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 

Abstract—  In open image-guided liver surgery (IGLS), a sparse 

representation of the intraoperative organ surface can be acquired 

to drive image-to-physical registration. We hypothesize that 

uncharacterized error induced by variation in the collection 

patterns of organ surface data limits the accuracy and robustness 

of IGLS registration. Clinical validation of such registration 

methods is challenged due to the difficulty in obtaining data 

representative of the true state of organ deformation. We propose 

a novel human-to-phantom validation framework that transforms 

surface collection patterns from in vivo IGLS procedures (n=13) 

onto a well-characterized hepatic deformation phantom for the 

purpose of validating surface-driven, volumetric nonrigid 

registration methods. An important feature of the approach is that 

it centers on combining workflow-realistic data acquisition and 

surgical deformations that are appropriate in behavior and 

magnitude. Using the approach, we investigate volumetric target 

registration error (TRE) with both current rigid IGLS and our 

improved nonrigid registration methods.  Additionally, we 

introduce a spatial data resampling approach to mitigate the 

workflow-sensitive sampling problem. Using our human-to-

phantom approach, TRE after routine rigid registration was 10.9 

± 0.6 mm with a signed closest point distance associated with 

residual surface fit in the range of ± 10.0 mm, highly representative 

of open liver resections.  After applying our novel resampling 

strategy and improved deformation correction method, TRE was 

reduced by 51%, i.e. a TRE of 5.3 ± 0.5 mm.  The work reported 

herein realizes a novel tractable approach for the validation of 

image-to-physical registration methods and demonstrates 

promising results for our correction method. 

 

Index Terms—Deformation, image guided surgery, liver, 

registration.  

I. INTRODUCTION 

mage-guided liver surgery (IGLS) aims to improve surgical 

precision by providing intraoperative guidance of 

instrumentation. True IGLS requires (1) full volumetric 

preoperative imaging, (2) the ability to localize instrumentation 

in physical space, (3) a method of image-to-physical space 
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registration, (4) a method to correct for intra-procedural organ 

changes, and (5) a display of instrumentation position in 

accordance to preoperative imaging. A problem central to IGLS 

is the task of registration in the soft-tissue environment; where 

organ shape changes that occur between preoperative imaging 

and intraoperative presentation create significant challenges to 

the guidance environment. The overall utility of IGLS methods 

fundamentally hinges on the accuracy of the image-to-physical 

space mapping. In addition and not often discussed, there is a 

fundamental challenge that consists of acquiring sufficient 

extent and quality of geometric data such that guidance updates 

are accurate while not compromising the workflow of 

procedural care.  IGLS embodies this demanding and often 

vexing problem.  

With respect to IGLS workflow (for both open and 

laparoscopic indications), it is clear that the anterior surface of 

the organ and some salient features are routinely available (i.e. 

falciform ligament and inferior ridges [1-2]).  It is also clear that 

digitization technologies for acquiring these surfaces are still 

somewhat limited [3].  Tracked ultrasound imaging is 

commonly used and allows for major vasculature to be digitized 

during surgery [4].  With respect to commercial IGLS 

developments, both surface and ultrasound registration 

approaches are being pursued. When it comes to surface based 

registration techniques, these typically rely on an iterative 

approach with an estimated surface correspondence and also 

assume that surfaces being registered share a high degree of 

similarity [5-8].  With respect to ultrasound based approaches, 

these typically rely on local alignments between CT-rendered 

and ultrasound-identified vasculature.  With each of these 

approaches, of course, alignments can be compromised by 

deformations from pre-to-intraoperative organ shape changes, 

respiration, liver mobilization, and resection [9-11].  In 

recognition of this, ongoing efforts have been made towards 

soft-tissue deformation correction in IGLS using these 
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modalities of geometric data.  For example, in [12] an elastic 

registration technique is used in combination with ultrasound 

vasculature data to nonrigidly correct for deformations.  In our 

work, we have concentrated on approaches that minimize 

differences between surfaces extracted from the preoperative 

imaging and those gathered intraoperatively.  Our approaches 

use patient-specific biomechanical models to nonrigidly align 

the data [1, 6, and 13] (adding very sparse subsurface data, i.e. 

tumor centroid location in [13], has also been pursued).  

With respect to sparse surface data digitization for IGLS, 

registration has been performed using manual swabbing with a 

tracked probe [14], laser-range scanning [5], ultrasound [1, 15-

16], time of flight imaging [17], stereoscopic imaging [18-19], 

and conoscopic holographic surface scanning [20]. Recently, 

we did a comprehensive study comparing registration results 

using swabbing, laser range scanning, and conoscopic 

holographic scanning in [21].  While results indicated better 

performance from non-contact digitization methods, challenges 

of integration into the operating room still persist which is why 

manual surface swabbing is still the only commercial IGLS 

surface-based approach in use today. 

Regardless of the sparse-data source, data collection is 

commonly contingent on the surgeon’s ability to acquire data 

within a surgical procedure.  As a result, variability in density, 

uniformity, extent, and degree of noise (either from the 

modality of measurement or physician technique) all affect 

registration but have received limited study.  This is largely due 

to the extreme challenge of needing extensive bystander 

acquisition capabilities to assess and record data within the 

operating room. Going further, the resources for validation 

precipitate an even more excessive clinical burden, i.e. 

intraoperative volumetric imaging and a series of consenting 

patients. The encumbrance of intraoperative volumetric 

validation, either with partial volume methods such as tracked 

intraoperative ultrasound [1] or full volumetric imaging 

methods such as computed tomography or magnetic resonance 

imaging [15, 22], is considerable and adds impetus for a new 

way to characterize methods rapidly. Therefore, we present a 

novel human-to-phantom validation framework which aims to 

bypass the burden of such cumbersome clinical data 

acquisition.  

In the work presented herein, routine intraoperative patient 

data associated with conventional IGLS were collected to study 

the influence of variability in organ surface acquisition. This 

study has been motivated by the observation of a high degree of 

variation in the spatial pattern and density of surface data in a 

series of intraoperative procedural acquisitions (Fig. 1). The 

aim of this study was to characterize the influence that these 

variations have on IGLS accuracy using both conventional rigid 

and our improved nonrigid registration methods. While we 

report on the characterization of our particular approach, the 

framework described herein has broader impact by 

demonstrating how clinical workflow data can be combined 

with a realistic phantom for rapid methodological prototyping. 

Briefly described, in the human-to-phantom validation 

framework, the surface collection patterns of a series of clinical 

surface data were individually transformed and applied to a 

well-characterized hepatic deformation phantom designed to 

have deformations similar to the OR.  This allows the 

replication of multiple independent surface collections while 

facilitating the measurement of full volumetric shift with CT 

imaging and distributed CT-visible targets, thus providing 

ground truth data for accuracy and reproducibility assessment. 

Such complete and discrete ground-truth data is typically 

unavailable in clinical data and has become a major obstacle in 

the quantitative assessment of registration accuracy. In 

addition, we use the novel framework to assist in designing a 

spatial data resampling strategy that demonstrates dramatic 

improvements in both rigid and nonrigid registration results. 

We conclude by discussing the methods and results of our study 

in an effort to understand the influence of data collection on 

registration accuracy in IGLS.  

II. METHODOLOGY  

A. Overview of Experimental Design 

The methods of this study are designed to accomplish three 

goals: first, create a novel human-to-phantom data framework 

for extensive use in IGLS methodological validation; second, 

develop a resampling approach which improves the accuracy 

and variance of IGLS registration methods; third, perform an 

analysis to systematically study the impact that variations in 

organ surface data quality have on IGLS registration methods.  

B. Patient Data Collection 

Patients were consented and enrolled in an ongoing 

prospective study of deformation correction for IGLS approved 

by the Memorial Sloan Kettering Cancer Center (MSKCC) 

Institutional Review Board. Thirteen patients undergoing open 

liver resection at MSKCC are presented within this study. Prior 

to surgery, contrast enhanced CT images were acquired of each 

Fig. 1. Manual surface swabbing results collected within the Explorer
TM

 

Liver navigation system. Digitized surface and feature data are presented 

for 4 clinical cases following an initial rigid alignment generated by the 

salient feature registration algorithm of Clements et al. [6]. Data 

representing the falciform, left inferior ridge, right inferior ridge, and 
anterior organ surface are presented in red, blue, green, and white 

respectively. 
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patient as part of routine clinical management. 3D anatomical 

models of the liver, tumors, and vasculature were generated 

using surgical planning software (Scout™ Liver, Analogic 

Corporation, Peabody, MA). Following this processing, the 

preoperative 3D model was loaded into a surgical navigation 

system (Explorer™ Liver, Analogic Corporation, Peabody, 

MA). During surgery, after organ mobilization, the surgeon 

manually swabbed anatomical surfaces with an optically 

tracked stylus. This digitization creates a sparse 3D point cloud 

representing the organ surface and salient anatomical features. 

A visualization of intraoperative surface collection is presented 

in Fig. 1. 

C. Phantom Data Collection 

Phantom data were acquired consistent with a previously 

reported study by Rucker et al. [13]. Briefly, a compliant 

hepatic phantom was created to mimic clinical organ 

deformation based on our experience in a previously reported 

75 patient multi-center clinical trial [23]. The phantom 

consisted of water, 7% by volume polyvinyl alcohol, and 10% 

by volume glycerin that was subjected to a 12-hour freeze-thaw 

cycle to develop stiffness [24]. The phantom incorporated 47 

subsurface plastic beads, which served as ground truth target 

locations. Similarly to clinical cases, a preoperative CT scan of 

the phantom in an undeformed state was acquired to generate 

an organ model and to identify target locations. Intraoperative 

organ deformation was replicated by altering support at the 

posterior phantom surface (Fig. 2). An intraoperative CT scan 

of the deformed phantom was captured to acquire the true 

deformed organ surface, volume, and target locations. Salient 

anatomical feature regions (falciform ligament and inferior 

ridges) were designated from the intraoperative CT. 

D. Human-to-Phantom Data Preparation 

Thirteen clinically acquired surface datasets (II.B) were 

applied as collection patterns to the hepatic deformation 

phantom (II.C) to observe the effect of intraoperative organ 

surface digitization on registration accuracy. Furthermore, 

randomized sinusoidal noise was applied to these collection 

patterns to simulate the natural periodic level of contact that 

occurs during manual organ swabbing (i.e. compressing into or 

lifting off the surface) – resulting in easily generated, unique, 

and realistic digitizations of the intraoperative phantom surface. 

The clinical surface data were aligned to the intraoperative 

phantom data using rigid salient feature weighted registration 

[6]. This registration aligned the phantom and clinical data 

according to the salient features, but differences in organ size 

and extent remained. We should also note that others are also 

following this approach [25]. Following initial rigid alignment, 

the finite iterative closest point registration method by Kroon 

[26] incorporated scale and skew into the optimization of a 

transformation matrix, providing an affine registration which 

accounts for differences in data extent and organ size. 

Fig. 2. The CT segmented preoperative and intraoperative phantom 

surfaces are presented in red and blue respectively. The differences in 

surfaces highlights the volumetric deformation undergone in the simulated 
phantom data. 

Intraoperative phantom CT (II.C) 

Intraoperative patient surface 

digitization (II.B) 
Patient data transformed and projected to 

intraoperative phantom surface (II.D) 

Develop and apply random noise to the 

projected points (II.D), creating a clinically 

sampled phantom surface digitization. 

Fig. 3. Structure of the proposed human-to-phantom data set presented in flowchart form. Human data is aligned, scaled, and projected onto the 

intraoperative phantom CT surface. Randomly defined sinusoidal waveforms are generated and applied to the projected data to simulate collection noise. 

Noise patterns are applied independently to the surface and feature data. The right and center columns serve as examples of surface digitization with and 
without applied noise. 
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Following alignment and scaling of the clinical and phantom 

intraoperative surfaces, the clinical surface data were projected 

to their closest point on the intraoperative phantom CT, 

producing thirteen clinically representative surface 

digitizations of the CT documented deformed phantom surface.  

Next, realistic noise was added to the phantom collections 

along the spatial trajectory associated with the particular 

clinical swab. To accomplish this, randomized sinusoidal 

waveforms were generated for each simulated phantom surface 

and feature designation (Fig. 3). Independent noise was applied 

in the normal and tangential directions for each data point as 

follows: 

 

𝑁̂ = (sin(2𝜋𝑠𝑓1 + 𝜑1) + a ∙ sin(2𝜋𝑠𝑓2 + 𝜑2) + 𝑅) ∗ 𝑑̂ 
   (1) 

where 𝑁̂ is the vector of applied noise, 𝑑̂ defines the normal or 

tangential directions at each data point, 𝑓𝑖 is a randomly 

assigned low frequency (between 0-10 Hz in qualitative 

accordance with clinical swabbing), 𝜑𝑖 is a randomly assigned 

phase shift (between 0-2π), a is a randomly assigned amplitude 

(between 0-5), and R is uniform pseudorandom noise. Applying 

smoothly varying noise in the spatial order of clinical 

collections mimicked the pattern of noise associated with 

intraoperative data collection. The amplitude of noise was 

established by curve fitting each clinical data swab and 

averaging the residual error in the directions normal and 

tangential to the organ surface. The RMS amplitudes of noise 

in the normal (0.9 mm) and tangential (1.8 mm) directions were 

specified by the average noise measured across the whole 

clinical data set. Each application of random noise to a clinical 

surface data pattern results in an independent simulated surface 

digitization of the intraoperative phantom. To ensure adequate 

characterization, we used this strategy to simulate 50 phantom 

surface data acquisitions with independent randomized noise 

added for each of the 13 clinical cases (Fig. 4).  With the above 

process realized, any organ surface data pattern taken 

intraoperatively could be transformed with noise onto our 3D 

deformation phantom system, thus allowing for a quantitative 

assessment of its impact on any proposed registration scheme 

in the presence of realistic deformations.  

E. Data Resampling 

In our experience with OR-amenable IGLS processes, 

surface data collection varies with real-world surgeon use.  To 

improve robustness in light of this variability, we propose a 

resampling approach and test its impact using our novel human-

to-phantom framework. To begin, we assume that the anterior 

organ surface, where the sparse surface data were collected, 

may be treated as a bounded, continuous, and unique surface of 

the form: 

 
𝑧 = 𝑓(𝑥, 𝑦) (2) 

 
This assumption reduces dimensionality, thus decreasing 

complexity and computational burden. To improve consistency 

regardless of initial raw data orientation in Cartesian space, a 

3D least squares plane was fit to the raw data and a rigid 

registration was determined which transforms the least squares 

plane to the 𝑥 − 𝑦 plane by aligning its normal to the 𝑧 axis. A 

discrete grid was fit to the transformed raw data using a joint 

interpolation and approximation method [27]. The approach fits 

locally to the transformed raw data using barycentric 

interpolation as follows: 

 

𝑓(𝑥, 𝑦) =  ∑ 𝜆𝑖𝑓(𝑥𝑖 , 𝑦𝑖)

3

𝑖=1

 (3) 

 
where the height at a location within the triangular grid, 𝑓(𝑥, 𝑦), 

is reconstructed as a linear combination of the heights at the 

vertices of an encompassing triangle, 𝑓(𝑥𝑖 , 𝑦𝑖), weighted by the 

ratio of area within the triangle, 𝜆𝑖, where each vertex 

contributes to the queried location. The approach then 

regularizes the grid with a discrete approximation of the 

Laplacian using the finite difference method for a given grid 

node as follows: 

 

∇2𝑓(𝑥, 𝑦) =  
𝑑2𝑧

𝑑𝑥2
+ 

𝑑2𝑧

𝑑𝑦2
= 0 (4) 

∇2𝑓(𝑥, 𝑦) ≈  
1

ℎ2
 (𝑓(𝑥 − ℎ, 𝑦) + 𝑓(𝑥 + ℎ, 𝑦)

+ 𝑓(𝑥, 𝑦 − ℎ) + 𝑓(𝑥, 𝑦 + ℎ)

− 4𝑓(𝑥, 𝑦)) 

(5) 

 
where 𝑓(𝑥, 𝑦) is a nodal height value and ℎ is the grid spacing. 

Next, a weighting scheme was applied which sampled the 

surface more densely in areas local to the raw surface data. 

Weighting in this manner increases the influence of well-fit 

areas of the resampled surface on our nonrigid correction 

method. The strategy was composed of (1) a sparse set of points 

set at 5 mm spacing underlying the full extent of the surface and 

(2) a dense set of points set at 0.25 mm spacing within a 

specified capture radius, 1 mm, of the raw surface data. 

Parameter values were established through a parametric sweep. 

Finally, the fitted surface was trimmed, such that it represents a 

single region accurately bounded by the outer contour of the 

raw data, using a dilate-and-fill image processing procedure. 

F. Rigid Registration 

For the purposes of image-to-physical registration, rigid 

alignment was determined using a salient feature weighted 

iterative closest point registration [6], specifically designed for 

liver anatomy and used in a commercial IGLS system. More 

specifically, salient feature registration utilizes homologous 

anatomical features to bias point correspondence estimation at 

each iteration. The biased weighting scheme preferentially 

favors alignment of preoperatively designated anatomical 

features with corresponding intraoperative surface data, 

producing a robust initial alignment that provides support to 

successive digitization of the remainder of the organ surface. 
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Correspondence is estimated using a conventional closest point 

operator. The algorithm provides a coordinate transformation 

that minimizes residual error between preoperative and 

intraoperative organ surface data. 

G. Nonrigid Registration 

With respect to modeling nonrigid behaviors, we employ a 

linear elastic biomechanical model of the preoperative organ 

described previously [13].  Large deformations and more 

sophisticated constitutive models are possible; however, 

applying a rigid registration followed by smaller nonrigid 

deformations is a first order deformation correction approach 

which, when considering localization errors and tracking 

accuracy, is appropriate. The benefit of a nonlinear corotational 

finite element formulation (one nonlinear approach for 

accounting for large deformations) yielded no statistical 

difference in our previous work [13].  It is likely that geometric 

and material nonlinearities will be needed in the future as 

instrumentation integration matures but our present framework 

does represent a step forward in providing significant 

localization improvement over rigid registration.  In addition, 

the use of a linear model allows for pre-computation strategies 

for providing fast intraoperative nonrigid registration for real 

time use.  The patient-specific geometric model assumes that 

the liver is an isotropic solid described by the 3D Navier-

Cauchy equation: 

 

∇ (
𝐸

2(1 + 𝑣)(1 − 2𝑣)
∇ ∙ 𝑢) + ∇ ∙ (

𝐸

2(1 + 𝑣)
∇𝑢) = 0 

                      (6) 

         
E is Young’s modulus, v is Poisson’s ratio, and u is the 

displacement vector. We solve the system of partial differential 

equations (PDE) by applying the Galerkin weighted residual 

method using linear Lagrange basis functions on tetrahedral 

finite elements. Displacement boundary conditions are 

employed on the posterior liver surface to simulate the impact 

of liver mobilization and packing.  On remaining surfaces, the 

natural stress free boundary condition is employed.  Potential 

posterior displacement surfaces can be designated a priori and 

allow for pre-computation strategies for fast model correction.  

We embed this model within a novel nonrigid registration 

framework.  In the surgical setting, the organ is first mobilized 

from abdominal connective tissue and packed with supportive 

material for presentation. These changes in support manifest as 

deformations, i.e. global shape changes, in comparison to the 

preoperative organ configuration. The algorithm we employ to 

correct for these deformations is an improved form of the 

nonrigid registration method introduced by Rucker et al. [13]. 

The method assumes a predetermined support surface based on 

operative approach, in this case the posterior surface of the 

liver. A parameterized posterior displacement field is iteratively 

computed to minimize residual error between the 

intraoperatively collected anterior surface data and the 

deformed model surface. The result is a reconstructed 

volumetric prediction of the deformed organ based on the 

preoperative biomechanical model and sparse intraoperative 

surface data. With respect to modifications to the method 

presented in Rucker et al., posterior support surfaces were 

allowed to move only in the direction of the posterior surface 

normal [13]. In this paper, we employ an improved extension to 

the posterior surface parameterization to include tangential 

displacements as well. Thus, the set of parameters used to 

generate our nonrigid fitting is: 

 
𝑃 =  {𝑐𝑛̅ , 𝑐𝑡̅1, 𝑐𝑡̅2, 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧} (7) 

 
where  𝑡𝑥, 𝑡𝑦, 𝑡𝑧 , 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 are the traditional translational and 

rotational components associated with rigid body registration, 

and 𝑐𝑛̅ , 𝑐𝑡̅1, 𝑐𝑡̅2 are the control parameters for the posterior 

surface conditions for the normal and the newly added two 

tangential components.  The control parameters are associated 

with a bivariate polynomial that systematically deploys 

boundary conditions to the entire support surface in a given 

iteration.  The methodology has incorporated the salient feature 

weighting throughout and traditional elastic energy constraints 

for controlled deformations.  Following Rucker et al., the 

Levenberg-Marquardt algorithm was employed to reconstruct 

the optimal parameter set to fit acquired surface data.  

Apply resampling to data 

Rigid registration 

Nonrigid registration 

Output TRE 

Output TRE 

Human data (n=13) 

Human-to-phantom dataset 

Rigid registration 

Nonrigid registration 

Output TRE 

Output TRE 

Apply random sinusoidal 
noise pattern 

50 Iterations 

A. 

B. 

C. 

D. 

Fig. 4. Schematic of the proposed study. For a given clinical case (n=13), 

surface data is aligned, scaled, and projected onto the intraoperative 
phantom CT surface with a randomly determined noise pattern (A). Our 

rigid and nonrigid registration methods are applied, while quantifying 

subsurface TRE (B). The simulated surface is then resampled (C) and 
registrations are recalculated (D). This process is repeated with 50 different 

applications of noise per clinical case – creating 50 independent surface 

acquisitions for each of the (n=13) clinical organ surface digitization 
patterns. 
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H. Experimental Design 

To evaluate the accuracy and robustness of surface based 

IGLS registration methods as a function of surface collection 

pattern, density, and noise level, we conducted an extensive 

study with our novel human-to-phantom IGLS validation 

framework. An overview of the simulation design is presented 

in Fig. 4. In this simulation, for each clinical surface collection 

pattern (i.e. one of the n=13 cases reported herein), surface data 

were aligned, scaled, and projected onto the intraoperative 

phantom CT surface (as described in II.D). For each clinical 

pattern, 50 distinct surface digitizations were created by 

temporally applying distinct random sinusoidal noise patterns, 

resulting in a total of 650 independent, clinically representative 

digitizations of the intraoperative phantom surface. Our rigid 

(II.F) and nonrigid (II.G) registration methods were used to 

determine predictions of the intraoperative subsurface target 

locations. Our resampling approach (II.E) was applied to the 

simulated surface collections. Similarly, the resampled data 

were used to drive rigid and nonrigid registration to form 

predictions of the intraoperative subsurface target locations. 

This analysis was repeated with increasing levels of noise (base, 

2x, 4x, and 8x). Notably, any surface based registration, rigid 

or nonrigid, can be evaluated using this novel validation 

approach while requiring no additional clinical effort. 

It is important to emphasize that all simulated surface 

digitizations of the human-to-phantom data set exist on the 

same phantom which underwent mock OR deformation 

documented within a CT imaging unit. Furthermore, subsurface 

beads embedded within the hepatic phantom and tracked 

throughout deformation provided true positions of targets for 

the evaluation of registration accuracy. For this study, target 

registration error (TRE) serves as the primary measurement of 

accuracy. Deformed target locations extracted from the mock 

intraoperative CT serve as the observed, true locations of 

targets. TRE is calculated as the Euclidean distance between the 

model predicted and true observed target locations.  
 The Wilcoxon rank-sum test was used to determine 

significance in differences between registration results between 

the 4 categories of results: raw data rigid registration, raw data 

nonrigid registration, resampled data rigid registration, and 

resampled data nonrigid registration.  The Wilcoxon rank-sum 

test tested the null hypothesis that the distributions of average 

TRE for given methods were equivalent with a significance 

level of α = 0.05. 

III. RESULTS 

A. Phantom and Resampling Suitability 

Clinically acquired organ surface digitizations (i.e. FIG. 5.A) 

were applied to the hepatic deformation phantom (i.e. FIG 5.B) 

in an effort to observe the impact that clinically-relevant 

variation in organ surface digitization has on IGLS registration 

accuracy and variance. As Fig. 5.B demonstrates, the ability of 

the proposed method to transform clinically collected surface 

data as a template for surface acquisition on the hepatic 

phantom is quite appropriate. In each set shown (left, and right 

column of Fig. 5.A-B), regional point density and acquisition 

pattern are preserved from clinical to phantom surface. The 

base amount of applied noise resulted in measured noise within 

the simulated surfaces of approximately 1.0 ± 0.7 mm. Fig 5.C 

shows the resampling treatment of the data from each case using 

methods described in II.E. The overall fit of the resampled 

surface to the raw input data had a residual closest point error 

of 1.5 ± 1.3 mm. 

A qualitative analysis of the degree and pattern of 

deformation within the phantom is presented in Fig. 6. Rigid 

registration results are displayed for a representative clinical 

data registration in Fig. 6.A and its hepatic phantom counterpart 

data in Fig. 6.B.  In both, the preoperative derived model 

surface is color-coded by the signed closest point distance of 

the rigidly registered intraoperative surface data (note that as 

A. 

B. 

C. 

Fig. 5. Surface digitizations from two cases are presented. Anterior organ 
surface, falciform, left inferior ridge, and right inferior ridge data are 

presented in white, red, blue, and green respectively. (A) Surface data from 

clinical studies collected with an optically tracked stylus. Surface data are 
overlaid on the preoperative organ model following rigid registration. (B) 

Examples of the human-to-phantom data set following translation of the 

clinical surface data from (A) onto the hepatic deformation phantom – used 
to simulate clinical collection patterns and sampling. (C) A representation 

of the spatial data resampling approach applied to the human-to-phantom 

data in (B). Areas of high density and sparse surface points present as the 
bright white and gridded white points respectively. For (B) and (C), surface 

data are overlaid on the intraoperative phantom CT model. 

A. B. 

Fig. 6. Deformed surfaces from (A) a clinical / human data case and (B) 

the phantom case are shown. The color map illustrates the observed 
deformation in each case as the Euclidean distance between the 

preoperative and intraoperative organ anterior surfaces (in mm) following 

rigid registration.  
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phantom data is acquired from CT images, we have access to 

the entire surface extent). The phantom presents a similar 

pattern and magnitude of deformation to the clinical case. 

B. Registration Error 

The objective of this investigation was to characterize the 

impact that variations in collected organ surface data have on 

surface based IGLS registration techniques in a clinically-

relevant manner. TRE results using both raw and resampled 

surface acquisitions were compiled following rigid and 

nonrigid registration. Fig. 7 presents a histogram of the average 

values of TRE measured from subsurface targets for each case 

of surface data in our human-to-phantom data set. The (*) 

represents the difference between procedural standard and the 

approach we are proposing. Fig. 8 presents a scatterplot which 

contrasts the raw data TRE and resampled data TRE for both 

rigid (blue) and nonrigid (gold) registration methods. With both 

clusters, we see a shift to the right side of the unity line 

indicating that the process of resampling serves to reduce target 

error. Fig. 8 also indicates that nonrigid registration consistently 

produces lower TRE than rigid registration. For reference, if the 

resampling method had no effect on the surface data, all points 

would align along the line of unity. Table I represents the 

average value of TRE in a case-by-case manner. In the case of 

both raw and resampled data, nonrigid registration produced 

significantly lower TRE (p < .001). Rigid registration with 

resampled data (8.4 ± 0.5 mm) produced significantly lower 

TRE (p < .001) than rigid registration with raw data (10.9 ± 

0.6). Nonrigid registration with resampled data (5.3 ± 0.5 mm) 

also produced significantly lower TRE (p < .001) than nonrigid 

registration with raw data (6.7 ± 0.9 mm). It is particularly 

noteworthy to point out that nonrigid registration using the 

proposed resampling method resulted in significantly lower 

TRE (p < .001) than the current commercially available 

procedural standard method with unprocessed, raw data. For 

reference, rigid, and nonrigid registration results using the 

dense, full anterior surface from the intraoperative phantom CT 

also are presented in Table I as a gold standard comparison. 

TABLE I 
Average case TRE (mm) at base noise level 

Case # Raw Data Resampled Data 
 
 

Rigid Nonrigid Rigid Nonrigid 
1 10.8 ± 0.1 7.0 ± 0.6 7.9 ± 0.1 5.8 ± 0.3 
2 10.3 ± 0.1 7.4 ± 0.3 7.9 ± 0.4 5.2 ± 0.3 
3 10.2 ± 0.2 7.8 ± 0.5 7.7 ± 0.1 6.2 ± 0.4 
4 11.0 ± 0.1 5.5 ± 0.4 8.3 ± 0.1 5.4 ± 0.2 
5 10.7 ± 0.1 5.9 ± 0.8 8.6 ± 0.1 5.6 ± 0.4 
6 10.9 ± 0.1 8.3 ± 0.9 8.6 ± 0.1 5.1 ± 0.4 
7 11.2 ± 0.1 6.9 ± 0.4 8.7 ± 0.4 4.8 ± 0.2 
8 10.8 ± 0.1 7.7 ± 1.3 8.2 ± 0.1 4.6 ± 0.3 
9 11.4 ± 0.1 5.6 ± 0.3 8.6 ± 0.1 5.2 ± 0.3 

10 11.5 ± 0.1 6.9 ± 0.9 9.1 ± 0.1 4.9 ± 0.2 
11 10.7 ± 0.1 6.0 ± 0.5 8.4 ± 0.4 4.9 ± 0.3 
12 10.0 ± 0.1 6.2 ± 0.8 8.7 ± 0.1 5.7 ± 0.3 
13 12.1 ± 0.1 6.2 ± 0.4 9.0 ± 0.1 5.3 ± 0.3 

AVG 10.9 ± 0.6 6.7 ± 0.9 8.4 ± 0.5 5.3 ± 0.5 
Ideal Data 

(CT) Rigid, 6.4    &    Nonrigid, 4.7 
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Fig. 7. Histogram of average TRE over the 650 simulated cases using raw 
and resampled data to drive rigid and nonrigid registration. The asterisk 

denotes significant reduction in error between the current commercial 

IGLS rigid registration method (blue) and proposed nonrigid registration 

with resampled data (gold). 
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Fig. 8. A scatterplot of average TRE over the 650 simulated cases. The x-
axis represents average case TRE using a simulated raw surface data 
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undergoing resampling. Rigid and nonrigid registration results are 
presented in blue and gold respectively.  
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 Table II presents average TRE results for increasing 

amounts of noise. The evaluation was implemented for the base 

level of noise (1.0 mm) and amplifications of 2 (1.9 mm), 4 (3.8 

mm), and 8 (7.6 mm) times the base level. For all scenarios of 

registration method and surface data, TRE results were 

observed to increase as the noise level was increased. 

Improvement in rigid registration TRE provided by resampling 

was observed to remain at all levels of noise. At an 

amplification of 8 times clinically observed noise the 

improvement to nonrigid registration provided by resampling 

was absent. 

IV.  DISCUSSION 

The results presented illustrate the first study designed to 

characterize the impact of varying IGLS modus operandi on 

rigid registration and model-based deformation correction 

methods. While prior work in the field has investigated varying 

methods of image-to-physical registration and varying methods 

of sparse data collection, this study is novel in that it examines 

the extent to which operational differences in data collection 

may influence registration results. More explicitly, this study is 

novel in that it approaches the problem of surface based 

registration by considering the registration itself as a black box 

and solely investigates how the quality of input data influences 

the registration output.  In addition, it proposes to investigate 

this within the context of a novel data-driven approach whereby 

applied clinically acquired surface digitization patterns are 

transformed to a hepatic deformation phantom surface for the 

purpose of rapid and robust systematic methodological 

validation. This validation framework affords the study of large 

data sets, with true subsurface validation targets, that would 

require enormous resources to acquire clinically. Lastly, this 

novel framework provides the ability to propose and validate a 

resampling procedure which we show to improve registration 

robustness. Further, we discuss how the results of this study 

demonstrate that the nature and quality of the data driving 

registration is equally as important as the registration method 

itself and suggest the efficacy of our human-to-phantom data 

framework. 

The representations (shown in Fig. 7, 8 and Tables I, II) of 

the impact that variation in acquired surface pattern, density, 

and noise has on sparse surface based registration methods in 

IGLS indicate that IGLS methods based on raw manually 

swabbed sparse surface data are not optimal with respect to 

robustness. This is of note considering our experience in 

observing that surface data collection extent and density varies 

across patient presentations and physician utilization of the 

IGLS system. Fig. 7 and Tables I, II demonstrate the higher 

variance that is seen in the current nonrigid approach (Raw 

Nonrigid) in comparison to the commercial rigid registration 

method (Raw Rigid), i.e. we see a marked spread in the 

distribution of occurrences of the gray line as compared to the 

blue. This behavior makes it quite apparent that the nonrigid 

registration method is sensitive to variations in surface data 

collection via swabbing. That being said, the evaluated nonrigid 

registration method consistently outperformed rigid registration 

in terms of accuracy when using raw data (with ~39% 

improvement). The results from our surface resampling 

technique show our ability to systematically improve the 

accuracy and reproducibility of both rigid and nonrigid 

registration methods in IGLS. More specifically, when data are 

synthesized in a clinically-relevant fashion, surface resampling 

significantly improved registration results regardless of data 

pattern and density at reasonable levels of noise. This is 

dramatically shown in Fig. 7, 8 and Tables I, II. The resampling 

strategy improved rigid and nonrigid registration TRE by 

22.5% and 21.3% respectively. Equally striking, resampling 

combined with nonrigid registration produced a 51.5% 

improvement in TRE when compared to the current commercial 

rigid registration method (take note of the * in Fig. 7). 

Central to the proposed framework was that the deformations 

induced in our phantom scenario have similar characteristics 

with the intraoperative counterpart.  In Fig. 6 we see a direct 

comparison between clinical signed closest point data in Fig. 

6.A and the equivalent (although larger extent) for our phantom 

setup in Fig. 6.B.  To assist interpretation, both surfaces 

experience similar magnitudes in surface-to-surface misfit.  

While the phantom surface appears somewhat different than the 

clinical surface, the distribution demonstrates a general pattern 

that we often see within image-to-physical rigid registration in 

IGLS data. More specifically, it is observed that the anterior 

surface of the organ becomes more planar after mobilization 

and packing, which produces an observable elevation of the 

lateral segments while the more medial regions of the organ 

remain relatively static. In a separate extensive study looking at 

patterns of intraoperative model-to-OR-data fit, [11] also 

observed this behavior. Additionally, these phantom results are 

in accordance with our previous phantom studies which 

entailed multiple novel deformations as reported in [13] and a 

different liver phantom as in [28]. We acknowledge that the 

human-to-phantom validation framework could be further 

strengthened with additional phantom work (derived from 

varying clinically acquired anatomy), more deformations, and 

more clinical sparse surface data patterns; and while 

demonstrated in past work [13,28], all of these areas are an 

important continued direction for the future.  However, we 

should note that this work does add significantly to past 

contributions.  For example, in Fig. 6 it is demonstrated that the 

current phantom experiences a similar magnitude and a realistic 

pattern of deformation to routine IGLS data.  In Fig. 5, the 

quality of sparse surface data is maintained between clinical 

acquisition (Fig. 5.A) and application to the phantom (Fig. 5.B).  

While further additions as suggested above will undoubtedly 

TABLE II 
Average TRE (mm) at varying noise levels 

Noise Level Raw Data Resampled Data 
 
 

Rigid Nonrigid Rigid Nonrigid 
Base 10.9 ± 0.6 6.7 ± 0.9 8.4 ± 0.5 5.3 ± 0.5 
2x 10.9 ± 0.5 6.7 ± 0.8 8.5 ± 0.4 5.5 ± 0.3 
4x 11.0 ± 0.6 6.9 ± 0.9 8.7 ± 0.5 6.4 ± 0.3 
8x 11.3 ± 0.6 7.5 ± 0.9 9.1 ± 0.5 8.5 ± 0.7 
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improve the utility and clinical accuracy of our human-to-

phantom validation framework, the environment we have 

developed has provided meaningful results and a potentially 

powerful pathway forward for validation of image-to-physical 

registration in the future. 

V. CONCLUSIONS 

This investigation represents a significant advancement in 

the understanding of the degree that acquired intraoperative 

surface data variation influences the outcome of IGLS sparse-

data image-to-physical registration.  The work demonstrated 

that surface data resampling shows significant promise for 

improving the accuracy and reproducibility of IGLS rigid and 

nonrigid registration.  While further investigation is required to 

fully characterize the optimal workflow-friendly strategy for 

IGLS surface data collection, the surface resampling presented 

here is an advancement toward minimizing the impact of data 

collection strategy on model-updated surgical navigation 

systems for the hepatic environment.  

While these results are important, it is also important to 

recognize the novelty and utility of the human-to-phantom 

framework proposed in this work.  As the field of soft-tissue 

image guidance moves forward, the intraoperative validation of 

these approaches requires enormous effort either using 

workflow-cumbersome infrastructure such as intraoperative 

MRI [22] or lower cost but challenging measurement methods 

such as spatially localized intraoperative ultrasound [1].  The 

framework proposed herein creates controlled phantom 

deformation events comparable to those documented in the OR. 

The evaluated registrations are driven based on intraoperative 

data compatible with the IGLS modus operandi, transformed to 

the mock organ surface.  This approach is unique in that it has 

the advantage of full volumetric deformation measurements in 

a controlled environment but also uses data acquired from a 

realistic workflow to drive alignment strategies.  We believe 

this is a significant step forward in validation design for this 

challenging environment. When comparing the study presented 

here with our more burdensome ultrasound counterpart study in 

[1], the compatibility of results suggests that this may indeed be 

an exciting step forward for more tractable investigations in the 

future. 
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