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Compensating for Intraoperative Soft-Tissue
Deformations Using Incomplete Surface

Data and Finite Elements
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Abstract—Image-guided liver surgery requires the ability to
identify and compensate for soft tissue deformation in the organ.
The predeformed state is represented as a complete three-dimen-
sional surface of the organ, while the intraoperative data is a range
scan point cloud acquired from the exposed liver surface. The first
step is to rigidly align the coordinate systems of the intraoperative
and preoperative data. Most traditional rigid registration methods
minimize an error metric over the entire data set. In this paper, a
new deformation-identifying rigid registration (DIRR) is reported
that identifies and aligns minimally deformed regions of the data
using a modified closest point distance cost function. Once a rigid
alignment has been established, deformation is accounted for using
a linearly elastic finite element model (FEM) and implemented
using an incremental framework to resolve geometric nonlinear-
ities. Boundary conditions for the incremental formulation are
generated from intraoperatively acquired range scan surfaces
of the exposed liver surface. A series of phantom experiments is
presented to assess the fidelity of the DIRR and the combined
DIRR/FEM approaches separately. The DIRR approach identified
deforming regions in 90% of cases under conditions of realistic
surgical exposure. With respect to the DIRR/FEM algorithm,
subsurface target errors were correctly located to within 4 mm in
phantom experiments.

Index Terms—Deformation identification, finite element mod-
eling, organ deformation, registration.

I. INTRODUCTION

THE goal of image-guided surgery (IGS) is to provide the
surgeon with accurate spatial information regarding the

location of pathology in real time during the procedure. In many
image-guided systems, this navigational assistance is provided
by a rigid alignment between the coordinate system associated
with the preoperative tomographic images and patient anatomy.
Frequently, the registration is established by matching cor-
responding rigid anatomical landmarks or extrinsic fiducials
[1]–[3]. However, during open abdominal procedures to resect
liver tumors, no such rigid point-based features exist.
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The common assumption that the organ is rigid has been
shown not to hold true in many cases, and soft tissue deforma-
tion is often present. In neurosurgery, the phenomenon is known
as brain shift, and has been well documented [4]–[8]. Despite
the rigid confines of the cranium, the degree of nonrigid brain
deformation has been shown to compromise the fidelity of IGS
navigation. There is little doubt that for IGS to evolve toward
other applications, the need to account for soft tissue deforma-
tion is important.

While rigid registrations align the two coordinate systems
globally, nonrigid methods are employed to account for dis-
placements that occur on a local scale. Many studies use a cal-
culation based on the closest point distance to determine cor-
respondence and drive a nonrigid transformation. Szeliski and
Lavallée [9] model displacements between two surfaces with a
volumetric B-spline. The transformation is optimized according
to a cost function based on the closest point distance and a regu-
larizing term. Audette et al. [10] use recursive smoothing splines
with the iterative closest point (ICP) method to track cortical
surface deformations based on regularly spaced range scan data.
Chui and Rangarajan developed an iterative solution for recov-
ering nonrigid movement between two point sets using a thin
plate spine transform [11].

Other methods augment correspondence functions with in-
trinsic surface properties, such as curvature, to extract nonrigid
motion. Augmenting the corresponding function with curvature
and principal frames, Feldmar and Ayache [12] propose a hierar-
chical approach: first with a globally rigid alignment, then glob-
ally affine, and finally locally affine transformations. Laskov and
Kambhamettu [13] use an affine motion model by minimizing
a linear set of equations based on the change of Gaussian cur-
vature. Their study relies on the assumption that the surface can
be represented with an orthogonal parametrization, and it ex-
tends upon a similar algorithm, which estimated nonrigid mo-
tion using surface normals [14]. Meier [15] also works with pa-
rameterized surfaces, building correspondence functions based
on distance, surface normals, and curvature to determine an ap-
propriate warping of parameter space between two objects. Shi
et al. [16] calculated bending energies based on the principal
curvatures of surface points. The bending energies were then
used to define a deformation field and track motion of the left
ventricular wall. Aylward [17] developed a unique correspon-
dence metric that matches geometric features to image intensity
values, and used this metric to align representations of the liver
vasculature acquired from intraoperative ultrasound and preop-
erative tomograms.
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Most of these studies calculate nonrigid alignments under the
basic assumption that both data sets contain a complete descrip-
tion of the surface. However, only sparse and often incomplete
intraoperative data is available due to time or access constraints.
Research has been done to register sparse intraoperative data
from ultrasound to preoperative images of the liver using statis-
tical models [18] and voxel-based intensity methods [19]. These
methods have been used in minimally invasive procedures to ac-
count for motion and deformation in the liver caused by respira-
tion. With the unpredictable nature of deformation that arises in
open abdominal procedures, some assumptions must be made
regarding the regions of surface data that are unavailable in the
intraoperative set.

An alternative strategy in compensating for deformation is
to model the underlying biomechanics using the finite element
method (FEM). In related image-guided surgical research, FEM
has been used to account for intraoperative deformations. Miga
and Paulsen constructed a model to accurately predict the effects
of gravity [20], pharmacological agents [21], and surgical events
[22] on the brain. Ferrant et al. [23] used FEM in a more in-
terpolative sense, determining deformation between a preoper-
ative tomogram volume and serial intraoperative magnetic res-
onance (MR) images. However, their work did not concentrate
on the use of sparse intraoperative data, but rather focused on
augmenting iMR methods. Skrinjar [24] acquired sparse surface
data points from stereo pair images of the exposed cortical sur-
face during surgery and used a discrete model to account for dis-
placements due to brain shift. Lunn et al. [25] created “control
points” from ultrasound data and used a weighted combination
of FEM solutions based on correlating these points with model
calculations.

In contrast to the neurosurgical setting, the dynamics of liver
surgery hold different challenges with respect to the application
of IGS techniques. For example, in the case of open abdominal
liver surgery, often the surrounding ligaments are removed to
better visualize and inspect the organ for the removal of tumors.
In addition, the liver is routinely adjusted, i.e.,“packed,” for
stabilization resulting in significant organ deformation when
compared to its preoperative CT images. Due to the robust
physiological and homogeneous constitution of the liver, tumor
resections routinely involve resection margins on the order of 1
cm. Studies have shown that lower recurrent rates are achieved
when this 1-cm margin of tumor-free liver parenchyma is
achieved in the resection [26]. Thus, for image-guidance to be
effective in liver resections, it must produce a TRE of .
Unlike the neurosurgical environment where the cranium
confines the brain at the initial stages of surgery, a significant
amount of tissue deformation during liver surgery occurs at the
beginning. From the perspective of compensation, a strategy
to account for the initial deformations associated with surgical
presentation would be a significant contribution to the applica-
tion of IGS techniques to intra-abdominal liver surgery. Using
conventional rigid registration methods that minimize error
metrics based on Euclidean distance (such as the rigid version
of the ICP algorithm), deformation can be misinterpreted as
rigid registration error. If this occurs, deformed areas may be-
come better aligned at the expense of misregistering minimally
deformed areas. An example of this phenomenon is shown in
Fig. 1.

Fig. 1. (a) With a deformation present, (b) rigid registration procedures, such
as ICP, will attempt to minimize the global error metric, which could cause some
nondeformed areas to become misregistered.

Although the work within the neurosurgical environment
has been encouraging, these techniques are not completely
amenable to addressing the challenges associated within
image-guided liver surgery. We have performed several initial
investigations into the reality of applying image-guided tech-
niques for the liver. Some initial work regarding the image
alignment for liver surgery focused on assessing liver surface
registrations [27] using the ICP algorithm by Besl and McKay
[28]. Within this work, a liver phantom was segmented from the
CT image volume and aligned with data acquired by swabbing
the liver phantom surface with an optical digitizer. The results
indicated a fiducial and TRE of approximately 3 mm in both
cases; however, these studies did not investigate the effects of
deformation. Related studies using an optically tracked laser
range scanner to accomplish the same task reported registration
errors less than 2 mm in phantoms. Phantom experiments were
repeated in the presence of deformation and showed a distinct
increase in target error (as high as 7.7 mm). To assess feasibility
of the range scanner in the operating room, an in vivo case
demonstrating the registration of an intraoperative liver range
scan to the preoperative computed tomography (CT) image
volume was presented and showed good qualitative agreement
in alignment [29]. Some preliminary work has also been forth-
coming regarding the nonrigid registration of the image volume
using laser range scanning data [30]. In this work, the closest
point operator was used to adjust a finite element model of the
preoperative liver to match the intraoperative conditions. The
results demonstrated an enhanced alignment to that achieved in
the rigid registration associated with [30].

The study presented within this paper represents important ad-
vances over the initial work presented in [30], [31]. More specifi-
cally, a novel two step algorithm is proposed which improves the
boundary correspondence by first providing a deformation-iden-
tifying rigid registration (DIRR) followed by a nonrigid align-
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Fig. 2. Overview of the MUIGLS process.

ment using an incremental finite element approach. These ad-
vances have two important aspects: 1) the DIRR serves to dis-
tinguish areas of deformation to assist in generating proper cor-
respondence in the applied boundary conditions; 2) the incre-
mental finite element approach resolves geometric nonlinearities
better than the previous work in [30]. The results describe a new
set of phantom experiments to test the two step approach, which
is called model updated image guided liver surgery (MUIGLS),
and demonstrates an increased fidelity in alignment.

II. METHODS

A. Overview

Fig. 2 shows a graphical overview of MUIGLS. The details
of the individual steps in MUIGLS will be described in detail
in the subsequent sections. Preoperative image data is acquired
of the patient’s abdomen using CT or MR scans. From these
preoperative scans, the liver is segmented, and a three-dimen-
sional surface is tessellated. This surface is used to determine
a rigid alignment with respect to the intraoperative range scan
data. Rather than perform this registration using the traditional
ICP method, we developed a new form of alignment that weights
regions of the data that are minimally deformed. The tesselated
surface also serves as the input for generation of a tetrahedral
volumetric mesh that will be the basis for a finite element model.
Before running the FEM, boundary conditions are constructed
based on the rigidly registered intraoperative data. The closest
point distance between a boundary node of interest and the in-
traoperative, deformed surface is calculated. Execution of the

model is repeated in an incremental fashion. Rather than using
the entire closest point distance, a fraction of this value is used
to prescribe the displacement boundary condition on the node.
Each successive solution of the model updates the location of the
mesh nodes, which triggers the calculation of new correspon-
dences and boundary condition values. The model is repeated
until the root mean square (RMS) closest point distances for all
boundary nodes using the closest point boundary condition has
reached some predetermined value. The results from the FEM
are used to warp the preoperative image to match the intraoper-
ative presentation.

Before explaining the methods used in MUIGLS, it is neces-
sary to state some of the assumptions regarding image-guided
liver surgery. From the authors’ experience observing proce-
dures in the operating room, the liver is assumed to be an elastic
substance. Unlike neurosurgery, there are no apparent fluid
effects in the organ, so there is no shrinking or swelling and
volume is preserved. The most obvious feature of the deforma-
tion appears to be a shape change, where one region of the liver
surface changes relative position with respect to another region.
Often the deformation can be concentrated in a central region of
the liver whereby a significant amount of semi-rigid translation
and rotation is experienced by areas in the organ periphery,
i.e., a lever-arm effect occurs due to significant deformations
located more central to the organ. Translational effects due
to forces such as diaphragm motion have been discussed in
previous research [32]–[37] and are taken into account by
employing breath-hold protocols [29]. During the surgery, the
liver may change shape because of manipulation by the surgeon
or resection, and this will warrant a new registration. At that
point, the laser scanner will acquire a new intraoperative sur-
face, so that the registration and deformation compensation can
be recomputed. “Minimally deformed” areas are considered
to be those which undergo deformation no greater than a few
millimeters as determined by visual inspection. It is our goal
in MUIGLS to reduce the amount of error from large scale
deformations (1–4 cm) below the previously stated 1 cm level
of target registration accuracy while not causing additional
error seen in the minimally deformed regions.

B. Data Representation

Phantom studies were performed on a poly (dimethyl)
siloxane (rubber silicone) model of the liver, which is attached
to a plexiglass base. Two sets of point-based landmarks are
used for the study. Surrounding the outskirts of the phantom are
vertical cylinders also attached to the vertical base, where seven
white Teflon spheres have been placed in machined holders at
the cylinder tops to serve as fiducials for a point-based regis-
tration. Inside the liver are mock tumors made of styrofoam,
which are spherical with a radius on the order of 1–1.5 cm.
The intensity of these tumors is approximately 20 times lower
than the surrounding phantom, allowing for the tumors to be
easily segmented with a simple region growing algorithm. The
centroids of these tumors will serve as subsurface targets for
accuracy studies. The position of the targets within the phantom
are shown in Fig. 3. To induce a deformation in the phantom,
an object of height 38.0 mm is placed underneath a region of
the model. A large nylon screw pinned down other regions of
thephantom and kept them stationary. Two different sites were
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Fig. 3. Segmented CT surface of the liver phantom with subsurface tumors.
The labels for each tumors are used as a reference for the results.

Fig. 4. Corresponding CT slices from (a) nondeformed and (b) deformed
image. The plastic object placed below the liver produces the deformation
observed in Fig. 1(a). The height of the object is approximately 38 mm.

chosen for deformation. We chose these locations to mimic
some of the physical manipulations that a surgeon may perform
during a procedure. The first deformation occurred under the
left lobe, where tumors 1 and 2 experienced the most shift,
while the second site was at the middle of the inferior ridge,
underneath segments III, IV, and V as defined by Couinaud
[38]. For this case, the largest shift occurred at tumors 4 and 6.
CT scans and range scans were taken while the phantom was in
the nondeformed state and for each one of the deformed states.
Corresponding slices from the nondeformed tomogram and one
of the deformed volumes are shown in Fig. 4.

C. Identification of Deformation

The first novel step in MUIGLS is the rigid alignment be-
tween the preoperative and intraoperative coordinate systems.
While conventional rigid registrations are relatively easy to im-
plement, they are also susceptible to misalignment caused by de-
formation. It would be possible to reduce the effects of deforma-
tion on rigid registration by identifying areas that are minimally
deformed and using only landmarks in these regions for the reg-
istration.The effects of identifying minimally deformed regions
can be illustrated with the ICP algorithm, a common method of
registering two surfaces. ICP relies on the closest point distance
metric. For the point in data set , the closest point distance

is defined as the minimum distance from this point to a
landmark in the other data set

(1)

In the ICP algorithm, the RMS residual of closest point dis-
tances over the entire surface is the cost function that is mini-
mized through the iterative process. However, more information
can be obtained when examining a histogram of the signed dis-
tance value distribution at a given alignment, as seen in Fig. 5.

Fig. 5. Histogram of signed distance distribution for rigid alignments between
a nondeformed surface and the surface deformed at (a) the left lobe and (b)
the inferior ridge. The solid line indicates that the alignment is performed by
registering the entire surface with the ICP algorithm. The dashed line is acquired
with the same registration method, but this time only regions of the surface that
were visually identified as “minimally deformed” are used in the registration.

The signed distance indicates how far a point is outside of the
surface (positive) or inside (negative). In this figure, the align-
ments were obtained using ICP: one scenario used the entire
surface in the registration, while the other used only areas that
were visually identified as minimally deformed. When using the
entire surface in the registration, the signed distance histogram
has a narrow band of values distributed in a relatively uniform
fashion, as displayed by the solid lines in Fig. 5. When only
the minimally deformed regions are registered using ICP, the
histogram of signed distances has a much sharper peak at the
histogram bins closest to zero, as indicated by the dashed lines.
This alignment also produces a larger range of distance values
that are associated with the deformed areas observed in Fig. 1(a)
and play no role in this selective ICP alignment.

Often, information about the surface regions which are mini-
mally deformed is not available a priori. We developed a DIRR
algorithm that aligns two surfaces according to the minimally
deformed areas without any manual identification of these re-
gions. For each point in the points of intraoperative data, a
signed distance, , to the nondeformed surface is calculated.
These distance values are then used in the following cost func-
tion:

(2)

The gaussian term is similar to one used for fuzzy correspon-
dence in the work of Chui et al. [11]. As more points approach
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a closest point distance of zero, the output value of the cost func-
tion will increase. At the same time, this cost function will not
cause significant penalties for points which have large signed
distances to the target surface that are associated with deforma-
tion. The parameter that controls the behavior of the cost func-
tion is the standard deviation of the gaussian function, . This
parameter usually ranges between 0.5 – 2.0 mm. Currently, the
cost function is optimized using Powell’s method [39] as im-
plemented in the VXL library [40]. The parameters for the opti-
mization are the six degrees of freedom that represent the rigid
transformation that is applied to the intraoperative data. Unit
quaternions represent the rotation.

In many cases, it is necessary to speed up calculations and
provide smoother objective functions. The underlying surfaces
of segmented preoperative data and intraoperative data were
represented by radial basis functions (RBFs). A biharmonic
RBF was used to interpolate the signed distance between any
point in three dimensional space and the surface [41]. The
zero isocontour from the resulting RBF function represents the
fitted surface. To make this method computationally efficient
for large data sets, a special implementation which provides for
the fast evaluation and solution of RBFs was used, developed
by FarField Technology (FastRBF, Far Field Technology,
Christchurch NZ).

To test the DIRR algorithm, points sets from the deformed
range scan and CT data were registered to the minimally de-
formed surfaces. These areas were manually designated from
the surface by visual inspection and knowledge regarding the
location of the object deforming the phantom. The minimally
deformed areas were the only points used in an ICP registra-
tion, which served as a “ground truth” alignment to produce the
same effect in the closest point histogram distribution as ob-
served in Fig. 5. Then, the DIRR was performed without the
aid of identifying the deformed surfaces. The results were com-
pared to the ground truth using the six subsurface targets repre-
senting the tumor centroids. Like many registration algorithms,
the DIRR needs an initial guess that roughly aligns the two sur-
faces. The initial alignment is achieved by identifying four land-
marks on the phantom surface to serve as fiducials in a point-
based registration.

To test the sensitivity of the DIRR to initial alignment, the po-
sition of each fiducial was randomly perturbed up to 1 cm away
from its original position for 1000 trials. The results from the
DIRR were compared against the ground truth and categorized
as either a success or a failure. A success was defined as any reg-
istration where all tumor errors were less than 5.0 mm, which
was confirmed by visually inspecting the resulting alignment.

D. Deformation Correction Using Finite Element Modeling

After the rigid alignment between the two coordinate systems
has been established, the next step is to model the deformation
using a finite element model. The mesh used in the model is
constructed from the preoperative tomographic volume, which
represents the nondeformed state of the organ. The first step in
mesh generation is to segment the liver from the rest of the ab-
domen. Segmentation is performed either manually or using a
semi-automatic method et al. [42], [43] that is a modification of

the level-set method. The manual segmentation requires many
hours to perform, while the level-set method can usually be
completed in 30 min to 1 h. From the segmented organ volume,
a surface is tesselated using either the marching cubes method
[44] or the aforementioned surface fitting algorithm using RBFs.
The surface is represented as a set of polygons and serves as
input to the mesh generation software [45]. This software uses
the boundary description to generate a tetrahedral grid volume
of the entire liver shape.

The deformation of the liver is modeled using a linear stress-
strain relationship for an isotropic, three-dimensional solid. If
we assume static equilibrium, then

(3)

where is the stress tensor and is the body force vector. Stress
can be related to strain by the following relationship:

(4)

where represents the material stiffness matrix. For a Hookean
solid, depends on two properties, Young’s Modulus, , and
Poisson’s ratio, . The displacement vector, , is the value that
will be solved for, and it is related to normal strain and the
shear strain by

(5)

(6)

where is the cartesian displacement. By com-
bining (3)–(6), a system of partial differential equations can be
expressed in terms of the displacement vector, , to form the
Navier equation

(7)

The partial differential equation is solved using the Galerkin
weighted residual technique with linear basis functions. The
system of equations that solves for the displacement vectors at
every node in the mesh can be written as

(8)

One fundamental component to employing the finite element
method is the prescription of boundary conditions. These
boundary conditions are derived from knowledge of the forces
applied to the liver within surgery as well as information
from the intraoperative data. There are three different types
of boundary conditions implemented in the model. The first
set of boundary conditions are categorized as “fixed,” a set
of Dirichlet conditions representing immobile regions of the
organ. Typically, obscured regions of the right lobe that rest
against other parts of the viscera belong to the fixed category.
“stress-free” boundary conditions are the second category,
which represent regions unrestricted by force. The final type
will be referred to as “closest point” boundary conditions.
These nodes play the most significant role in modeling the
deformation and are considered a mixed boundary condition,
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Fig. 6. Example set of boundary conditions for the liver phantom mesh. The
dark grey represents the boundary nodes that obey the mixed “closest point”
boundary condition formulation. The medium grey value denotes fixed regions,
while the light grey boundary conditions are stress free.

in that, of the 3 vector components, one component is Dirichlet
while the remaining two are Neumann conditions. An example
of how the different regions of the organ are classified according
to boundary condition type is illustrated in Fig. 6.

The details in implementing the “closest point” boundary
conditions are critical to successfully recovering the deforma-
tion in our approach. It should be noted that the initial DIRR
is also integral to the prescription of boundary conditions; i.e.,
at the initiation of deformation, the closest point distances will
be directly related to the DIRR registration. Furthermore, with
such a large amount of deformation present intraoperatively,
improper correspondence can lead to boundary conditions that
would cause improper nonrigid alignments and unrealistic
distortions of the organ shape.

In our approach, two measures are taken to avoid im-
proper correspondence when setting the displacements for the
boundary conditions: 1) manipulation of the finite element
equations such that the equations are sensitive to the organ
surface geometry; 2) implementation of incremental solutions
with a moving grid. The first involves modifying the conven-
tional finite element method such that the weighted residual
vector equations at the boundary are expressed in a coordinate
reference that is designated to have one coordinate axis normal
to the organ surface and the remaining two being tangent to
that surface (as opposed to traditional Cartesian coordinate
references). With respect to modeling anatomical organs and
their deformations, there are some aspects to the application
of boundary conditions that are particularly challenging to
traditional Cartesian representations. For example, in the ap-
plication of displacement boundary conditions to the liver, it is
often desirable to express the movement of the boundary in a
direction that is relative to the geometric shape, i.e., the coordi-
nate system associated with directions that are approximately
normal and tangential to the organ surface. One strategy is to
take the desired normal displacement and convert this to its
Cartesian counterparts, i.e.,

(9)

where , , and represent an orthogonal coordinate system
with the normal (to the organ surface) and tangential axes, re-
spectively. In this case, the inverse relationship in (9) would
be used since the transformation shown is from Cartesian to
normal-tangential space ( - space). In these equations, the ap-
plication of a displacement normal to an organ surface can be

achieved; however, the ability to relate mixed boundary con-
ditions within the - space framework is not possible using
(9). For example, it may be desirable to allow an organ surface
to slide along a supporting wall yet not deform in a direction
normal to the wall, i.e., through the wall. In another situation,
the deformation may need to be applied in a direction normal to
the organ surface yet allow for sliding of tissue along the dis-
placing surface (e.g., depressing the organ with a smooth ob-
ject like a retractor). This type of boundary condition requires
stress-free conditions tangent to the direction of constraint/mo-
tion and restricted normal displacements, e.g.,

(10)

where are stresses applied tangent to the organ surface,
and is a displacement normal to the surface. In this instance,
the framework described in (9) cannot achieve these degrees of
freedom in organ movement behavior.

A better approach than (9) is to rotate the equations of equilib-
rium for nodes concerned with the boundary into an - space
coordinate reference. This process usually involves the use of
rotational matrices (sensitive to the organ boundary) being ap-
plied at the local element assembly level

(11)

where the premultiplication by on the left and right-hand
side rotates the equilibrium equation and body force compo-
nents ( is the matrix shown in (9) and would be associ-
ated with the normal and tangential coordinates reference of
the node), and the multiplication rotates the displace-
ment coefficients from Cartesian to - space ( , refer to
weighted residual equation, and displacement coefficient,
respectively). Careful attention must be paid to the determina-
tion of the rotational matrix, , and to the arrangement of
rotational multiplications (note, that is orthogonal and
equivalent to ). This approach to - space calculation has
been reported by Engelman et al. [46]. Based on our experience
with realistic anatomical deformations in the brain and liver, this
type of boundary condition formulation has great utility in pre-
scribing tissue-mimicking deformations [20], [30]. With respect
to our approach, the “closest point” boundary condition is of the
form expressed in (10) and is only possible through the formu-
lation described by (11). More specifically, in these surface re-
gions, the liver is prescribed to deform normal to the organ sur-
face a designated amount (based on a fraction, , of the closest
point distance, ) and is also allowed to slide tangentially to
accommodate that motion.

The second measure to improve correspondence involves
an incremental approach for the model-updating process. Our
technique uses an incremental application of the displacement
boundary conditions in conjunction with a moving grid. The
displacement increment size is not fixed; but rather, it is based
on an attenuation of the value obtained from the closest point
operator, which is recalculated before each incremental solution
of the model. The advantages of this approach are that it avoids
geometric nonlinearities and provides more realistic deforma-
tions by recalculating the surface normals based on the current
deformed grid. Others have used similar approaches in the
brain and have found the incremental approach to moderately
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Fig. 7. Implementation of “closest point” boundary conditions using normal-
tangential space. The closes point distance for the boundary node at increment 1,
k~d k = d , is determined. From d , a normal distance, k~n k = �d ,
is computed for use in the “closest point” boundary condition where � is the
solution scale fraction that scales the closest point distance in the incremental
framework. The new position of the boundary node, denoted by the small circle,
lies on a plane that is a distance of �d along the direction ~e away from
its original location. The mixed formulation of the “closest point” boundary
condition shown in (10) gives the node freedom to slide along this plane through
the stress-free boundary conditions imposed on the two tangential axes. The
same process is repeated for the second and subsequent increments.

improve the fidelity of their deformation modeling [47]. Our
method is unique in that the moving grid is being used within
the updates to calculate new surface normals and closest point
distances. Currently, a stopping criterion used to halt the incre-
mental updates is defined as the RMS distance to intraoperative
data from all closest point boundary nodes. Once the average
closest point distance is within 1–2 mm, a final increment is
calculated and applied. Fig. 7 shows the relationship for the
first and second increments of our approach. The closest point
distance between the boundary node position at the time of
the first increment and the intraoperative data is calculated

. The normal distance, , is
calculated where is the fraction by which the closest point
distance is scaled, and is the unit vector associated with

. The “closest point” boundary conditions are then set with
the attenuated closest point distance designated as a Dirichlet
condition along the normal direction and stress-free conditions
for the two tangential axes [see (10)]. After the finite element
model is calculated, the new position of the node (small circle)
will lie on a plane formed by the tangential axes. This plane
will be a distance away from the node’s original plane.
However, the node is not confined to reside along the normal
due to the tangential stress-free conditions; therefore, the
point to point distance is not required to equal . After
the position has been updated, a new closest point distance

and normal distance for the boundary condition
are calculated.

With respect to the solution at (8), a sparse format and iter-
ative solver were implemented using the Portable, Extensible
Toolkit for Scientific Computation (PETSc) package [48],
which is capable of solving large linear systems in parallel.
For these experiments, the matrix was preconditioned using an
incomplete LU factorization and an iterative solver based on
the generalized minimal residual (GMRES) method [49].

Experiments were performed on the phantom data in order
to examine the effects of various parameters involved in the in-
cremental approach. For every finite element experiment, the
partial surface from a deformed range scan data set was used
to drive the model. Target registration error (TRE), as defined
in Fitzpatrick et al. [50], was calculated using the subsurface
tumors. The target positions from the nondeformed mesh were

TABLE I
INITIAL ALIGNMENT METHODS FOR INTRAOPERATIVE RANGE

SCAN DATA IN THE FEM

updated through the model and compared to the actual positions
obtained from the CT volume of the deformed organ.

The implementation of “closest point” boundary conditions
is an important factor with regards to accurately localizing
targets. The cartesian representation for this category of
boundary conditions was tested against rotating the node into
a local normal-tangential coordinate system and prescribing
the mixed boundary conditions as described above. Another
factor affecting the closest point calculations was the initial
alignment that was used to transform the intraoperative data. As
a result, five separate registration methods were used to provide
the initial alignment prior to performing FEM model-based
compensation. The methods are shown in Table I.

Since idle time is undesirable during surgery, the incremental
finite element approach must be designed to be as expedient as
possible. Computation time can be reduced through two mea-
sures. First, the number of increments can be decreased, which
is achieved by increasing the solution scale constant respon-
sible for attenuating the closest point distances before setting
the boundary condition values, i.e., as the solution scale ap-
proaches unity, the number of increments will decrease. The
second method for reducing computation time is to make every
incremental execution of the model faster. Within each succes-
sive solution of (8), the majority of computation is devoted to
rebuilding the stiffness matrix and recalculating the precondi-
tioner, which are necessary due to the dynamic grid. These steps
can be completely avoided after the first increment by using the
original mesh for every iteration, updating the boundary nodes
and conditions separately, similar to the approach of Platenik et
al. [47]. In this manner, only the right-hand side is affected, and
the individual solutions from each increment can be summed
to determine the final displacements. When solving the model
multiple times, the quality of the dynamic grid could degrade.
To avoid a problem with mesh quality, the original mesh is used
for each iteration, but the normals and boundary nodes are sep-
arately maintained and updated after each iteration. Since the
normals vary, the rotation matrices will change and the stiffness
matrix must be rebuilt. Thus, more computation time is likely
required per incremental solution, but the original mesh struc-
ture is preserved, possibly enhancing performance of the solver
by improving the condition number of the stiffness matrix in (8).

III. RESULTS

A. Deformation Identification

The “ground truth” for the rigid alignment involves manu-
ally identifying minimally deformed regions on the CT surface
through visual inspection, and then using these regions in an ICP
registration. When registering the minimally deformed region of
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Fig. 8. Various alignments of intraoperative range scan of phantom with the preoperative surface: (a) Using the surrounding extrinsic fiducials, (b) Using the
complete surface data with ICP registration, and (c) using only the manually identified minimally deformed regions for the ICP. It is (c) that will serve as the ground
truth for experiments testing the DIRR algorithm.

the surface to the original volume, the RMS of the closest point
distances was 0.9 mm ( )
for the first deformation case using approximately 10 000 points,
and 1.0 mm ( ) for the second deformation, where
the partial surface contained approximately 8800 points. As a
comparison, the RMS of the closest point distances was 4.2 mm
( ) and 2.6 mm ( ) for the two
data sets when using the whole surface in the ICP registration.
The differences between the fiducial registration, the whole sur-
face ICP, and the “ground truth” alignment based on ICP using
only the minimally deformed regions are displayed in Fig. 8.
Fig. 8(c), displaying the ground truth, indicates a better align-
ment of the left side of the surface compared to the alignment
obtained from the external fiducials.

To initialize the DIRRs optimization, four points representing
landmarks on the surface were used for a fiducial-based regis-
tration. The fiducial registration error (FRE) is defined by the
following equation [50]

(12)

where is the number of landmarks in point sets and , and
and are the rotation and translation parameters that repre-

sent the rigid registration. The FRE for these initial registrations
were 5.8 and 5.3 mm for the two cases using deformed CT data
and 5.8 and 8.5 mm for range scan data. Since it is difficult to
localize surface landmarks with a high degree of precision or
accuracy, the position of the landmarks was perturbed by a dis-
tance of up to 1 cm. From these random perturbations, the ini-
tial alignment given to the DIRR was varied over 1000 trials.
Table II shows the results of the DIRR registration experiments,
with trials classified as a “success” or “failure” based on the
definition given in Section II-C. In all trials, the complete non-
deformed surface from the CT data was used. For the deformed
surface, columns two and three indicate the results when using
complete surface data from CT volumes, and columns four and
five display the results when using only the partial surface ac-
quired from the range scanner.

B. Finite Element Modeling Experiments

The two material properties that describe a linearly elastic
surface are Young’s modulus, , and Poisson’s ratio, . Both
properties were varied to determine their effect on the model.
Young’s modulus did not affect the model while varying it be-
tween 30 and 400 kPa. This material property would have an

TABLE II
RESULTS FROM THE DIRR ALGORITHM. THESE VALUES ARE THE MEAN

DISTANCE, MM, FROM THE CENTROID LOCATION USING THE DIRR
ALIGNMENT TO THE CORRESPONDING CENTROIDS AT GROUND TRUTH

impact if there was heterogeneity in the model, such as incor-
porating different material properties for stiff tumors. When
varying Poisson’s ratio between 0.3 and 0.495, the model did ex-
hibit some change. The RMS distance between boundary nodes
was 0.7 mm over the range of parameter values, with some in-
dividual nodes moving as much as 8.0 mm between solutions.
The largest movement in the subsurface targets was 0.5 mm.
While varying the properties did not significantly affect these
modeling studies, they could play a larger role as the model be-
comes more advanced.

The solution scale, of (10), is a constant that represents
the fraction of the closest point distance used for the boundary
condition values. Before every increment, the updated closest
point distance is calculated for each node and then scaled by this
constant. We tested the incremental FEM model with six dif-
ferent values for the solution scale constant, ranging from 0.05
to 1.0. Fig. 9 shows the effects of the solution scale on the model
for the first deformation case when aligning the intraoperative
range scan data with each of the initial rigid alignments listed in
Table I on the intraoperative data. In the second deformation set,
varying the solution scale produced no significant effect on the
model. The relationship between solution scale and the number
of increments is shown in Table III. To better understand the
effects of the approaches highlighted in Table III with respect
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Fig. 9. Tumor error after modeling the first deformation case with varying
solution scale. The mean error is plotted along with the minimum and maximum
errors labeled with the tumor number from Fig. 3 where they occurred.

TABLE III
RELATIONSHIP OF THE SOLUTION SCALE WITH THE NUMBER

OF FEM INCREMENTS

to individual targets, Fig. 10 reports target error associated with
each mock tumor shown in Fig. 3 (a solution scale of 0.2 was
used for all results shown). The next set of experiments focused
on the implementations of the boundary conditions and the stiff-
ness matrix. While holding the solution scale fixed at 0.2 and
using an initial alignment based on fiducials or ICP, the model
was run, testing the normal-tangential description of boundary
conditions against the cartesian boundary conditions. For both
of these implementations, the model was tested using both a
moving grid and a static grid. For the normal-tangential method,
an additional test was performed to use the original static mesh,
but to use updated closest points and normals. Ultimately, this
requires rebuilding of the stiffness matrix with each increment.
The results are shown in Fig. 11 (where the FID alignment was
used) and Fig. 12 (ICP-PARTIAL alignment).

It is important to understand how the various components
of the MUIGLS approach affect the localization of tumors.

Fig. 10. FEM tumor errors with respect to the initial alignment. The solution
scale used for these experiments is 0.2. The five alignment methods are listed in
Table I. The dotted lines indicate the tumors experiencing the most deformation.

Fig. 11. Tumor errors from FEM model while varying implementation of
boundary conditions and the construction method of the preconditioner and
stiffness matrix. The initial rigid alignment used here was based on the external
fiducials.

Table IV summarizes the effects of both registration and
finite element modeling on target accuracy. The finite ele-
ment modeling results come from the best scenario, where
normal-tangential boundary conditions are used on a moving
grid. In the column for the ICP-WHOLE alignment, the first
deformation case yields a difference in the mean error when
comparing the before and after model application. When em-
ploying the DIRR-WHOLE method, a more marked reduction
occurs in the regions where the greatest amount of shift has
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Fig. 12. Tumor errors from FEM model while varying implementation of
boundary conditions and the construction method of the preconditioner and
stiffness matrix. The initial rigid alignment used here was based on ICP of the
range scan surface.

TABLE IV
IMPROVEMENT OF TUMOR ERROR, MM, AS A RESULT OF FINITE

ELEMENT MODELING

occurred (tumors 1 and 2), as it has been identified by the
DIRR. There are still improvements in the second deformation
case, where the deformation is less significant.

IV. DISCUSSION

A. Deformation Identifying Rigid Registration

The most common form of determining correspondence is
based on the closest point distance operator. For most surfaces
and correspondence strategies, closest point distances are used
as initial estimates of correspondence, allowing the iterative

alignment of images to naturally bring points to their true
one-to-one correspondence. With the presence of deformation,
the closest point operator becomes less reliable as a means
of determining correspondence. Many groups have proposed
modifications to the closest point operator in order to achieve
a more accurate correspondence estimate [11], [15], [16],
[51]–[53].

Establishing correspondence with a closest point distance
can be inaccurate when a large deformation is present. Rather
than establish correspondence, the DIRR algorithm computes
the signed distance to the underlying target surface, often
represented by RBFs. The signed distance values are used to
drive the gaussian term in the cost function (2), which rewards
transformations where there are many points with small signed
distances. When the cost function is at a maximum, it is associ-
ated with minimally deformed regions that are well-aligned. At
the same time, the cost function does not penalize large signed
distances associated with deformation.

The DIRR algorithm performs better when given a complete
representation of the deformed surface. When perturbing each
of the fiducials in the deformed set by 1 cm, there was only
one failure in 1000 trials for the first deformation case while
there were no failures for the second case. Both sets of trials
came within 2 mm from the ground truth alignment. The partial
surfaces from range scan surface data reach a successful align-
ment 90% of the time or greater. One strategy to improve suc-
cess could be to use a priori information regarding the extent
of deformation. Similar to our manually delineated deforma-
tion results, this information could be incorporated into DIRR
semiautomatically, by manually classifying regions of the sur-
face according to the confidence that deformation is or is not
taking place. This confidence measure could be used to weight
each point in the cost function accordingly.

Other sources of error regarding the DIRR include inaccura-
cies due to surface acquisition. These errors more than likely
arise from range data acquisition and to a lesser extent the sur-
face extracted from the segmentation of the tomograms. A dis-
cussion on the sources of error in range scans and how they per-
tain to image-guided surgery can be found in [29]. While the
surface fit using the RBF data gets rid of some of the input noise,
detail is lost as well. There is also the possibility that small re-
gions of deformation (1–3 mm) are not being accounted for in
either the partial ICP or DIRR algorithms, which is not in the
scope of this study.

B. Modeling Considerations

In most cases, the FEM model provides significant improve-
ment over results from rigid registrations alone, as indicated by
Table IV. The largest improvement in accuracy comes from ro-
tating the boundary nodes into a normal-tangential coordinate
system. By implementing mixed boundary conditions, which
allow the nodes to move along the plane tangent to the sur-
face, the results suggest that organ shift is better accommodated.
When using the cartesian boundary conditions, the lack of inter-
action is observed by a distinct delineation where a transition of
boundary condition types occurs, which is illustrated in Fig. 13.
Specifying the displacement in the direction of the normal is
intuitive if one were to examine the deformation from these ex-
periments as a series of small increments. At every increment,
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Fig. 13. Quantitative comparison of closest point boundary conditions using
the (a) normal-tangential local coordinate frame and (b) the cartesian coordinate
frame. The cartesian boundary conditions result in a clear boundary between
the closest point nodes and nodes that prescribe a different type of boundary
condition. This boundary is highlighted by the red arrows in (b).

the actual displacement should closely align with surface nor-
mals. Allowing the node to freely move in the tangential di-
rection resolves any discrepancies between the true direction of
deformation and the one specified by the surface normal. How-
ever, unlike these phantom experiments, there might be a sit-
uation in which the deformation is not in the direction of the
normals for the acquired intraoperative surface. At this point,
the DIRR becomes more important. By identifying the defor-
mation through the rigid registration, it would be possible to
determine the vector that describes the orientation of the defor-
mation with respect to the finite element mesh which could then
serve in place of the mesh’s surface normal.

Due to the incomplete nature of the intraoperative data ac-
quisition, the initial rigid alignment used to set up the closest
point boundary conditions also plays a significant role. In both
deformation cases, the transformation obtained from the DIRR-
WHOLE alignment provided very good results. However, when
using an incomplete surface in the DIRR-PARTIAL alignment,
small misalignments arise, especially rotations that were not re-
covered by the model and led to larger inaccuracies. The rigid
fiducials from the images also provided good results, although
the errors were lower in the first case, since there was little dif-
ference between the resulting registration and the one deter-
mined using DIRR. In both cases, the ICP algorithm did not
perform as accurately as other alignments, since the alignment
misregisters minimally deformed surfaces and eliminates the
meaning of holding these areas fixed in the boundary conditions.

Given the time sensitive nature in the operating room and
the significant costs that can be associated with running the fi-
nite element model numerous times, the selection of parame-
ters for this model must focus on limiting the number of in-
crements while maximizing the accuracy. One of the quickest
ways to limit the computational intensity is to keep the solu-
tion scale as high as possible, i.e., large increments. The incre-
mental approach has the greatest effect when geometric non-
linearities are more significant. In the first deformation case,
there was a significant effect with the FID alignment, where the
model must resolve the rigid registration between Fig. 8(a) and
(c) in addition to the large shift, which is on the order of 3 cm
in some areas. There are limited effects from the solution scale
for ICP-WHOLE, ICP-PARTIAL, and DIRR-WHOLE, since
there is less shift to resolve. In each of these three alignments,
the lowest mean tumor error occurred at a solution scale less

than 1. While the mean tumor error for these alignments varied
less than 0.5 mm over the full range of solution scale values,
there were some instances of individual tumor errors improving
1–2 mm. Finally, there were adverse effects for the DIRR-PAR-
TIAL alignment. In this case, as mentioned above, there was
a slight misalignment, which compounded with the incremental
approach. The solution scale had very little effect on the smaller
deformations observed in the second deformation case, as there
are less issues with determining correspondence.

Another way to reduce computation time is to eliminate the
steps where the stiffness matrix was rebuilt. From the results of
Fig. 11, there was a decrease in targeting accuracy when imple-
menting this time-saving tactic, mainly at the tumors where the
most shift was present. The error was also higher when using a
static grid and rebuilding the stiffness matrix with updated sur-
face normals to preserve mesh quality. However, when aligning
the surface with ICP, these measures became more effective.

Since the model is primarily driven by intraoperative data, the
method by which boundary conditions are chosen for each node
can play a significant role in the resulting accuracy. If nodes that
are specified to have closest point boundary conditions are lo-
cated where there is minimal coverage provided by intraoper-
ative data, inaccurate values for boundary conditions could re-
sult. One way to limit these inaccuracies is to use RBF fitting to
construct a distance map associated with the intraoperative data,
providing a more complete representation of the data and accu-
rate closest point distance calculations for the boundary con-
ditions at the cost of greater preprocessing time. In this study,
we attempted to determine if the deformation could be identi-
fied and corrected from partial surface data alone. However, we
have the capability to acquire subsurface information intraoper-
atively using coregistered ultrasound [54], which could improve
the accuracy of this method.

Considering the numerous amount of nonrigid registration al-
gorithms available, it might seem more intuitive to implement
one of these methods instead. In fact, deformable algorithms
that use feature and geometric information are being considered
in future studies as a means of comparison. The main challenge
that arises with many of these methods is how to deform the
preoperative mesh in regions where there is no intraoperative
data present to provide corresponding features to drive the non-
rigid algorithm. Using fixed boundary conditions to hold these
regions immobile does not accurately represent the deforma-
tion that is occurring in the operating room. In fact, most of
the boundary on the underside of the phantom or the liver is
allowed to deform and is prescribed stress-free boundary condi-
tions. This method appears to be more intuitive than to modify
a nonrigid transformation to simulate stress-free boundary con-
ditions in areas where the intraoperative data is incomplete.

Arguably though, the advantage of FEM-based compensa-
tion is that the deformation behavior can be grounded within
an analysis of the continuum as relayed within a partial differ-
ential equation describing elastic mechanics. As a result, com-
pensation is based on the physics of deformation rather than a
process of polynomial interpolation. While it is true that poly-
nomial basis functions are often at the core of FEM, the process
of prescribing the correct boundary conditions for modeling de-
formation has a distinct link to physical quantities such as dis-
placement, strain, force, and stress.



1490 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 11, NOVEMBER 2005

C. The Role of Surface Coverage

The incomplete surface data seems to provide the largest
challenge for developing the model-updated framework. If the
partial coverage of the range scanner is uneven and does not
capture enough points over the minimally deformed region,
then the cost function of (2) will result in values different from
those acquired with a complete, uniformly sampled description,
as obtained from the CT data. This uneven coverage could lead
to a shift in the location of the desired minimum. As a result,
this alignment could have inaccuracies with regards to iden-
tifying deformation and establishing accurate correspondence.
The same effect is also observed when using only the mini-
mally deformed regions of the partial range scan surface in an
ICP registration.

In the first deformation case, the DIRR-PARTIAL algorithm
results in a slight rotation normal to the deformation in the
first case. This rotation places the ridge of the intraoperative
data over the wrong area of the surface. As a result, the corre-
spondences are incorrect and improper values are used for the
boundary conditions, leading to higher inaccuracies than other
initial alignments. The second deformation case shows another
challenge regarding intraoperative data acquisition that involves
accurately capturing the deformation. Both range scans were
acquired from the top view of the phantom, while much of the
deformation in the second case is occurring at the inferior ridge.
If range scan data would have been more focused on the site of
deformation, the algorithms would have performed better.

While partial surface data can have a significant effect on
identifying and subsequently correcting for deformation, the
uneven coverage is a more important issue. Simulated range
scans were created by taking the CT data from deformed sets
and eliminating the points representing the bottom region of the
phantom. Initial studies using these data sets show good con-
vergence with the DIRR. For the first deformation case, a suc-
cessful registration, as defined in Section II, was 99.6% over
1000 trials using the simulated range scans, and 96.5% for the
second case. Both data sets were closer to the results provided
by the complete CT sets than the range scan surfaces. This data
can be used in the future to determine the effects of coverage on
the DIRR and deformable models.

V. CONCLUSION

We have developed a method for identifying and compen-
sating shift using only surface data. The goal of the DIRR was
to provide the same rigid registration that would occur if only
the minimally deformed regions of the surface were used. The
DIRR accomplished this objective to within 2 mm when using a
complete description of a deformed surface and 4 mm for a par-
tial surface. The finite element model resulted in improvements
over the rigid registration when closest point boundary condi-
tions were represented in a normal-tangential framework. The
incremental approach had a modest effect for cases of large de-
formations. The model achieved the best accuracies when initial
alignments were provided from complete descriptions of the de-
formed surface (ICP-WHOLE, DIRR-WHOLE). However, the
FEM also performed better when aligned using DIRR compared
to ICP alignment for both representations of the deformed sur-
face (complete CT and partial range scan).
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