided by 
this new approach is that with the specification of surface and 
subsurface input, the inverse problem can be driven solely with 
surface data, or solely with subsurface data, or a mixture of the 
two. 
 Finally, once the optimal coefficients for the linear 
combination of the deformation atlas were found in (1), these 
coefficients were used to obtain a whole brain displacement 
field prediction. Subsequently this displacement field was used 
to (i) deform the designated preoperative points to facilitate 
comparisons of model predicted updated positions and their 
intraoperative measured counterparts; and (ii) deform the 
preoperative MR in obtaining a model updated MR reflecting 
model predicted presentation of patient intraoperative anatomy.  

D. Model Performance Assessment  
Quantitative and qualitative assessments were conducted to 

examine the model’s performance of brain shift compensation.  
Quantitatively, since a particular interest of the study is to 
assess the model’s ability to correct intraoperative subsurface 
shift, subsurface points in the previous section were used to 
gauge model shift correction performance. An additional 
consideration of utilizing and evaluating these subsurface 
points is that a comparison study was conducted between 
model-based approach and a nonrigid image registration 
technique where registration of preoperative MR and iMR was 
performed. In that study described later, since the nonrigid 
image registration would enjoy the information provided by 
whole image volumes (both preoperative MR and iMR), to 
facilitate a comparable and fairer comparison, the model-based 
approach was afforded both the sparse surface and subsurface 
data. Specifically, for points of interest, the difference between 

preoperative and intraoperative feature points represented a 
displacement measurement. Upon reconstruction with (1), this 
measurement could be compared to the model-derived 
counterpart. We also note that this is a fitting process from a 
finite representation of deformations. Here, the differences 
between intraoperative and model-predicted positions represent 
the residual error of the model-based approach. An additional 
quantitative metric employed is percent correction in (2), which 
relates the residual error to the measured shift:  

Percent correction= $1 – 
||u''⃗ predicted	– u''⃗ measured||

‖u'⃗ measured‖
*×100% (2) 

where 𝑢'⃗  is the displacement vector, subscript predicted 
represents the reconstructed model predicted vector, measured 
represents the expert measured vector, and ||·|| is the L2 norm 
of the vector or the Euclidean distance.  

Qualitatively, model updated MR was compared to iMR in 
conjunction with preoperative MR, where misalignment 
between iMR and preoperative MR would indicate brain shift, 
and agreement between iMR and model updated MR would 
illustrate the recovery of said shift by the model-based 
approach. These comparisons represent qualitative evaluations 
of image-based anatomical feature alignments.  

E. Estimation of Brain Shift at Surgical Target Region  
The estimation of brain shift at surgical target region, i.e. 

region of interest where electrode implants would exert 
therapeutic impact, is challenging since such target region is not 
designated in the preoperative space in this study. Here to 
estimate shift at target region, we leveraged the localization of 
the tip of electrode leads on iMR imaging data. Briefly, given 
the insertion path of the electrode leads was visible on iMR 
(shown in Fig. 1), the tip was localized with the assumption that 
it would be the most distal end of the insertion path. The target 
region was then defined as the region within a capture radius of 
1.5 mm of the localized tip (i.e. within a 3-mm diameter 
sphere). This region-based definition of target via the localized 
tip was selected for analysis as that within a given brain target, 
the ideal electrode placement is within a region roughly 3 mm 
in diameter. Yet, placement outside of this ideal region may 
lead to suboptimal clinic benefit with stimulation and/or 
bothersome side effects from stimulation of structures 
immediately adjacent to the target. It should also be noted 
however that the model estimation of target region shift here 
aims to provide an understanding of bulk tissue movement in 
deep brain structure, instead of shift experienced by an 
individual electrode contact. With target region defined in the 
iMR space, predicted displacement field was used to determine 
its counterpart in the preoperative space. Subsequently the 
tissue displacement trajectories that result in the co-location of 
these corresponding target regions in the undeformed and 
deformed spaces can be computed. Similarly, the nonrigid 
image registration methodology adopted in the following 
section can provide shift estimation at target region via the same 
process.  

F. Comparison to Nonrigid Image Registration  
As alluded to in the above sections, with iMR data available, 
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it was also possible to estimate a displacement map via nonrigid 
image registration of preoperative MR and iMR. While this 
nonrigid image registration process is not required to generate 
a predicted shift profile for the proposed model-based approach, 
here the purpose of this independent comparator is twofold: (i) 
the performance of the nonrigid image registration at 
designated subsurface points would inform the fidelity of the 
measurements, i.e. better performance would indicate that the 
measurement derived from expert designated points is in 
agreement with the predicted movement through nonrigid 
image registration; and (ii) the displacement at target region 
predicted by the image registration technique could serve as a 
comparator to the model-based approach as discussed in the 
previous section.  

To achieve, the Advanced Normalization Tools (ANTs) was 
used to nonrigidly register preoperative MR and iMR data [41]. 
Additional care was taken to address image artifacts introduced 
by the electrode leads (e.g. shown in Fig. 1). Specifically, 
regions impacted by image artifacts were manually segmented 
and an inpainting technique was used to limit the impact due to 
electrode lead presence to the registration, in particular with 
respect to surgical target region [42, 43]. With that, once 
nonrigid image registration was complete, (i) preoperative 
points could be deformed based on displacement map predicted 
by ANTs, and the deformed positions could be compared to 
measured intraoperative positions; and (ii) trajectory of surgical 
target region could be obtained and compared as discussed 
previously.  

III. RESULT 

A. Shift Correction Performance on Parenchymal Targets 
The impact of model-based correction strategy can be 

observed by comparing the surface meshes generated from 
preoperative MR (white) and iMR (red), with model deformed 
preoperative MR mesh (blue) shown in Fig. 4 (a) and (b).  

Here it is worth noting better agreement between model 
deformed mesh and iMR mesh (blue and red), as well as 
asymmetric shift predicted by the model, demonstrating the 
recovery of brain shift by the model-based approach on the 
brain surface. This observation was further supported by 
comparing preoperative MR, iMR and model updated MR in 
Fig. 4(c)-(e) where the corresponding crosshairs indicate the 
surface shift experienced by the patient from preoperative state 
to intraoperative state, and this shift was better recovered on the 
model updated MR.  

Quantitively, a total of 85 subsurface points were examined. 
Individual case and overall performances are summarized in 
Table III. Briefly, the model reduced misalignment due to brain 
shift from 8.2±2.2 to 2.7±1.1 mm when comparing the 2nd and 
3rd columns for percent correction of ~66.8±13.2% seen in the 
4th column. Furthermore, when breaking down into components 
of x (medial-lateral), y (anterior-posterior) and z (inferior-
superior), we found the model reduced measured shift of 2.4 
(medial-lateral shift, 8.5% of overall measured shift), 6.6 
(anterior-posterior, 67.4%) and 4.0 (inferior-superior, 24.1%) 
mm to 1.6, 1.4 and 1.2 mm for ~31.9%, 79.6% and 69.3% 

correction. Here it also should be noted that majority of the shift 
is in the direction of gravity (anterior-posterior), which is 
consistent with previous reports.  

 

 
Moreover, Table III 5th and 6th columns represents the 

counterpart results of residual error and percent correction 
provided by ANTs for the same 85 targets. The residual error 
due to ANTs displacement field was 1.5±0.8 mm (~81.6±10.1% 
correction). This provides some sense of the fidelity of shift 
correction possible to discern. 

 
Qualitatively, preoperative MR, iMR and model updated MR 

were compared, different examples shown in Fig. 5. Model 
updated MR exhibits better feature agreements (particularly in 
the frontal lobe) using only sparse measurements with iMR data 
as compared to preoperative MR. Crosshairs in Fig. 5 indicate 
better shift recovery at lateral ventricle by the model updated 
MR. While not exact, it was pleasing to see midline shift was 
recovered to a good degree by the model-based approach.  

Lastly, to speak to performance, the computational speed of 
the model-based approach (specifically intraoperative 

 
Fig. 4.  (a)-(b) Comparison of surface meshes generated from preoperative MR 
(white), model updated MR (blue) and iMR (red), where brain shift 
experienced is illustrated in the comparison between preoperative (white) and 
intraoperative (red) meshes, and the recovery of shift is demonstrated by 
comparing model (blue) and intraoperative (red) meshes. (c)-(e) Comparison 
of preoperative MR, iMR and model updated MR with corresponding 
crosshairs on the surface indicating better surface recovery by the model. 

TABLE III 
CORRECTION PERFORMANCE SUMMARY  

Case 
# 

Measured 
shift (mm) 

[# of 
points] 

Model 
residual 

error 
(mm) 

Model 
percent 

correction 
(%) 

ANTs 
residual 

error 
(mm) 

ANTs 
percent 

correction 
(%) 

1 9.1±2.4 [15] 3.4±0.7 62.8±7.50 1.7±1.0 80.5±11.5 

2 5.7±0.9 [8] 2.3±0.7 59.0±13.0 1.4±0.8 76.0±14.5 

3 6.7±1.9 [16] 1.9±0.7 71.8±10.1 1.5±0.7 78.2±10.7 

4 8.9±1.6 [15] 2.5±1.0 72.0±11.1 1.3±0.7 85.6±8.4 

5 9.2±2.3 [15] 3.5±1.4 61.5±14.8 1.8±1.0 80.0±11.3 

6 8.6±1.4 [16] 2.6±0.9 69.5±10.8 1.3±0.5 85.0±6.0 

Overall 8.2±2.2 [85] 2.7±1.1 66.8±13.2 1.5±0.8 81.6±10.2 
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components that would be executed in surgery to obtain a full 
volumetric shift prediction profile) was analyzed across 6 cases 
averaged from 3 trials. The mean duration of computing 
barycentric coordinate coefficients (the number of input points 
varied from 19-31 with an average of 26.7, see Table II) is 0.7 
seconds, subsequently the average time of computing a whole 
brain displacement is 27.1 s, and the average time of updating 
preoperative MR is 5.0 s. Overall the duration from sparse data 
input to model updated MR is 32.9 s using a standard desktop 
computer running Windows 7 with 8GB RAM and Intel Core i7 
CPU at 3.60GHz.  

 

 

B. Shift Estimation at Surgical Target Region  
By localizing the tip of electrode leads and applying the 

inverse predicted displacement field (both model and ANTs), 
shift experienced by surgical target region can be computed. 
The predicted shifts by the model-based approach and ANTs 
for each case is summarized in Table IV across the 2nd and 3rd 
column for the right and left implants respectively. The angular 
differences between the displacement solution provided by the 
model and ANTs is provided in the 4th and 5th column for the 
two implants. The positional difference between the predicted 
target locations between model and ANTs is shown in the 6th 
and 7th column.  

IV. DISCUSSION 
A biomechanical model-based brain shift correction strategy 

tailored for DBS burr hole surgery has been developed, and 
subsequently evaluated using high fidelity iMR data in 6 
patients. The model-based approach, built to account for 
physical events hypothesized to introduce asymmetric brain 
shift in DBS, namely gravity, asymmetric CSF loss and 
pneumocephalus, was able to reduce misalignment due to brain 
shift from 8.2±2.2 to 2.7±1.1 mm for ~66.8±13.2% correction 
across 6 cases analyzed with sparse input (surface and 
subsurface) data for general parenchymal targets. Furthermore, 
model updated MR image demonstrated better agreement with 
iMR compare to preoperative MR, which suggests that as a 
complementary technology to existing clinical approaches, 
model-based method may aid and enable better direct 
visualization, as well as enhanced surgical navigation and 
targeting. When displacement at surgical target region, i.e. 
at/near critical deep brain structure, was examined via the 
model-based approach and a separate independent nonrigid 
image registration technique serving as a comparator, while 
some differences in magnitude and direction were observed and 
will be discussed later, results indicated an average bulk tissue 
shift between 1-2 mm at the surgical target region of interest. 
These shift magnitude observations are consistent with previous 
literatures and illustrate the existence and thus the need to 
correct for intraoperative brain shift for deep brain structure in 
DBS surgery. Another encouraging aspect of this study is the 
examination of model’s ability to use both surface and 

 
Fig. 5.  Comparison of preoperative MR, iMR and model updated MR. For 
each case, better feature agreement was observed between model updated MR 
and iMR vs. preoperative MR, particularly in the frontal lobe. Crosshairs 
indicate better subsurface recovery at the lateral ventricle by the model. The 
model was also able to recover the observed midline shift to some extent.  

TABLE IV 
COMPARE SHIFT ESTIMATION AT SURGICAL TARGET REGION 

MODEL-BASED APPROACH VS. ANTS 
 Shift Magnitude: Model/ANTs (mm) Angular difference: Model vs. ANTs (deg) Positional difference: Model vs. ANTs (mm) 

Case # Right Left Right Left Right Left 

1 3.2/2.5 — 6.4 — 0.7 — 
2 0.4/0.5 2.0/1.2 73.8 43.8 0.6 1.4 
3 1.1/1.1 0.3/1.4 59.0 58.4 1.1 1.2 
4 0.2/0.6 1.6/2.7 97.8 25.5 0.7 1.5 
5 1.8/1.3 0.5/1.0 62.3 111.8 1.7 1.3 
6 0.5/1.2 1.8/1.6 86.1 84.2 1.3 2.3 

Average 1.2 ± 1.1/1.2 ± 0.7 1.2 ± 0.8/1.6 ± 0.7 62.2 ± 31.8 64.7 ± 34.0 1.0 ± 0.4 1.5 ± 0.4 

Overall 1.2 ± 0.9/1.4 ± 0.7 64.5 ± 31.1 1.2 ± 0.5 
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subsurface data to estimate volumetric brain shift in a time 
efficient manner that would not impede clinical workflow, 
enhancing its potential for intraoperative deployment. It should 
also be noted that while the pre-computing phase (prior to 
surgery and only needing preoperative MR imaging data) of 
deformation atlas construction of ~4 hours is quite workflow-
friendly, future improvements of our method, such as the 
utilization of semi-automated approach in brain segmentation 
demonstrated in [23, 24], can further facilitate and expedite this 
pre-computing phase. Despite these promising outcomes, there 
are several aspects of this study that can be improved and 
should be discussed.   

First, the designation of surface and subsurface targets is a 
subjective process and intra- and inter- operator error should be 
assessed. We have previously examined the intra-operator error 
[27], where the same point set in the preoperative space was 
presented to the same operator, its intraoperative corresponding 
point set was then designated three different times with 
sufficient time in between selections to prevent bias. We found 
the intra-operator error to be approximately 0.8 mm. As for 
inter-operator error, we believe the result from ANTs, whose 
registration leverages the information of the entire preoperative 
MR and iMR imaging volumes, demonstrate the fidelity of 
point designation. Specifically, when presented with 
preoperative designation of points and blinded to intraoperative 
designations, the error between deformed point position based 
on registration outputs (virtually as a second operator) and 
intraoperative designation was merely 1.5 mm on average, 
shown in Table III, especially considering the axial spacing of 
the preoperative MR and iMR ranges from 1.5 to 2.0 mm in 
Table I. Additionally, considering the imperfect nature of 
nonrigid registration as well as the aforementioned potential 
intra-operator error, the residual error of ANTs with respect to 
the subsurface points suggests the fidelity and validity of the 
point designation. While we considered examining the model-
based approach at the AC and PC, the localization error due to 
image resolution (image spacing varying from 1.00 mm to 2.00 
mm shown in Table I), coupled with potential intra-operator 
error described above, would complicate the assessment at 
these points whose movement is believed to be on the order of 
1-2 voxels. Furthermore, a study by Pallavaram et al. found 
significant variability in designating AC and PC even among 
trained neurosurgeons [44]. When 43 neurosurgeons (38 
attendings and 5 residents or fellows) were presented with 2 
high resolution MR volumes and asked to designate the AC and 
PC, the study found the average inter-surgeon variability 
(pairwise deviation) to be 1.92±1.96 and 2.27±3.92 mm for AC 
and PC, respectively, for the first image volume; and 1.44±1.05 
and 2.05±3.46 mm for the second image volume. Such 
variability even among experienced neurosurgeons suggests 
potential challenges in using these points for the purpose of 
model validation here. Moreover, numerous previous studies 
relied on AC and PC as surrogates for shift measurement due to 
(i) poor soft tissue contrast of the imaging modality used (e.g. 
CT) to extract additional features for analysis; and (ii) the 
ambiguity in localizing the clinical therapeutic target region. 
Here the utilization of feature- and data- rich iMR imaging data 

addresses (i) and the identification and extraction of the tip of 
the electrode leads on iMR offer an improvement in (ii), 
especially considering the introduction of a secondary 
comparator, namely ANTs, which uses a different principle of 
re-aligning the preoperative and intraoperative information than 
the biophysics-based model.  

In addition to surgical targeting, a less discussed yet 
potentially important topic is surgical navigation. Studies have 
suggested that the penetration of the lateral ventricle can 
increase the risk of intracranial hemorrhage and negatively 
impact the quality of DBS therapy, yet it can be readily 
observed that brain shift significantly impacts the structure of 
the lateral ventricle (Fig. 1 and Fig. 5), illustrating the potential 
usefulness of the model-based approach in updating the 
preoperative MR volume to better align imaging data with 
intraoperative state of the patient [8, 45, 46]. 

The methodology presented here represents our current 
understanding of shift phenomenon in DBS and its modeling, 
in achieving, several interesting biomechanical events unique 
to DBS burr hole surgery have been potentially discovered and 
implemented accordingly: (i) a major improvement in this work 
compared to our previous one patient proof-of-concept work 
[18] is in the shift recovery in the medial-lateral direction via a 
different implementation for pneumocephalus. Moreover, as 
the understanding and implementation of the biophysics 
contributing to shift are advanced, corresponding refinement of 
the model and subsequently better correction results are 
possible. (ii) Changes in our falx description, originated from 
the observation of midline shift in iMR data, also provided 
better shift prediction when modeled as herein. (iii) The 
observation of the falx behavior could also lead to additional 
considerations of compartmentalization, such as the partition of 
the falx structure (anterior vs. posterior) to allow different 
degree of rigidity [26]. (iv) Related to (iii), the stiffness 
assigned to the elements associated with falx and ventricle in 
this study could be further investigated through a possible 
parametric sweep to determine optimality and to compare to a 
wide range of material properties of brain components 
previously reported [47]. (v) With respect to 
compartmentalization, in the current implementation, the left 
and right lateral ventricles were treated as one entity, however 
from Fig. 1 and Fig. 5, it appears the septum pellucidum, which 
separates left and right lateral ventricle, is also impacted by 
brain shift and its incorporation may further improve model 
performance. Nevertheless, the methodology presented here 
provides the following contribution to the field: (i) the study 
here incorporates multiple biophysical events such as CSF 
drainage, gravity, pneumocephalus-induced pressure 
phenomenon, material stiffness consideration to different 
components of the brain, into one comprehensive modeling 
approach to account for factors believed to introduce shift in 
DBS; (ii) to our knowledge, the consideration of ventricle, in 
particular in a segmental fashion, to simulate pneumocephalus-
induced pressure phenomenon, is a novel approach and 
potentially provides insight on the underlying physics of shift 
in DBS; (iii) compare to previous studies in Introduction, 
considerable efforts are made in this study to ensure the 
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intraoperative deployability of the methodology and its 
potential clinical appeal via the pre-computed deformation atlas 
as well as efficient intraoperative execution; (iv) also compare 
to previous studies, validation effort with 6 patients with high 
fidelity iMR data, which is considered the gold standard 
measurement tool, is a significant improvement, especially 
considering iMR measured shift is not subject to the potential 
drawback of postoperative shift recovery if shift were to be 
measured between preop- and postop- image volumes [48]; (v) 
the technical details employed here to enable subsurface data to 
be used in the inverse problem framework, specifically the 
interpolative method at sparse data points extracted from the 
deformation atlas, have not been previously reported.  

With respect to shift estimated at the target region, the 
accuracy of this estimation is inferred from the correction 
results (Table III) of identified features (points shown in Fig. 3) 
that can be localized within the imaging data with high 
confidence (considering imaging resolution in Table I). In this 
feasibility study, approaching validation via targets of high soft 
tissue contrast in regions with considerable deformation is a 
logical first step in evaluating the modeling framework. With 
that understanding, although satisfying to observe that the bulk 
tissue movement at deep brain target predicted by both model-
based approach and ANTs is similar and within the range of 
literature findings summarized in Introduction, the difference in 
magnitude and direction between model-based approach and 
ANTs warrants closer examination of the shortcomings of each 
approach. For model-based approach, it is apparent from the 
residual error and percent correction result that further 
improvements are needed to better account for the physics of 
shift, and the introduction of increasingly sophisticated 
modeling may help resolve the differences. For ANTs, while 
great care was taken to minimize the impact of image artifacts 
introduced by electrode leads, it is likely that image artifacts 
degraded the quality of registration and prediction, especially at 
surgical target region. Moreover, ANTs registration may be 
impacted by the manual identification of image artifacts for 
inpainting, manual segmentations of preoperative and 
intraoperative brains for image registration, as well as 
sensitivity to tunable parameters in both registration and 
inpainting. For example, in parameterization experiments not 
reported in detail here, ANTs registration parameters were 
varied over a realistic range yielding acceptable nonrigid image 
registration results.  Within these experiments, parenchymal 
target shift correction (e.g. Table III) was observed to vary on 
the order of 0.2 mm on average with respect to residual error, 
and on the order of 0.3 mm when intra-operator target noise was 
introduced for added scrutiny (i.e. half of the intra-operator 
error described previously was analyzed with respect to true 
target location). Within the backdrop of this variability in 
expert-defined parenchymal target error with respect to realistic 
parameter prescription with ANTs, it is important to estimate 
the impact of that variability regarding shift at therapeutic target 
region. With respect to results in Table IV and allowing for 
realistic driving parameters for ANTs, the variation in average 
positional difference of predicted positions was 0.4±0.2 mm 
with respect to the centroid over the parameter space, and the 

average angular difference between these individual predictions 
was 32.5±23.3 deg. These variations showed that while the 
comparison between model and ANTs is informative and 
interesting, in particular with respect to the evaluation of bulk 
tissue movement, the differences in Table IV should not be 
regarded as a ground truth error per se but rather as a 
comparator method with a limited understanding of ground 
truth. It would be appropriate however to state that ANTs 
registration performance utilizing the entirety of 3D imaging 
data outperformed the sparse-data driven model at expert-
defined parenchymal target shifts. It is difficult to assert 
however that an analogous performance increase is present at 
therapeutic target region given that features that drive 
registration are less rich in the target area, and an added 
inpainting image alteration has been performed to handle the 
electrode artifact. Furthermore, when angular difference was 
examined for the subsurface points, the difference between 
intraoperative measured vector and ANTs predicted vector was 
found to be 9.3 deg, intraoperative measured vector and model 
predicted vector was 17.4 deg, and model and ANTs vectors 
was 17.3 deg. While this was not surprising, as indicated by the 
residual error result (ANTs 1.5 mm vs. model 2.7 mm), the 
directional difference of 17.3 deg between ANTs and model 
may partly explain the directional difference at surgical target 
as well. However, it also should be noted the nonrigid image 
registration via ANTs requires full image volumes of 
preoperative MR and iMR with computation time > 1 hour, 
while the computation time to generate a whole brain 
displacement field for the model-based approach was ~30 
seconds with only sparse input data needed. In addition, it must 
also be recognized that parenchymal shift prediction by ANTs 
using the entirety of the data did still have on average of ~18% 
residual error remaining. 

Considering the shortcomings or deficiencies of each method 
discussed above, the ultimate arbiter of the angular difference 
between the two methods could be the functional impact—a 
future study could retrospectively examine and relate shift 
estimation at surgical target region provided by the two 
methods to therapy outcome via electrophysiological mapping 
and monitoring such as MER, or postoperative programming 
optimization, e.g. electrode contact selection and subsequent 
adjustment needed with corresponding patient response. 
Nevertheless, with data currently available and limited in this 
study (preoperative and iMRs), the average bulk tissue 
movement predicted by both methods at deep brain structure is 
similar (model 1.2 mm and ANTs 1.4 mm overall). This general 
agreement between two methods, as well as with previous 
reports in the literature, indicates that brain shift and its 
correction must be considered in a non-negligible portion of 
patients undergoing DBS burr hole surgery to optimize 
treatment outcome. To better understand the impact of brain 
shift on functional outcome with the potential of consequently 
optimizing therapy, we have worked towards establishing an 
integrated framework of biomechanical and bioelectric models 
where both brain shift and volume of tissue activation (VTA), 
subsequently tractography, due to neuromodulation may be 
accounted for in [49]. Preliminary results using this multi-
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physics framework in 2 patients further illustrate and reinforce 
the need to account for brain shift in DBS as shift impacts the 
extent, number, and volume of neuronal pathways affected [49].  

Lastly, although the objective of this study is to examine the 
feasibility and to establish potential accuracy metrics for a 
model-based approach to confront brain shift in DBS under an 
experimental design compatible with the data sparsity expected 
in surgery, to ensure the clinical translatability of the method, it 
is important to assess and consider the potential challenges 
associated with the deployablity and usability of the proposed 
approach in the OR, especially with respect to obtaining sparse 
intraoperative measurements needed to drive the inverse 
problem via OR-compatible and -friendly means, as it likely 
will be the rate limiting step of the proposed approach. While 
we have previously demonstrated abilities to acquire 
intraoperative surface data in the OR via laser range scanning 
[39], stereovision [50], or optically tracked stylus [51], it is 
recognized that the extent of surface data used in this study may 
not be available in the OR. However there exist several OR-
compatible approaches to acquire and augment sources of data 
that are needed to drive the inverse problem. (i) One possibility 
to address this problem is the use of iCT. The use of iCT in DBS 
burr hole surgery has been demonstrated by groups such as 
Burchiel et al. [32], and the potential use of CT data (via preop- 
and postop- CTs) in providing input surface data to a model-
based approach is illustrated by Li et al. [19, 52]. However, a 
potential shortcoming of iCT should be noted here: the soft 
tissue discrimination of CT is such that the brain target being 
implanted is not directly visible. The iCT image set must 
therefore be co-registered with a preoperative MR image set, 
which introduces the potential for error associated with the 
image registration and fusion process, particularly if 
pneumocephalus is present on iCT images. For the model-based 
approach proposed here, iCT will likely offer intraoperative 
surface deformation information to drive the inverse problem; 
however, again the poor soft tissue contrast of iCT would limit 
finding corresponding features. (ii) Another alternative route is 
the use of subsurface data via US (transcranial or burr hole). A 
difficulty associated with this approach is finding 
corresponding features as model input. However in one recent 
study conducted, a SIFT Rank algorithm was employed to 
detect and track corresponding features from multiple 
ultrasound acquisitions [53] and validated in [54], subsequently 
the model was able to provide fairly good brain shift reduction 
when driven solely with subsurface features and validated with 
independently designated subsurface targets in 15 patients and 
24 individual surgical scenarios [55, 56]. This framework may 
be utilized here to provide an input data stream to the inverse 
problem.  

V. CONCLUSION 
A biomechanical model-based brain shift correction strategy 

for DBS burr hole surgery was developed, where volumetric 
shift estimation was achieved by leveraging sparse 
intraoperative measurement in an inverse problem approach 
framework. The established method was evaluated in six 
patients with high fidelity iMR data. The model-based approach 

was able to account for shift appreciably at subsurface points as 
well as provide updated MR image that presents better 
agreement with iMR compared to preoperative MR, illustrating 
its potential as a complementary technology to existing clinical 
methods in addressing brain shift to enhance surgical 
navigation and targeting, as well as enable direct visualization. 
The model-based approach was also able to estimate shift 
experienced at critical deep brain structure, and its estimated 
average bulk tissue movement at surgical target region is 
comparable to results produced by a sophisticated nonrigid 
image registration algorithm given access to complete 
volumetric pre- and post- intervention data. Furthermore, the 
model-based approach is able to provide shift prediction with a 
mixture of surface and/or subsurface data, enabling the 
flexibility of the possible utilization of iCT and/or iUS, and in 
an efficient execution manner that presents minimal disruption 
to existing clinical infrastructure and workflow. While 
demonstrating its potential, further validation with a larger 
patient population with iMR, an increased sophistication of 
modeling to better account and understand the physics of shift 
phenomenon in DBS, as well as the incorporation of iCT and/or 
US into the proposed brain shift correction framework, are 
desired. 
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