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Cortical Surface Registration for Image-Guided
Neurosurgery Using Laser-Range Scanning

Michael I. Miga*, Member, IEEE, Tuhin K. Sinha, David M. Cash, Robert L. Galloway, and Robert J. Weil

Abstract—In this paper, a method of acquiring intraoperative
data using a laser range scanner (LRS) is presented within the
context of model-updated image-guided surgery. Registering
textured point clouds generated by the LRS to tomographic data
is explored using established point-based and surface techniques
as well as a novel method that incorporates geometry and inten-
sity information via mutual information (SurfaceMI). Phantom
registration studies were performed to examine accuracy and
robustness for each framework. In addition, anin vivo registration
is performed to demonstrate feasibility of the data acquisition
system in the operating room. Results indicate that SurfaceMI
performed better in many cases than point-based (PBR) and
iterative closest point (ICP) methods for registration of textured
point clouds. Mean target registration error (TRE) for simulated
deep tissue targets in a phantom were1 0 0 2 2 0 0 3

and 1 2 0 3 mm for PBR, ICP, and SurfaceMI, respectively.
With regard to in vivo registration, the mean TRE of vessel
contour points for each framework was1 9 1 0 0 9 0 6

and 1 3 0 5 for PBR, ICP, and SurfaceMI, respectively. The
methods discussed in this paper in conjunction with the quanti-
tative data provide impetus for using LRS technology within the
model-updated image-guided surgery framework.

Index Terms—Cortical surface, image-guided surgery, iterative
closest point, laser-range scanner, mutual information, registra-
tion.

I. INTRODUCTION

I MAGE-GUIDED NEUROSURGERY (IGS) requires the
accurate alignment of the preoperatively acquired diag-

nostic image series to a coordinate system that is specific to the
intraoperative patient’s neuroanatomy, a process often referred
to as registration. Once the registration has been provided,
all preoperative planning and acquired data relevant to the
patient’s neuroanatomy can be displayed to the neurosurgeon
intraoperatively and used for assistance in guidance and treat-
ment. This process to a large extent has become routine within
medical centers across the country. Additionally, the methods
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of localization within image space (establishment of coordinate
system within the diagnostic image series) and physical space
(coordinate system relevant to patient features) have been
investigated to a great extent. For example, the necessary shape
and volume of synthetic image landmarks, i.e., fiducials, has
been rigorously analyzed and has resulted in design constraints
that optimize localization within conventional imaging modali-
ties [1], [2]. Regarding localization in physical space, various
optical, acoustic, electromagnetic, and mechanical devices have
been developed to characterize the intraoperative environment
for the registration process.

With respect to mathematical aspects of image-to-patient
alignment, the most common approach used is a point-based
registration (PBR) whereby landmarks, either natural or syn-
thetic, are localized in the patient’s image series and aligned
with corresponding landmarks digitized in physical space intra-
operatively. The geometric transformation is generated based
on the minimization of the squared distance error between
corresponding points [3]. Further analysis on the configuration
of fiducial markers, the optimum number, and the effects on
target localization error have also been forthcoming [2]. Apart
from the point-based approach, another common technique
for registration is the use of matching geometric surfaces.
The ability to acquire surface data using optical/electromag-
netic/ultrasound probes and lasers [4]–[8] in conjunction with
surface extraction algorithms applied to imaging data have
led to new robust methods of registration [9]. Surface-based
alignment techniques have two distinct advantages: 1) point
correspondence is not required and 2) an averaging effect
serves to reduce uncorrelated localization error generated
during the acquisition of spatially well-resolved surface data.
However, some disadvantages are present in that the scalp in
general lacks geometric specificity, and the skin surface may
deform due to intraoperative drugs or procedural retraction
[10]. A third registration technique, less commonly used for
IGS purposes, is the intensity-based or volume registration
approach [2]. Usually applied for the alignment of image
volumes, the predominant use for these techniques in IGS
has been within the intraoperative magnetic resonance (iMR)
environment where serial image volumes are acquired during
surgery.

One common assumption in all of the above methods is that
the skull and brain can be characterized by rigid body mechanics
and, in general, many of these techniques have achieved ac-
curacy measures that are clinically useful. However, with the
growing experience in applying these enhancements in surgical
navigation, design characteristics for the next generation of sur-
gical guidance systems are slowly emerging. More specifically,
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Fig. 1. Example of brain shift seen using an intraoperative image-guided
surgery system. The crosshairs indicate the location of the surgical probe in
image space, in this case inside the brain. In reality, the probe is touching the
surface of the brain near the superior temporal gyrus.

one of the most challenging problems to IGS development is the
realization that rigid body assumptions are in many cases inade-
quate. Identified as early as 1986 by Kellyet al.[11], the poten-
tial problem of “brain shift,” i.e., deformation, during surgery
has given rise to concerns regarding the fidelity of current IGS
systems. The earliest assessments of error from brain shift using
IGS were on the order of 5 mm [12]. Subsequent investiga-
tions measuring intraoperative brain surface movements have
reported an average deformation of 1 cm. An example of intra-
operative brain shift experienced by our group can be seen in
Fig. 1.

Insightful relationships regarding the predisposition for brain
movement in the direction of gravity have also been reported
[13], [14]. In addition, with the advent and use of iMR sys-

tems, more detailed studies measuring both surface and subsur-
face shift have been performed [15], [16]. The general conclu-
sion from these studies is that brain deformation during surgery
needs to be accounted for to maximize the effectiveness of IGS
systems.

The approaches to accounting for brain shift can be generally
placed into two categories: 1) intraoperative imaging and 2)
intraoperative nonrigid registration frameworks. Intraoperative
imaging would include the use of computed tomography (iCT),
magnetic resonance (iMR), and/or ultrasound (iUS) imaging.
In the 1980s, there was a significant effort to introduce iCT, but
concerns regarding patient radiation, the need for radiological
staffing of the operating room (OR), and the cumbersome
lead protection seemed to adversely affect the adoption of this
technique [17]. Several medical centers are now deploying
iMR imaging capabilities [18], [19] and have developed elegant
and sophisticated methods for visualization in the OR [4],
[20], [21]. Although conceptually appealing, the exorbitant
cost and cumbersome nature of such systems (e.g., need for an
MR-compatible OR) have left their widespread adoption un-
clear at this time. In addition to these logistical concerns, recent
reports have illustrated potential problems related to surgically
induced contrast enhancement which can be often confused
with contrast-enhancing residual tumor [22]. Other reports
have illustrated “image distortions from susceptibility and/or
eddy current artifacts” related to the presence of MRI-com-
patible Yasargil clips for aneurysm clipping procedures [23].
Although this did not compromise this particular procedure,
the question regarding the degree of distortion from other
MR compatible instruments (e.g., retractors) must be studied
further. It should be noted, however, that researchers have also
shown significant benefits with iMR by increasing patient
survival times and decreasing patient complications [24].
Appropriately, investigators are still determining the efficacy of
iMR in order to identify its most important uses. An interesting
alternative to iCT and iMR also under consideration is coregis-
tered intraoperative ultrasound (iUS) [25]–[28]. Although not
capable of whole-brain imaging, many advocate that the locally
reconstructed volumes provided by iUS can provide real-time
guidance feedback. However, the clarity of iUS images is
limited and using this technique as the sole source of feedback
may not be the best approach. Often the images become less
valuable as the procedure continues since the contrast between
tumor and normal brain begins to diminish. This is not to say
that iUS does not have a role in image-guided neurosurgery,
but rather that its role could be as one source of data within the
mechanics of building an intraoperative updating system.

The second category of solutions to intraoperative brain shift
represent a more minimally invasive approach to the OR envi-
ronment whereby nonrigid registration methods would be used
to register preoperative data to the intraoperative environment.
This strategy as highlighted by Robertset al. [29] uses compu-
tational models in conjunction with nonintrusive intraoperative
data acquisition as a means for deforming high-resolution pre-
operative-based images to reflect intrasurgical conditions. De-
tailed work regarding the fidelity of such computations within
animal and human systems has been reported [30], [31]. One ad-
vantage of this framework is that all forms of preoperative data
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can be simultaneously updated (i.e., positron emission tomog-
raphy, electroencephalography data, functional MR imaging,
and MR spectroscopy) whereas iMR/iCT/iUS systems will still
require a nonrigid registration method for the effective utiliza-
tion of all preoperatively acquired data. In addition, computa-
tional techniques to nonrigidly register image data via modeling
methods have a long precedent in the neurosurgical community.
Elastic matching has been a technique employed by many to reg-
ister multimodality images [32], [33]. Deformable templates for
large deformation warping of images has also been utilized [34].
With respect to the model-updating paradigm, other investiga-
tors have also been pursuing variants of this approach [35]–[37].
Although computational models may not be able to predict the
extent of tumor margins as well as iMR or iCT, it must be recog-
nized that alternative localized imaging techniques are rapidly
being developed for this task (e.g., such as optical spectroscopy
[38], [39]). Within this vision of IGS, neurosurgeons will have a
collection of minimally invasive tools to aid in navigation, visu-
alization, and demarcation of diseased tissue. The work reported
in this paper subscribes to this shift compensation strategy.

Rapidly acquiring minimally invasive data that describes
changes in brain geometry during surgery is necessary to
develop a computational approach that accounts for brain
deformations. In this paper, preliminary work using a laser
range scanner (LRS) is presented within the context of a new
image-to-patient registration framework that is inherently
sensitive to the brain shift problem. The registration method
employs both geometric and intensity data acquired from the
LRS to align the patient’s intraoperative cortical surface to
the MR image counterpart. Since the LRS captures both geo-
metric and color-intensity information from the intraoperative
brain surface, a feature-rich source of data is provided for
registration and the eventual tracking of deformation. In this
work, a detailed set of phantom experiments was performed
to illustrate the method. This paper concludes with a clinical
example. To our knowledge, these results represent the first
clinical illustration of an image-to-patient registration between
an MR tomogram and a laser range scanned cortical surface.
It should be noted that using features from the cortical surface
to register images does have some precedent. Nakajimaet al.
demonstrated an average of mm fiducial registration
error using cortical vessels for registration [40]. Also, some
preliminary work using a scanning based system for cortical
surface geometric registration has been reported but a system-
atic evaluation has not been performed to date [6]. In addition to
LRS work, efforts by Skrinjaret al.have been reported for the
use of a stereo-pair camera systems to capture and characterize
the brain surface during surgery [41], [42]. The work presented
here represents an initial step in developing OR-compatible
equipment designed to capture brain shift systematically for
the eventual use in a model-updating paradigm.

II. M ETHODS

A. Laser Range Scanner

One critical component in developing a model-updating
strategy for compensating for shift is the rapid acquisition
of geometric data that describes the deforming nature of the

brain during surgery. For this task, we have employed an LRS
(RealScan 3D, 3D Digital Corporation, Bedford Hills, NY) that
is capable of capturing three-dimensional (3-D) topography
as well surface texture mapping to submillimeter accuracy
[Fig. 2(a)].

The LRS is lightweight, compact, and has a standard tripod
mount ( 9.5 12.5 3.25 , 4.5 lbs). For clinical
use, the LRS has been equipped with a customized vibration-
damping monopod [Fig. 2(b)], or it can be attached to a sur-
gical arm within the operating room [Fig. 2(c)]. The scanning
field consists of 512 horizontal by 500 vertical points per scan
and is accomplished in approximately 5–7 s. The laser used is a
Class-I “eye-safe” 6.7–mW visible laser. The laser stripe gener-
ator has an adjustable fan-out angle (maximum fan-out is 30)
and acquires each stripe at approximately 60 Hz. The scanner
accuracy is 300 m at 30 cm from the object of interest and ap-
proximately 1000 m at 80 cm.

For the experimental and clinical data reported herein, the
scanner was brought to between 30–45 cm of the target. The
complete process of moving the scanner into the field of view
(FOV), acquiring a scan, and exiting from the FOV takes ap-
proximately 1–1.5 min (this includes laser light adjustments and
LRS fan-out angle). In general, the surgical staff has considered
the impact of the LRS in the OR to be negligible. Also, the In-
stitutional Review Board at the Vanderbilt University Medical
Center, Nashville, TN, has approved the LRS for use on human
patients, and patient consent was acquired for all clinical data.

B. Registration

With respect to the alignment of image space to patient space,
several standard registration methodologies have been used with
the addition of a novel registration strategy custom-developed
for the unique data acquired by the scanner. The distinction be-
tween this last approach and the more traditional methods is that
the feature-rich intraoperative brain surface as acquired by an
LRS and the MR grayscale encoded brain surface derived from
the image volume are used for patient registration. One advan-
tage of cortical surface registration over rigid cranium-based
techniques is that the method is inherently sensitive to brain
shifts occurring in the early stages of surgery. For example, often
during clinical cases involving tumor resection, the brain will
swell upon opening of the cranium and dura. By registering with
respect to the shifted brain surface, one could argue that a more
accurate and spatially consistent registration can be achieved
(even when using rigid body assumptions). In addition, the sur-
face of the brain could be registered dynamically during surgery
to account for some portion of shift or be used to track nonrigid
deformations for use in a model-updating shift compensation
strategy.

The new registration approach (SurfaceMI) begins with the
segmentation of the region of interest, i.e., brain, from the MR
image volume. From this segmented volume, a point cloud rep-
resentation of the brain surface geometry is extracted. Using
the preoperative plan, the location of the resection surface is
identified on the CT/MR images and positioned orthogonal to
a ray-casting source. A ray-casting algorithm combined with
voxel intensity averaging (averages 3–5 voxel intensities along
ray) is employed to grayscale encode the point cloud. At the
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(a)

(b) (c)

Fig. 2. The 3-D Digital RealScan USB and its use in the operating room. (a) Close up of the scanner showing the laser emit window in the middle and the CCD
and laser received cameras on the right. (b) LRS in the operating room covered with sterile isolation bag and mounted on custom built vibration dampingmonopod
(shown here in collapsed state). (c) LRS in the OR, covered in sterile bag and mounted to overhead swing arm.

conclusion of this process, the patient’s cortical image surface
is rendered into a textured point cloud that contains intensity
patterns representing sulcal-gyrus differences as well as con-
trast-enhanced vasculature (Fig. 3). These unique tissue pat-
terns of intensity will be central to the alignment process. For
the point clouds used in this paper generated via ray casting,
the mean and median point-to-point distances were 0.7 and 0.6
mm, respectively. With respect to the intraoperative acquisition
of data, a calibration object is routinely scanned prior to registra-
tion to ensure operational fidelity of the laser scanner. At select
times during the surgery, after durotomy, the LRS is positioned
over the exposed brain surface and a range scan is acquired. Tri-
angulating between the laser light source and the captured laser
light pattern on a charge-coupled device (CCD) digital camera,
the 3-D location of each illuminated point can be determined.
In addition, each 3-D point is color encoded by a second dig-
ital camera on the scanner that captures an image of the surgical
field of view. The mean and median point-to-point distances for

the range-scan point clouds used in this paper were 0.65 and 0.6
mm, respectively.

The intensity and geometric data acquired by the laser
scanner coupled with the image processing of the segmented
brain surface provides a novel avenue for developing a new
registration framework. The process begins with an initial
guess based on aligning natural fiducials using a traditional
point-based framework. Following this process, an iterative
closest point (ICP) algorithm is used to further align the LRS
point cloud to the CT/MR counterpart. The disparity function

used within this minimization algorithm is

(1)

where represents a rigid transformation of points on
the source surface to corresponding points on the target sur-
face, . Given that one-to-one point correspondence does not
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Fig. 3. Three views of the surface extracted from a patient-specific gadolinium enhanced MR volume.

exist with surface-based registrations, correspondence is estab-
lished by pairing points according to a closest distance metric.
Following the determination of correspondence, a point-based
registration can be executed and subsequently followed by an
update to the closest point operator. This sequence of steps pro-
ceeds iteratively until the disparity function shown in (1) satis-
fies a specified tolerance. Although excellent at aligning geo-
metrically unique surfaces, ICP in general may have difficulty
with the intraoperative environment if relied upon solely. In our
experience, not all regions of the brain surface express a unique
geometry with respect to visible sulcal/fissure features of the
intraoperatively exposed brain. Pathology, such as a tumor, can
also influence the initial shape of the brain surface dramatically.
In addition, the fidelity of image segmentation can also become
a potential source of misalignment. There is some research that
addresses these problems and relates to our work. Specifically,
the work of Feldmaret al. [43] and Johnsonet al. [44] attempt
to register using both geometry and intensity, by adding inten-
sity differences to the disparity function in (1). These methods,
although effective, are not applicable to our LRS/MR data due
to the contrasting colormaps of the two point clouds. Thus, we
employ an optimization of normalized mutual information, as
reported by Studholmeet al.[45] between the two textured point
clouds. Normalized mutual information is written here as

(2)

where and are the marginal and joint entropies
of the point clouds, respectively. Although extensively used
within image-to-image alignment [46]–[48], there are no
readily apparent means for calculating mutual information in
this context. The difficulty arises in determining correspon-
dence among point cloud intensity distributions. For this initial
work, the closest point metric determined from the initial
geometric registration is used to determine proper intensity
correspondence among source and target surfaces. To further
constrain the approach, a spherical geometry was fitted to the
target surface and was used to reduce the registration degrees
of freedom from six to three angular references in spherical
coordinates about the fitted center and radius. The method of
optimization employed for the mutual information-based reg-
istration was Powell’s iterative method [49]. Results regarding
the implementation of SurfaceMI on intramodal and simulated
intermodal phantom data are presented in [50].

In addition to this new registration approach, more traditional
methods of cortical surface registration were performed for the

purposes of comparison and feasibility. The second method used
for registration was based on the approach by Nakajimaet al.
where cortical features such as vessel bifurcations were local-
ized in both MR and scanner image space and a rigid PBR
was performed between the two. A third registration framework
based on iterative closest point transforms (ICP) was used where
the registration targets became vessel and sulcal contours visible
on the MR and laser-scanned cortical surface. This suite of reg-
istration approaches provides multiple avenues to pursue for de-
termining an optimal cortical surface alignment under varying
surgical conditions.

C. Experimental Setup

A set of experiments using a watermelon phantom was uti-
lized to test the algorithm’s ability to register intermodality sur-
faces. In this experiment, Omnipaque (Amersham Health plc.)
soaked twine was laid into the watermelon surface to simulate
the appearance of contrast-enhanced vasculature on the brain
surface [Fig. 4(a)] in CT.

In addition, CT/MR visible rigid markers (Acustar®, Z-Kat,
inc.) were also implanted into the watermelon surface for use
as an alternate digitization technology [Fig. 4(b)]. The phantom
was imaged in the CT imager (Mx8000, Philips Medical Sys-
tems), scanned by the laser scanner and digitized by a Northern
Digital Optotrak® 3020 (rms accuracy of 0.1 mm)1 [Fig. 4(c)].

Several registrations were performed and fiducial registration
and target localization errors were reported. The first registra-
tion aligned the image space coordinate system,img, to the Op-
totrak coordinate system,opto, using the Acustar markers in
each modality, i.e., find . Fiducial registration errors
(FRE) and target registration errors (TRE), as defined by Man-
dava and Fitzpatrick [51], [52], were calculated for this reg-
istration to provide the optimal registration for physical space
to image space. Fig. 5(a) shows the location of the six fiducial
markers (letters) and 15 manually identified points (numbers).

Having established this registration optimum, corresponding
sets of manually identified points at vessel bifurcations inimg
andopto were registered to provide quantitative validation of
Nakajima’s method of using cortical features for registering
physical space to image space. Additionally, ten visible bifur-
cation points in LRS space,lrs, corresponding to those inimg
andopto, were localized [Fig. 5(b)] and used for PBR registra-
tion as a verification of Nakajima’s method applied to the LRS
data. FRE was calculated and reported for all registrations (i.e.,

, and ). The manually identified

1[Online.] Available: http://www.ndigital.com
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(a)

(b)

(c)

Fig. 4. The watermelon phantom used in this paper for registration accuracy
experiments. (a) Watermelon with Omnipaque soaked twine laid into carved
vessel grooves. (b) Acustar imaging marker filled with CT/MR contrast
enhancement fluid. (c) Acustar divot caps for localization using Optotrak.

points in each space were localized three times and averaged to
minimize localization error.

The other candidates for intraoperative registration were also
examined within the context of phantom experiments. ICP reg-
istrations were performed using phantom vessel contours ex-
tracted (using simple thresholding) from the LRS and CT data.
In addition, the segmented surface was aligned using the Sur-
faceMI framework. For each registration, a reduced region of

(a)

(b)

Fig. 5. Localized points inimg, opto, andlrs. (a) Volume rendering of image
data showing markers (letters) and manually localized landmarks (numbers) in
optoandimg. (b) Landmarks localized inlrs space.

the watermelon LRS surface was extracted to simulate the
approximate size of the surgical FOV. For both registration
methods (ICP and SurfaceMI), initial alignment of the sur-
faces was provided by using three manually localized targets
visible in the segmented surface. TRE was calculated in both
registration frameworks using seven novel surface targets (i.e.,
those landmarks that were not in the surgical FOV) and was
compared to the TRE provided by the PBR alignment of vessel
landmarks.

Robustness studies for the registration frameworks were car-
ried out by perturbing initial landmarks uniformly along the sur-
face of a sphere fitted to the target point cloud, i.e., perturbing
the landmarks in spherical coordinates , and at the fitted
radius . The perturbations were independently and uniformly
sampled from 2.5 to 2.5 (simulates approximately 1-cm
fiducial localization error, i.e., perturbation arc length
9.29 mm) in each spherical axis for each trial, and each frame-
work was subject to 500 perturbation trials. The results of this
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Fig. 6. Simulated deep tissue sampling. The larger sphere demonstrates
the geometric sphere fit of the point cloud. The smaller sphere represents
a sampling region with radius of 50 mm, centered about the centroid of
the localized fiducials. The volume of overlap demonstrates the deep tissue
sampling region.

experiment provide insight as to the efficacy of the registration
frameworks given suboptimal initial conditions.

Accuracy of the registration frameworks with regard to deep
tissue targets was also investigated. For this experiment, deep
tissue targets were sampled within a 5-cm radius of the centroid
of the manually localized surface points. The sampling was con-
strained to only deep tissue targets, i.e., sample points which lie
within both the sphere and melon (Fig. 6). “True” positions of
the deep tissue targets were found in LRS space by transforming
targets from image space using the rigid-body transformation

(based on identifying vessel points in both modali-
ties). These same tissue targets within image space were also
registered to LRS using transformations based on SurfaceMI
which when compared served as an estimate of TRE.

D. Clinical Setup

In addition to phantom experiments, a preliminary clinical ex-
ample has been achieved. The patient was a 37-year-old man
with a six-week history of focal motor seizures. MR imaging
revealed a hypointense nonenhancing mass in the posterior, su-
perior left frontal lobe, abutting the motor strip. He underwent
awake resection, with motor and speech mapping. Intraoper-
atively, he was placed in the supine position, with the vertex
of the head elevated 15and the head turned 30to the right.
A fronto-temporal-parietal craniotomy was performed and the
tumor was localized using ultrasound and frameless stereotaxy.
The vein of Trolard coursed superiorly to the superior sagittal

(a)

(b)

Fig. 7. Intraoperative FOV. (a) Digital photograph with the surgeon
highlighting the vein of Trolard, a significant vessel in the area of therapy. (b)
Textured point cloud generated intraoperatively using our LRS.

sinus, immediately behind the posterior extent of the tumor and
directly in front of the motor gyrus. After mapping of the speech
and motor regions of the face and arm, gross total resection of
the tumor was accomplished. The patient tolerated the proce-
dure without neurological sequelae. Intraoperatively, following
durotomy, the scanner was moved into position via the cus-
tomized monopod [Fig. 2(b)] above the craniotomy site at ap-
proximately 30–45 cm from the brain’s surface. The scanner
was activated and acquired approximately 20 000 points in 5–7
s. Following retrieval of the scanner data, registration between
the patient’s intraoperative data and the MR tomogram were
performed retrospectively. Fig. 7 shows the surgical FOV as well
as the textured range scan of the FOV acquired during surgery.

III. RESULTS

The registration results achieved with implantable markers
were comparable to previously published data [1]. Using the
Acustar marker system, a mean FRE of mm was at-
tained using six markers. The mean TRE for this registration
was mm using 15 target landmarks. These results
demonstrate the accuracy associated with implantable fiducial
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TABLE I
TRE FOR THETHREE REGISTRATION PROTOCOLS INMELON EXPERIMENT:
PBR, ICP,AND SURFACEMI, ON AN LRS SURFACE THAT APPROXIMATES A

SURGICAL FOV. THREE LANDMARKS WEREUSED ASFIDUCIALS AND SEVEN

TARGETSWERE USED TOCALCULATE TRE

markers and provide a baseline for comparison with subsequent
registrations.

The registration results for studies concerned with the align-
ment of the cortical surface using vessel-based landmarks show
excellent correlation with the previously published studies of
Nakajimaet al. [40]. FRE using ten manually localized land-
marks in all three spaces (i.e.,opto, img, and lrs) were

mm and mm for and , respec-
tively. In addition, a second PBR was calculated using a subset
of the vessel markers within a focal cortical region (to simu-
late vessel fiducials within a craniotomy). The remaining vessel
bifurcations outside the simulated surgical FOV were used as
targets. The TRE is reported in Table I.

As an aside, a measure of localization precision was calcu-
lated since each set of landmarks (i.e., inimg, opto, andlrs) was
identified three times. Precision was measured as the mean stan-
dard deviation for each measurement (x, y, z) in corresponding
landmarks across the three trials. For the landmarks selected in
img, the mean standard deviations inx, y, andzwere 0.27, 0.28,
and 0.31 mm, respectively. Inopto, the mean standard deviation
in x, y, andz are 0.35, 0.22, and 0.13 mm, respectively. For the
ten landmarks chosen inlrs, the mean standard deviations inx,
y, andz were 0.71, 0.58, and 1.14 mm.

In addition to FRE studies, the histogram and mean TRE for
simulated deep tissue targets is provided in Fig. 8 with a spatial
distribution of TRE overlaying the melon image volume shown
in Fig. 9. The results suggest that SurfaceMI may predict deep
tissue targets more accurately then the PBR and ICP registration
methods. Also, the 3-D distribution of TRE demonstrates that
SurfaceMI predicts deeper targets more accurately than either
PBR or ICP for this registration case.

In addition to reporting registration results based on a rou-
tine application of each alignment framework, a series of robust-
ness studies was performed to investigate the effects of varied
initial guesses (i.e., approximate 1–6-mm fiducial localization
error with individual fiducial error as large as 9.3 mm). Exam-
ples of the registration provided by ICP and SurfaceMI with a
given initial landmark perturbation are shown in Fig. 10. FRE
results from these perturbation studies for PBR, ICP, and Sur-
faceMI on the same cortical subregion used for the TRE studies
of Table I are given in Fig. 11 over 500 trials. The distribution
of fiducial registration error ranged from 1.0 to 5.8 mm for the
three landmarks used in initialization of the ICP and SurfaceMI
registrations. ICP on the surface contours performed well and
reduced FRE by approximately 43%. SurfaceMI also performed
well, but produced some outliers. Using the extreme studentized
deviate (ESD) [53], eight outliers were detected with99.95%
confidence. Removing these outliers from the SurfaceMI trials

Fig. 8. TRE histogram for deep tissue targets using PBR-based registration on
surface landmarks, ICP-based registration on surface contours, and SurfaceMI
on textured surfaces.

produced a mean FRE of mm, reducing FRE by ap-
proximately 27%.

Central to using the LRS within the clinic is to demonstratein
vivo registration results. A clinical example is shown in Fig. 12
with corresponding measures of registration error reported in
Table II. The first column in Table II represents the mean regis-
tration error associated with the cortical surface points used in
PBR. The second column in Table II represents the mean closest
point residual between contours. Although PBR performs better
with respect to fiducial error, the results in Fig. 12 suggest that
the registration error reported for the contour points may be the
better metric as to the quality of alignment.

IV. DISCUSSION

Several methods to register images to the exposed intraoper-
ative cortical surface have been utilized within the context of
phantom and clinical experiments. The methods include tradi-
tional approaches (PBR and ICP) and highlight the development
of a novel technique that takes advantage of unique data pro-
vided by an LRS. More specifically, the LRS captures the geo-
metric complexity of the brain surface and maps the feature-rich
texture as acquired by a color CCD to this geometric data. The
new approach presented (called SurfaceMI) uses both forms of
data to align the LRS-acquired surface to its image counterpart.

Initial studies using rigid markers were performed to pro-
vide a baseline registration accuracy with respect to unknown
errors associated with the phantom and/or imaging method; re-
sults reflected comparable accuracies reported in the literature
[1]. The next set of studies used vessel bifurcations localized
in all modalities as the basis for registration. Reassuringly, the
FRE betweenimgandoptousing the manually localized vessel
bifurcations were comparable to values reported by Nakajimaet
al. Similar values were also determined when registering vessel
bifurcations using LRS data within the context of PBR, ICP, and
SurfaceMI. This would indicate that using techniques similar to
Nakajimaet al. should be achievable using LRS data. In addi-
tion to reporting error within the simulated craniotomy region,
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Fig. 9. Three-dimensional distribution of TRE for deep tissue targets. The left column shows a top-down view of the watermelon surface with the TRE distribution
shown for PBR (top), ICP (middle), and SurfaceMI (bottom). The right column shows the respective front views of the TRE distribution. Each deep tissuesample
of TRE is grayscale encoded on the hemispheric surface shown. The range of scalar values is shown in the color bar associated with each figure.

targets outside the focal region were also used to assess align-
ment quality. Overall, the difference between results among all
three methods was negligible. The increased magnitude of TRE
over FRE agrees with an accepted understanding regarding the
effects of fiducial placement on target registration error; that is,
even with a low FRE, a sparse number of fiducials localized
within a concentrated area can precipitate a “lever-arm” effect
in areas remote to the registration region. Interestingly, a dif-
ferent result is seen with respect to targets in close proximity to
the subregion of interest on the melon surface. Fig. 8 reports the
distribution of TRE data compared among all three registration
approaches. With respect to the mean TRE error for the entire

region, SurfaceMI performed the best with an average TRE of
1.0 mm. When comparing deep tissue results between the PBR
and SurfaceMI methods (see Fig. 9), PBR has a greater range of
TRE error than SurfaceMI, which may be due to the difficulty in
localizing bifurcations upon the LRS data for PBR methods. The
ICP registration performed considerably worse, and this may be
due to the contour thresholding process. More specifically, any
spatial noise contained within the thresholded vessel structure is
not averaged out as well within the ICP framework when com-
pared to using a denser point cloud. This possible source of error
would not be present within the SurfaceMI approach since the
dense geometric data are maintained and the fine adjustments to
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Fig. 10. Results of ICP and SurfaceMI on intermodality registration of two textured surfaces. ICP registration conditions are shown in the top row with perturbed
initial condition shown left and ICP registered shown right. SurfaceMI registration conditions are shown in the bottom row with perturbed initial condition shown
left and SurfaceMI registered shown right. It should be noted that there is a texture projected on the surface of the watermelon that is an artifact of the rendering
process, i.e., this texture did not affect the registration process. A gross-scale representation of the texture, which is a result of the slice-to-slice spacing in the CT
image, can be seen in Fig. 5(a) for comparison.

Fig. 11. Fiducial registration error distribution given initial landmark
perturbation. The landmarks in the FOV were perturbed up to�2.5 in each
spherical coordinate(�;  ; �) in img.

alignment are provided by an intensity-based registration. Sur-
faceMI and PBR produced comparable results although the TRE
spatial distribution for deep tissue targets was greater for the
PBR method. This may suggest that the effects of a combined
surface and intensity approach produce a lower error due to the
averaging effects associated with the registration metrics used
in SurfaceMI. When comparing SurfaceMI to ICP, the results
suggest that vessel contours alone may not be the best approach
to cortical surface registration, but rather, the addition of the in-
tensity data provides significant refinement to the alignment.

The results from the perturbation studies highlight that ICP is
more robust with respect to poor initial alignment guesses (i.e.,
fiducial localization errors up to 9.3 mm). Fig. 11 demonstrates
that ICP maintains a better FRE on average with tighter standard
deviation. SurfaceMI was not as robust and produced eight out-
liers over 500 trials. In results not presented here, the function
space has been characterized and has been shown to be popu-
lated with local extrema. More specifically, the areas of local ex-
trema are found near the global extrema and result in frustrating
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(a)

(b) (c)

Fig. 12. Registration results from intraoperative data. (a) The result of PBR-based registration using manually localized landmarks inimg and lrs. (b) ICP
registration using highlighted contours inimgandlrs. (c) SurfaceMI registration given the initial alignment provided by the PBR method. The highlighted contours
are prominent sulcal and vessel patterns visible in both spaces.

TABLE II
REGISTRATION ERRORS FORIN VIVO ALIGNMENT USING PBR, ICP,AND

SURFACEMI FRAMEWORKS

numerical optimization methods. It should be noted, however,
that these outliers represent a less than 2% failure rate. Further-
more, if the outliers are eliminated from the trial set, the FRE is
sharply reduced from mean error of 3.4–2.2 mm. It is clear that
investigation into a more sophisticated optimization strategy is
needed and/or extending the registration to a multiresolution ap-
proach might be helpful [54]–[56].

The results from the clinical experiment demonstrate the fea-
sibility of cortical surface registration within the OR environ-

ment as well as provide a limited quantitative assessment to
the approach’s accuracy. Table II demonstrates that a PBR ap-
proach similar to Nakajimaet al. (except using LRS data in
lieu of optical digitization) produces a mean registration error
for vessel fiducials that is 1-mm less on average than that pro-
vided by ICP or SurfaceMI. However, in the region of the con-
tours, the method did not fare as well. Fig. 12 demonstrates a
qualitatively better alignment in the area of the contours when
using either ICP or SurfaceMI. Table II also quantifies this im-
proved closest point residual for ICP and SurfaceMI over the
PBR method. One likely reason for this discrepancy is that brain
deformation may have occurred upon opening the cranium and
may be distributed nonuniformly over the brain surface. This
would be consistent with the results in Table II since the PBR
method relies on the selection of the vessel fiducials as the basis
for registration while ICP and SurfaceMI only use these for
initialization. Hence, if the brain surface is nonuniformly de-
formed, it would logically follow that methods which base their
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registration on the vessel fiducials (PBR) would be better within
the fiducial region, while methods that use contour information
(SurfaceMI and ICP) would be better within the contour region.

The clinical results also demonstrate that the registration pro-
tocol used within this work may be a viable approach for surg-
eries where minimal brain shift is encountered. In addition, the
visual results shown in Fig. 12 may provide new anatomical cues
to surgeons by correlating the FOV observed in the OR to the
MR tomogram volume studied prior to surgery for preopera-
tive planning. Furthermore, although not developed within this
work, deformable registration coupled with serial range scans
may allow for the detailed tracking of brain shift during surgery.
We are currently exploring methods to allow deformable regis-
tration of intermodal textured surfaces for the measurement and
characterization of brain shift.

Another important aspect of the SurfaceMI results presented
in this paper is its ability to perform multimodal registration.
Within the phantom and clinical experiments, SurfaceMI rep-
resents a multimodal registration between CT data and CCD
color texture, and MR data and CCD color texture, respectively.
This result is quite remarkable and adds impetus for the use of
laser-range scanning within the neurosurgical OR environment.

V. CONCLUSION

In this paper, a unique intraoperative approach to registering
patient images to the patient’s cortical surface during brain
surgery has been presented. The multiregistration platform
under development is capable of aligning the brain surface
to its intraoperative counterpart using traditional as well as
novel alignment methods within the context of LRS data.
To our knowledge, this paper represents the first quantitative
evaluation of laser-range scanning used within the context of in-
traoperative cortical surface registration. Phantom experiments
are presented that compare traditional point-based (Procrustes
alignment) and surface-based (ICP) registration methods to a
novel registration approach which uses a combined geometric
and intensity-based metric (SurfaceMI). The registration
approach is a 3-D surface alignment technique that begins with
an ICP-based initialization followed by a constrained mutual
information-based refinement. The algorithm has demonstrated
better accuracy with respect to deep tissue targets within the
simulated craniotomy region. However, some limitations did
appear within the robustness studies whereby a 2% failure rate
occurred during phantom registration experiments. In results
not presented here, the objective function space with the melon
has been characterized and indicates that the multiextrema
exist and can confound the current method of optimization.
Alternative optimization and multiresolution methods need
to be investigated further to decrease this failure rate. The
SurfaceMI algorithm was capable of multimodal registration
in both phantom and clinical data. The data presented from
the clinical case demonstrates the approach’s feasibility within
the OR as well as semi-quantitative estimates of registration
accuracy.

The methods discussed in this paper in conjunction with
the quantitative results provide substantial motivation for
using LRS technology within the neurosurgical operating
theater. More specifically, LRS methods provide rapid detailed

characterization of the cortical surface during surgery and can
be used as a tool for registration and the eventual measurement
of deformation. This versatility will make LRS technology ad-
vantageous in pursuing model-updating strategies [29] for the
compensation of brain shift during image-guided neurosurgery.
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