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Abstract—During image guided liver surgery, soft tissue 

deformation can cause considerable error when attempting to 
achieve accurate localization of the surgical anatomy through 
image-to-physical registration. In this paper, a linearized 
iterative boundary reconstruction technique is proposed to 
account for these deformations. The approach leverages a 
superposed formulation of boundary conditions to rapidly and 
accurately estimate the deformation applied to a preoperative 
model of the organ given sparse intraoperative data of surface 
and subsurface features. With this method, tracked 
intraoperative ultrasound (iUS) is investigated as a potential data 
source for augmenting registration accuracy beyond the capacity 
of conventional organ surface registration. In an expansive 
simulated dataset, features including vessel contours, vessel 
centerlines, and the posterior liver surface are extracted from 
iUS planes. Registration accuracy is compared across increasing 
data density to establish how iUS can be best employed to 
improve target registration error (TRE). From a baseline 
average TRE of 11.4 ± 2.2 mm using sparse surface data only, 
incorporating additional sparse features from three iUS planes 
improved average TRE to 6.4 ± 1.0 mm. Furthermore, increasing 
the sparse coverage to 16 tracked iUS planes improved average 
TRE to 3.9 ± 0.7 mm, exceeding the accuracy of registration 
based on complete surface data available with more cumbersome 
intraoperative CT without contrast. Additionally, the approach 
was applied to three clinical cases where on average error 
improved 67% over rigid registration and 56% over deformable 
surface registration when incorporating additional features from 
one independent tracked iUS plane. 
 

Index Terms—Deformation, image guided surgery, liver, 
registration, ultrasound 
 

I. INTRODUCTION 
N nearly every treatment option for hepatic cancer, 
therapeutic risk and efficacy balance on the ability to 

accurately localize the intraoperative positions of anatomical 
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structures and interventional targets. Surgical resection of the 
liver, which remains the best curative option for hepatic 
malignancies aside from transplantation, must be carefully 
planned with respect to the positions of tumors and vessels 
hidden beneath the surface of the organ. This planning stage is 
essential for ensuring adequate margins, maximizing volume 
and blood perfusion in the liver remnant, and minimizing risk 
of hemorrhage and biliary injury. However, in open and 
laparoscopic liver surgery alike, intraoperative deformation of 
the liver is unavoidable due to procedural aspects such as 
hemostatic perihepatic packing in open approaches, abdominal 
insufflation in laparoscopic approaches, retraction, and 
mobilization from stabilizing ligaments. These deformations 
can compromise intraoperative translation of surgical plans 
that are based on the preoperatively imaged anatomy. 
Significant deformations of the liver have been shown to exist 
between preoperative and intraoperative presentations during 
both open and laparoscopic surgery. In a previous study, the 
average magnitude of these preoperative-to-intraoperative 
deformations across the anterior surface of the liver were 
found to exceed 10 mm during laparoscopy and 7 mm during 
open surgery, with maximum values greater than 20 mm [1]. 
 Various methods have been developed to compensate for 
intraoperative deformation of the liver in the context of image 
guidance, where information derived from the preoperative 
anatomy is updated to match the intraoperative conformation 
of the organ through registration techniques. Beyond rigid 
registration, biomechanical models based on linear elasticity 
have proven to be well suited for deformable registration due 
to a favorable compromise between registration accuracy, 
computational time complexity, and intraoperative time 
constraints. While elastic registration methods based on organ 
surface data collected in the operating room are becoming 
more common [1–8], the type and algorithmic treatment of 
intraoperative data sources in the registration process is 
becoming equally important with regard to alignment fidelity 
[9]. In particular, the accuracy of surface-based methods has 
been found to depend crucially on the amount of 
intraoperative data made available for registration; previous 
work has suggested that registration accuracy can improve if 
wider coverage of the liver surface can be measured [1–3]. 
However, limited field of view in the surgical environment 
can directly conflict with the goal of acquiring broad surface 
coverage. Whereas intraoperative volumetric imaging such as 
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cone beam CT has been proposed to offer more complete 
intraoperative data for the registration task [10,11], these 
approaches are costly, require specialized facilities, present a 
major disruption to existing surgical workflow, and are 
unlikely to reach the capability of updating in real time at the 
speed of intraoperative organ interactions. 
 Tracked intraoperative ultrasound offers the real-time 
ability to identify features at depth inside the liver and 
represents a powerful contribution in the image guidance 
toolkit. Already, intraoperative ultrasound (iUS) is commonly 
used during liver resection to stage disease, identify lesions 
invisible on CT, and determine relationships to the vascular 
and biliary anatomy [12]. However, due to a confluence of 
factors that can make lesions sonographically occult, iUS is 
not yet suitable as a comprehensive guidance solution and 
needs to be complemented by information from preoperative 
imaging assessments [13]. Although interpreting and 
localizing freehand iUS can be challenging, tracked iUS adds 
quantitative spatial understanding to the physical positions of 
features that are visible in the ultrasonic modality even if the 
lesion is unapparent. These features can reliably include 
contours of the portal and hepatic veins and the posterior 
surface of the liver if imaged at sufficient depth. This 
capability makes it possible to use subsurface features from 
tracked iUS as additional constraints to improve registration 
accuracy beyond the capacity offered by surface data alone. 
 Several groups have developed methods to register iUS data 
with preoperative CT or MR images. Early spline methods 
matched 3D iUS volumes with image intensities based on 
similarity metrics such as normalized cross correlation 
[14,15], linear combination of linear correlation [16], edge-
intensity joint entropy [17], and local structure orientation 
descriptors [18]. However, many of these registration 
techniques were designed for percutaneous procedures where 
small deformations and good initial alignments were possible. 
To accommodate larger deformations, Lange et al. 
parameterized vessel features between CT and 3D iUS 
volumes as centerline representations to assist optimization of 
a thin plate spline deformation model based on a normalized 
gradient field image similarity measure [19]. However, 
registration by inter-modality similarity metrics can be slow 
and may not exactly match differential tissue responses to 
distinct imaging physics. Additionally, spline models of 
deformation may not produce registrations as accurate as their 
biomechanical counterparts [20]. More recent iUS registration 
methods have elected to forego image intensity information 
and instead relate preoperatively segmented geometric 
features such as vessel contours and centerlines to tracked iUS 
in sparse configurations where rapid intraoperative 
segmentation of ultrasound features becomes possible. Among 
these, only rigid registration techniques using vessel 
centerlines [21], a combination of centerlines and surface data 
[22], and centerline bifurcation landmarks [23] have been 
developed. While iUS features have been used for 
intraoperative validation of surface registration methods [24], 
deformable liver registration based on biomechanical models 
have yet to incorporate iUS as an intraoperative data source. 

Accurate alignment of the organ surface does not guarantee 
a successful registration. The internal displacement field 
between the modeled anatomy and the true deformed state 
must also be accurate throughout the volume. Mechanics-
based models, unlike interpolative spline methods, ensure that 
these fields develop realistically according to constitutive laws 
of physics and their applied boundary conditions. However, 
mechanics-based methods are not without potential 
shortcomings. For example, some approaches treat intra-
operative data sources as boundary forces [2–5] or boundary 
displacements [25,26] directly on the organ. When employed 
this way, these configurations of boundary conditions impart 
organ deformation at the sites of data collection as opposed to 
the regions where actual mechanical loads are applied. With 
the underlying sources of deformation largely ignored, these 
methods may not develop accurate displacement fields beyond 
the immediate region of data collection. These limitations 
have given rise to methods that commit particular attention to 
anatomical constraints [6], data-constrained energy 
minimization [11], and inverse modeling approaches that 
reconstruct the unknown distributed loads applied to the organ 
[1,8]. In practice, due to the many forms of physical and 
temporal intraoperative constraints, it is also imperative that 
these registration methods are simultaneously fast and robust. 
 In this paper, a generalized algorithm is presented for 
reconstructing and correcting intraoperative deformation of 
the liver for improving registration accuracy during hepatic 
image guidance. While this approach adopts an inverse 
biomechanical model similar to [1] and [8], a new deformation 
framework is presented based on the Saint-Venant principle, 
which states that a local region of mechanical loading can be 
replaced with a statically equivalent load wherein the 
difference between loading responses exponentially vanishes 
with distance towards the far field. Using this principle to 
decompose elastic perturbations facilitates improved fidelity 
and robustness, and permits more controlled and realistic 
deformations of the liver. Other advances include subsurface 
error constraints that allow registration of internal hepatic 
features, closed form gradient computations over numerical 
approximations, and formalized linearization of the boundary 
reconstruction problem to yield a method that rapidly 
approximates intraoperative deformations with high accuracy 
given sparse intraoperative data. Equally important to 
presenting this novel approach, this paper demonstrates how 
clinical tracked iUS data can be applied to achieve a high 
performance registration algorithm. In accordance with these 
contributions, a rigorous experimental framework has been 
produced that involves a combination of physical and 
simulation data in a controlled environment of 6291 simulated 
registration scenarios. These data represent multiple liver 
geometries, multiple deformations, and varying amounts of 
sparse surface and subsurface feature data from iUS. To study 
the approach, registration accuracy is characterized across a 
wide range of sparse subsurface data configurations. Finally, a 
proof-of-concept experiment is illustrated with three clinical 
cases to demonstrate viability. 



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.2967322, IEEE
Transactions on Medical Imaging

 

II. PROPOSED ALGORITHM 

A. Overview of the Registration Task 
Given a preoperative model of the hepatic anatomy, the 

registration task is to determine a displacement field that 
produces an optimal alignment of the preoperative model to 
the deformed conformation of the intraoperative physical 
liver. This preoperative model is comprised of triangulated 
meshes for the hepatic parenchyma, portal vein, and hepatic 
vein generated from custom surgical planning software [27]. 
Centerline representations of the preoperative portal and 
hepatic veins are created with the open source Vascular 
Modeling Toolkit [28], and a tetrahedral finite element mesh 
of the liver parenchyma is produced with a custom mesh 
generation software [29]. Tetrahedral meshes are discretized 
to 4 mm edge length and consist of approximately 25 000 
vertices for a typical liver. 

In a liver navigation system [30], sparse intraoperative data 
of the organ surface is collected using an optically tracked 
stylus and sparse subsurface data from tracked iUS imaging. 
The tracked iUS setup consists of an Aloka T-probe transducer 
(Hitachi Aloka Medical Ltd., Wallingford, Connecticut) 
attached to an optically tracked rigid body calibrated using the 
N-wire phantom method [31]. Experiences with this tracked 
iUS system have already been reported in [24] and [32]. New 
to this work, intraoperative positions of the portal and hepatic 
vein contours and the posterior surface of the liver are 
segmented from iUS image planes when visible, using lines 
drawn on a graphical display and rasterized into points via the 

Bresenham line algorithm [33]. Vessel centerline points are 
approximated as in-plane centroids of the segmented vessel 
contours. To minimize intraoperative workflow burden, it is 
important to note that only a handful of iUS planes are used. 
With rigid registration as the current FDA-approved standard 
for image guidance during liver procedures, a salient feature 
weighted iterative closest point rigid alignment [34] is 
established between the intraoperative organ surface data and 
the preoperative model for initialization. 

From this initial rigid alignment, the proposed algorithm 
aims to reconstruct an initially unknown set of boundary 
conditions representing the intraoperative deformations 
experienced by the organ by using sparse surface and 
subsurface measurements. The overall registration approach is 
depicted in Fig. 1 and is described in more detail in the 
following sections. 

B. The Boundary Reconstruction Problem 
An isotropic linearly elastic finite element model is 

employed to simulate deformation of the liver. At static 
equilibrium, linear elasticity is governed by the Navier-
Cauchy equations in three dimensions: 

 
𝐸

2 1 + 𝜈
∇!𝒖 +

𝐸
2 1 + 𝜈 1 − 2𝜈

∇ ∇ ∙ 𝒖 + 𝑭 = 0 (1) 

 
where 𝐸 is the Young modulus, 𝜈 is the Poisson ratio, 𝒖 is 
displacement, and 𝑭 is applied force. Following [8], the values 
𝐸 = 2100 kPa and 𝜈 = 0.45 are used. With the Galerkin 

 
Fig. 1.  Overview of the proposed algorithm for boundary condition reconstruction in a deformable registration framework for hepatic image guidance. (a) In the 
preoperative computation phase, a series of control points are evenly distributed across the surface of the organ. Linear elastic responses to control point 
perturbations in three orthogonal directions establish a basis of deformations across the mesh. Point loads are then relaxed to their Saint-Venant far field 
equilibria. These steps are computed in advance of the procedure. (b) Sparse data of the organ surface are collected intraoperatively and a rigid registration 
between image and physical patient spaces is performed. Features in tracked iUS planes are manually designated and transformed into sparse point clouds. 
Based on these surface and subsurface points, weights for a linear combination of the precomputed basis deformations are optimized to minimize error between 
intraoperative data and the deformable model. 
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weighted residual method on linear Lagrange basis functions, 
this system of partial differential equations can be rewritten as: 
 

𝐾𝒖 = 𝒇 (2) 
 
where 𝐾 is the global stiffness matrix and 𝒇 is a vector of 
known forcing conditions. In the forward boundary value 
problem, the displacement vectors 𝒖 throughout the domain 
can be solved only if displacements and forces on the 
boundary are known. The inverse boundary reconstruction 
problem attempts to resolve the distributed loading conditions 
on the boundary that establish the displacement response 𝒖 
that best approximates the partially observable true 
displacement field 𝒖 without exact spatial correspondence 
being known. 

C. Linearized Basis of Displacements 
By the principle of superposition, a basis of displacements 

could be constructed such that 𝒖 = 𝐽!∗𝜶∗, where the matrix 𝐽!∗  
represents displacement responses to independent unit 
displacements of every boundary node in each spatial 
direction and the vector 𝜶∗ represents the weight for each 
basis with length triple the number of boundary nodes. 
Solving for 𝜶∗ would represent the full resolution boundary 
reconstruction problem where every boundary node on the 
mesh is permitted independent degrees of freedom. However, 
reconstructing the full resolution problem is not feasible due to 
computational time constraints and limited information 
rendering the solution extremely underdetermined.  

Dimensionality can be substantially reduced by pruning the 
reconstructive degrees of freedom to displacements on a 
subset of control points distributed across the boundary. In this 
way, the unknown distributed load applied to the domain is 
approximated as a statically equivalent linear combination of 
responses to locally consolidated point loads. By the Saint-
Venant principle, differences between the deformation 
responses of the true and the approximated loading con-
figurations quickly vanish with distance. To simulate the basis 
of localized boundary load responses, control points are 
evenly spaced on the surface of the mesh using k-means 
clustering, with k = 45. The control points are independently 
perturbed in each Cartesian direction to generate 3k total 
modes of deformation. Displacement responses for each mode 
are solved from (2) by applying a boundary condition with 5 
mm displacement in the direction of the active control point 
perturbation and zero displacement boundary conditions at all 
remaining control points. With each resulting displacement 
solution, stress and strain are computed from conventional 
stress-strain and strain-displacement relations for linear 
elasticity. Fig. 2a shows the displacement and stress responses 
to one such point load perturbation. However, by focusing the 
total boundary condition effect from a local neighborhood into 
a single point, local artifact arises from approximating a 
smoothly varying distributed load on the surface as a series of 
point effects. To address these irregularities, point load 
responses are relaxed back onto to the boundary nodes in the 
local neighborhood of the control point.   

To accomplish relaxation, the Saint-Venant principle is 
invoked again to determine a statically equivalent load that is 
redistributed across the locally aggregated boundary region 
surrounding the control point. Each point load is relaxed by 
establishing a radius of half the distance between control 
points, or equivalently the Voronoi tile of the k-means cluster, 
and solving (2) for the self-equilibrated response of the local 
region when the far field displacement responses of all other 
boundary nodes are immobilized. The displacement and stress 
solutions after relaxing the applied point load are shown in 
Fig. 2b and additional examples of relaxed displacement mode 
responses for other control point perturbations are shown in 
Fig. 2c. Each relaxed control point response becomes a mode 
of variation in the reconstructive basis, representing a spatially 
local deformation applied to the mesh. For the purpose of 
reconstruction from sparse data, this approach is beneficial in 
comparison to more spatially distributed spectral [35] and 
polynomial [8] function bases that can produce extrapolative 
error when fitting local data.  

With these relaxed responses to control point boundary 
perturbations, a displacement response matrix 𝐽! is 
constructed where each column of length 3M corresponds to a 
relaxed displacement solution vector to one of the 3k rows of 
control point perturbations, where M is the number of nodes in 
the mesh. The relaxed stress and strain solutions for each 
perturbation response are similarly assembled into the stress 
response matrix 𝐽! and the strain response matrix 𝐽!. With 
superposition, a reconstructed deformation state that also 
satisfies (1) can be linearized as: 

 
Fig. 2.  Control point deformation modes. Control points shown in red are 
distributed across the surface of the mesh. (a) Displacement response (left) 
and stress response (right) to a control point perturbation of 5 mm in the +x 
direction. (b) Displacement response (left) and stress response (right) after 
Saint-Venant point load relaxation. (c) Relaxed displacement responses for 
other control point deformation modes on the mesh. Each mode represents a 
deformation basis in the local vicinity of the control point. 
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𝒖 = 𝐽!𝜶 (3) 

 
𝝈 = 𝐽!𝜶 (4) 

 
𝜺 = 𝐽!𝜶 (5) 

 
where 𝒖, 𝝈, and 𝜺 are the approximated displacement, stress, 
and strain values for the deformation defined by the relaxed 
control point response matrices 𝐽!, 𝐽!, and 𝐽!, and 𝜶 is the 
deformation state vector of length 3k. 

D. Intraoperative Reconstruction 
To solve for the deformation state, Levenberg-Marquardt 

optimization is employed to iteratively minimize model-data 
error and the strain energy of the system in a scheme that also 
optimizes rigid transformation parameters. This optimization 
of rigid parameters allows a global minimization of element 
rotations to reduce incurred rotational inaccuracies inherent to 
linear elasticity. While co-rotational models are sometimes 
used to compensate, these formulations incorporate geometric 
nonlinearities that disrupt the superposition leveraged in this 
application. Hence, the total deformation state to reconstruct is 
the parameter vector 𝜷 of length 3k+6 defined as 

 
𝜷 = 𝜶, 𝝉,𝜽  (6) 

 
where 𝝉 is a vector of rigid translations and 𝜽 is a vector of 
rigid rotations about the x, y, and z axes. These parameters are 
determined by minimizing the least squares objective function 

 

Ω 𝜷 =
𝑤!
𝑁!

𝑓!
!

!!

!!!

 

!

+ 𝑤!𝑓!
! (7) 

 
where 𝑓! denotes the error between the deformed model and 
the data point 𝑖 of 𝑁! total points within an intraoperatively 
collected point cloud for feature 𝐹, 𝑤! is the weight of the 
feature, 𝑓! is the average strain energy of the deformation 
state, and 𝑤! is a regularizing strain energy weight that 
controls the deformability of the registration. This objective 
function distinguishes the error terms for distinct types of 
features that can comprise the intraoperative data. From 
digitization of the organ surface, features include the falciform 
ligament, the left and right inferior ridges, and the general 
anterior liver surface. From tracked iUS, features can consist 

of the posterior liver surface, hepatic and portal vein contours, 
and hepatic and portal vein centerlines. Finally, single 
corresponding fiducial points can be used when they are 
available in controlled phantom environments that have 
embedded and measurable intraoperative target positions. To 
determine model-data error, a distance vector 𝒑! is defined as 
 

𝒑! = 𝒚! − 𝑆! 𝑅 𝒙! − 𝒙! + 𝐽!𝜶 + 𝝉 + 𝒙!  (8) 
 
where 𝒚! is the intraoperative data point, 𝒙! are the initial 
coordinates of the undeformed mesh, 𝒙! is the centroid of 𝒙!, 
𝑆! is a sampling operation encoding correspondence between 
model and data, and the rotation matrix 𝑅 is defined as 
 

𝑅 = 𝑅 𝜽 = 𝑅 𝜃! 𝑅 𝜃! 𝑅 𝜃! . (9) 
 
The sampling operation 𝑆! is implemented as a closest point 
operator that selects the nearest feature point in the deformed 
model to 𝒚!. The sampling operation is updated every iteration 
and also applies the computed deformation to subsurface 
vessel models and preoperatively designated fiducial positions 
by interpolating displacements from the deformed mesh. 

For feature data points corresponding to a geometric model 
surface, the model-data error term becomes a sliding 
constraint taken to be the magnitude of the vector projection 
onto 𝑆!𝒏, the unit normal direction at the closest surface point: 

 
𝑓!"#$%&' = 𝑆!𝒏 !𝒑!. (10) 

 
This sliding constraint is maintained for centerline feature 

data points by taking the magnitude of the vector rejection of 
𝒑! from 𝑆!𝒕, the unit tangent vector at the closest point on the 
centerline model, which can be derived to be 

 

𝑓!"#$"%&'#" = 𝒑!!𝒑! − 𝒑!!𝑆!𝒕 !. (11) 

 
Finally, the error term for single fiducial points is simply 

the Euclidean distance between the model-predicted and 
measured fiducial location 

 
𝑓!"#$%"&' = 𝒑!!𝒑!. (12) 

 
The energy penalty function is represented by the average 

strain energy density distributed over the mesh vertices, 
TABLE I 

CLOSED FORM EXPRESSIONS FOR MODEL-DATA ERRORS AND GRADIENTS 

Function 𝑓 𝑞!!  𝜕𝑓/𝜕𝜶 𝜕𝑓/𝜕𝝉 𝜕𝑓/𝜕𝜽 

𝑓!"#$%&' (𝑆!𝒏!)!𝒑! (𝑆!𝒏!)!  −𝑞!!𝑆!𝑅𝐽! −𝑞!!𝑆!  −𝑞!!𝑆!
𝜕𝑅
𝜕𝜽

(𝒙! − 𝒙!! + 𝐽!𝜶) 

𝑓!"#$"%&'#" !𝒑!!𝒑! − (𝒑!!𝑆!𝒕!)! 
𝒑!! − (𝒑!!𝑆!𝒕!)(𝑆!𝒕!)!

!𝒑!!𝒑! − (𝒑!!𝑆!𝒕!)!
 −𝑞!!𝑆!𝑅𝐽! −𝑞!!𝑆!  −𝑞!!𝑆!

𝜕𝑅
𝜕𝜽

(𝒙! − 𝒙!! + 𝐽!𝜶) 

𝑓!"#$%"&'  !𝒑!!𝒑! 
𝒑!!

!𝒑!!𝒑!
 −𝑞!!𝑆!𝑅𝐽! −𝑞!!𝑆!  −𝑞!!𝑆!

𝜕𝑅
𝜕𝜽

(𝒙! − 𝒙!! + 𝐽!𝜶) 

𝑓!  
1
2𝑀 𝜶!!𝐽!!𝐽!!𝜶 — 

1
𝑀 𝜶!!𝐽!!𝐽!! 0 0 
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𝑓! =
1
2𝑀

𝜶! 𝐽!!𝐽! 𝜶 (13) 

 
where 𝑀 is the number of nodes in the mesh. For all 
registrations, the weights in (7) for the falciform and inferior 
ridges are chosen to be 0.3 m-2, the strain energy weight 10-8 
Pa-2, and all other weights 1.0 m-2. 

From an initial estimate 𝜷! = 𝟎, Levenberg-Marquardt 
optimization iteratively solves for 𝜷 by the step 

 
𝜷!!! − 𝜷! = 𝐽!𝑊𝐽 + 𝜆 diag 𝐽!𝑊𝐽

!!
𝐽!𝑊𝒇 (14) 

 
where the minimized errors are 𝒇 = 𝒇! , 𝑓! , the square 
diagonal matrix 𝑊 = diag 𝒘𝑭/𝑵𝑭,𝑤!  are function weights, 
the regularization parameter 𝜆 is controlled by a trust region 
prediction ratio, and the Jacobian of the error is 𝐽 = 𝜕𝒇/𝜕𝜷. 
Table 1 shows closed form expressions for the error terms and 
their derivatives comprising 𝐽. The termination condition is 
established as Ω 𝜷!!! − Ω 𝜷!  < 10-12.  
 Regarding material properties, it is important to note that 
the displacement and strain solutions of the deformation 
model are independent from the Young modulus because only 
pure displacement boundary conditions and no boundary 
forces are applied in (1). However, the strain energy is directly 
proportional to modulus. Consequently, any difference in 
stiffness between the patient liver and the model can be 
compensated at the time of registration by adjusting the 
deformability parameter 𝑤!. 

III. EXPERIMENTATION 
The proposed algorithm is evaluated in a series of 

experiments on nine simulated deformations from three 
laparoscopic mobilizations transposed onto three unique liver 
geometries. In each of the nine deformations, 16 potential iUS 
plane orientations are sampled. In this dataset, registration 
accuracy is examined across a wide range of access to 
intraoperative data coverage. Furthermore, the algorithm is 
applied to clinical data from three cases of image-guided open 
liver resection, where accuracy of the method is estimated 
with real sources of intraoperative error.  

A. Data Simulation 
The data simulation process aims to map deformation fields 

from three different laparoscopic mobilizations of a liver 
phantom to three distinct liver geometries. With this approach, 
registration performance can be evaluated in a diverse yet 
controlled environment. Three human livers and their portal 
and hepatic veins were segmented from preoperative contrast-
enhanced CT images of deidentified patients, and meshes and 
vessel centerlines were generated as described in section II-A. 
Collected with these patient data were sparse intraoperative 
surface patterns digitized with an optically tracked stylus 
spanning 25.2% (Liver 1), 14.9% (Liver 2), and 24.9% (Liver 
3) of the total liver surface. 

In a phantom environment, a silicone liver with 147 

embedded targets was created from a 3D printed liver built 
from a preoperative scan of a different patient. This phantom 
was imaged without deformation, then placed in a mock 
insufflated abdomen with ligament attachments that reproduce 
laparoscopic changes to the liver. The phantom was re-imaged 
in three conditions of laparoscopic deformation: left 
mobilization (L), where the left triangular and falciform 
ligaments were dissected; no mobilization (N), where no 
ligaments were dissected; and right mobilization (R), where 
the right triangular and falciform ligaments were dissected. 
These phantom data were originally reported in [1]. In this 
paper, the phantom data provide detailed displacement fields 
for each laparoscopic mobilization scenario. These fields were 
obtained by registering the full surface and target positions 
from post-deformation images to their undeformed 
counterparts using the algorithm described in section II at a 
higher resolution of k = 90. This process yielded phantom 
registrations with highly accurate surface errors of 0.4 ± 0.6 
mm (L), 0.4 ± 0.5 mm (N), 0.4 ± 0.7 mm (R) and target errors 
of 1.9 ± 1.0 mm (L), 2.1 ± 1.0 mm (N), and 2.1 ± 1.2 mm (R) 
based on data from CT scans with voxel resolution of 0.6 x 0.6 
x 3 mm. However, these phantom displacement fields do not 
represent the exact deformations to be reconstructed in the 
simulation experiments. Instead, they represent a realistic 
deformation template to be distorted and applied to the 
previous liver geometries. 

Livers 1–3 were registered to the undeformed liver phantom 
using an affine registration followed by the optimization 
method from section II only to establish inexact corres-
pondence between anatomical regions of the disparate liver 
shapes. Using these alignments, displacements from phantom 
deformations L, N, and R were mapped onto livers 1, 2, and 3 
with their associated surface data patterns to produce the nine 
deformed livers shown in Fig. 3. It should be noted that the 
nine resultant livers are not purely linear elastic deformations 
of their original meshes. Nonlinear distortions in the 
displacement fields are created by the spatial mapping process 
between the physically deforming phantom and the novel liver 
geometries. In each of the nine simulated deformations, 16 
iUS plane locations were sampled and geometric intersections 

 
Fig. 3.  Three liver geometries (white) and three applied displacement fields 
comprise nine simulated deformations (green). The applied deformations 
represent mobilization of stress-bearing ligaments on the left side, no sides, or 
right side of the liver in a laparoscopic phantom setup that reproduced the 
insufflated intra-abdominal anatomy surrounding the liver. Transposed 
clinical patterns of sparse surface data are shown in black. 
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with the deformed portal and hepatic vein models and the 
posterior liver surface were determined using the Möller 
triangle intersection algorithm [36] then rasterized into points 
in the iUS plane using the Bresenham algorithm [33]. 
Positions of the sampled iUS features are displayed in Fig. 4.  

A simulated dataset is created with the nine transposed 
phantom deformations to examine the registration method 
across varying levels of intraoperative data. These levels 
include registration scenarios using: 1) sparse anterior surface 
data only, 2) subsurface data from one iUS plane in addition to 
the sparse surface data, 3) subsurface data from two combined 
iUS planes in addition to the sparse surface data, 4) data from 
three combined iUS planes in addition to the sparse surface 
data, and 5) all 16 iUS planes in addition to the sparse surface 
data. Furthermore, a scenario based on the deformed full 
anterior and posterior surfaces is included without subsurface 
data to compare performance against information typically 
available from intraoperative CT without contrast, e.g. cone 
beam CT (CBCT). Finally, a scenario using all ground truth 
deformed information, including the full liver surfaces and 
vessel data, is considered to evaluate optimal performance if 
significantly more data from intraoperative contrast-enhanced 
CT (iCT) were available. In total, 6291 registration scenarios 
are included in the simulated dataset. For each, target 
registration error (TRE) is computed as the average distance of 
corresponding vertices between the registered and ground 
truth deformed meshes.  

In the following sections, surface data registration is 
examined to identify how additional subsurface information 
could improve overall registration accuracy. Sparse iUS image 
planes are then incorporated and registration accuracy is 
characterized across varying levels of intraoperative access to 
surface and subsurface data. Finally, the iUS registration 
methods are applied to three cases of clinical data.  

B. Limitations of Surface Registration 
In Fig. 5, rigid and deformable registration results to a 

transposed surface data pattern are shown for one of the nine 
liver deformations. In this case, average TRE across the mesh 
was 12.4 ± 8.3 mm for rigid registration and 9.3 ± 7.3 mm for 
deformable registration. Qualitatively from Fig. 5c, it can be 
seen that registration accuracy has high spatial sensitivity, 

with accuracy dropping off considerably where surface data 
cannot be collected. This behavior has two implications. First, 
the spatial sampling of TRE is profoundly important, as the 
measured error of a single validation target can greatly vary 
depending on its position relative to the regions of the organ 
that are deforming, and how well the available data describes 
this deformation. Therefore, unbiased validation metrics that 
thoroughly sample target errors throughout the domain are 
needed to give a complete picture of registration accuracy. 
Second, the profile of data collection on the deformed organ 
must also be acknowledged. As shown in Fig. 5d, the 
proximity of a target to its nearest intraoperative data point is a 
strong predictor of its registration error (Pearson r = 0.83). 
This trend suggests that distant targets may not be well 
constrained by intraoperative data and that intraoperatively 
acquired data may not completely describe the unique 
deformation of the organ. Ideally, data coverage should be 
extensive enough to enable accurate localization of anatomical 
structures many centimeters beneath the surface. Although 
surface data coverage is often inherently constrained by 
anatomical obstructions and limited fields of view, tracked 

 
Fig. 4.  Ultrasound plane locations sampled across the ground truth deformed Liver 1 with left mobilization (1–L). The hepatic vein is shown in blue, the portal 
vein in red, the anterior surface data in black, and the surface features in dark green. A total of 16 ultrasound plane locations are sampled for each simulated 
deformation, consisting of (a) 8 vertical planes and (b) 8 lateral planes. Subsurface features intersecting the iUS planes are shown in white. (c) A view of a single 
ultrasound plane orientation with hepatic vein contour (blue), portal vein contour (red), and posterior surface contour (green). 

 
Fig. 5.  An example case of registration to sparse surface data. The registered 
models (transparent white) are compared to the ground truth deformation 
(transparent green) for (a) rigid, and (b) deformable registrations to the 
applied clinical surface data pattern (black). In (c), the spatial distribution of 
TRE is shown for deformable registration to surface data. In (d), registration 
accuracy across the mesh is plotted against distance away from intraoperative 
data. Registrations are less accurate at greater distances away from data, 
suggesting that data coverage is a critical factor for whole organ TRE. 
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iUS makes it possible to more effectively describe 
deformations in deeper regions of the liver to reduce the 
uncertainty of distant targets. 

While TRE of surface registrations in the simulated dataset 
seem to be higher than those reported in [1], it should be noted 
that the distributions of targets are significantly different. The 
average distance of validation targets to the closest surface 
data point is 44.8 mm for the simulated data, while this metric 
was only 28.6 mm for the laparoscopic phantom data in [1]. 
Using Fig. 5d as a qualitative guide, the performance in [1] 
would be anticipated to be superior to the TRE reported here. 

C. Data Simulation Results 
To illustrate the effect of incorporating constraints from iUS 

data on registration accuracy, TRE is reported over a 
comprehensive range of access to intraoperative data. 
Registrations were performed on the 6291 registration 
scenarios using contour, centerline, and posterior features 
from iUS planes in the optimization of (7). Fig. 6 shows 
registration results as increasing numbers of ultrasound planes 
are used in an example case. Results across all cases are 
summarized in Table II. In each row of Table II, a progressive 
decrease in TRE is observed as a greater amount of subsurface 
information is added to the deformable registration. These 
results are mirrored in Fig. 7, which shows probability 
distribution functions for target errors across the mesh vertices 
of all registrations in each category of intraoperative data. 
Clear leftward shifts and decreased weights in the tails of the 
distributions are seen as data content increases, and all 
pairwise distributions of target error significantly differ from 

 
Fig. 6.  Registrations to data from simulated left-mobilized deformation on 
Liver 1 (1–L). The ground truth deformed liver is shown in green and the 
registered model is shown in white. Registrations were performed to surface 
data with (a) rigid, (b) deformable, (c) deformable with one tracked iUS plane, 
(d) deformable with two tracked iUS planes, (e) deformable with three tracked 
iUS planes, and (f) deformable with all 16 tracked iUS planes. Average TRE 
across the mesh for these examples were (a) 12.4 ± 8.3 mm, (b) 9.3 ± 7.3 mm,  
(c) 5.9 ± 3.6 mm, (d) 5.7 ± 3.7 mm, (e) 5.2 ± 3.7 mm, and (f) 3.5 ± 2.3 mm. 

TABLE II 
TARGET REGISTRATION ERRORS (MM) FOR SIMULATED LAPAROSCOPIC DEFORMATIONS  

Deformation Rigid Surface (S) S + 1 Plane 
(n = 16) 

S + 2 Planes 
(n = 120) 

S + 3 Planes 
(n = 560) S + All Planes CBCT iCT 

1–L 12.4 (±8.3) 9.3 (±7.3) 7.4 ± 1.6 6.4 ± 1.3 5.7 ± 1.0 3.5 (±2.3) 3.6 (±1.9) 2.4 (±1.7) 
1–N 15.3 (±11.2) 13.5 (±10.8) 10.5 ± 2.4 8.8 ± 2.0 7.7 ± 1.6 4.7 (±3.0) 5.0 (±2.3) 3.4 (±2.0) 
1–R 14.9 (±10.1) 10.8 (±8.9) 9.4 ± 2.2 8.0 ± 2.0 7.1 ± 1.6 4.2 (±2.9) 4.5 (±2.3) 3.0 (±2.0) 
2–L 10.9 (±8.5) 10.4 (±8.2) 7.6 ± 1.9 6.0 ± 1.4 5.2 ± 1.0 3.1 (±2.0) 3.4 (±1.6) 2.1 (±1.4) 
2–N 16.9 (±10.3) 15.8 (±11.3) 11.4 ± 2.6 9.3 ± 2.2 8.0 ± 1.6 5.2 (±3.5) 5.0 (±2.3) 3.1 (±2.0) 
2–R 12.5 (±9.2) 12.3 (±8.9) 9.2 ± 2.5 7.6 ± 2.1 6.4 ± 1.6 3.7 (±2.6) 4.2 (±2.2) 2.3 (±1.8) 
3–L 12.8 (±5.5) 8.5 (±6.4) 7.5 ± 1.3 6.1 ± 1.2 5.2 ± 0.9 3.1 (±2.0) 3.8 (±1.7) 2.4 (±1.5) 
3–N 13.9 (±5.9) 12.0 (±6.6) 8.9 ± 1.0 7.2 ± 1.0 6.2 ± 0.8 4.4 (±2.4) 5.8 (±2.8) 3.7 (±2.2) 
3–R 15.1 (±6.5) 10.3 (±7.8) 9.1 ± 2.0 7.2 ± 1.7 6.0 ± 1.4 3.6 (±2.3) 4.9 (±2.4) 3.1 (±2.0) 

Average 13.8 ± 1.9 11.4 ± 2.2 9.0 ± 1.4 7.4 ± 1.2 6.4 ± 1.0 3.9 ± 0.7 4.5 ± 0.8 2.8 ± 0.5 

 Target registration errors (mean ± std) for registrations using increasing intraoperative data content. Standard deviations in parentheses represent variability 
across mesh vertex targets within a single case (n = 1); all other standard deviations represent variability in the average mesh TRE across the constituent cases. 

 
Fig. 7.  Probability distributions of mesh vertex target errors resulting from all 
registrations to the nine simulated deformations with varying levels of 
intraoperative data. The clinical patterns of sparse anterior surface data are 
used for registrations in the black, red, and blue curves. The blue curves 
incorporate sparse features from increasing numbers of tracked iUS planes. 
The green CBCT curve uses the full anterior and posterior surfaces of the 
ground truth deformed mesh, and the green iCT curve uses the full surfaces in 
addition to the ground truth deformed vessel contours and vessel centerlines. 
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one another (two sample K–S test, α = 0.001). It is interesting 
to note that TRE is lower for registrations to all 16 iUS planes 
and sparse surface data than for registrations that could access 
the full anterior and posterior surfaces with CBCT, suggesting 
that reconstructive capacity could be superior with scattered 
iUS coverage of internal structures and sparse surface data 
than with thorough coverage of the surface but no subsurface 
information. 

D. Clinical Experiments 
Clinical data with tracked iUS were acquired from three 

patients undergoing open liver resection with informed 
consent and approval of the institutional review board at 
Memorial Sloan Kettering Cancer Center. Data were collected 
as described in section II-A and analyzed retrospectively. Two 
tracked ultrasound planes from each patient were selected on 
the criteria that each plane included vessel features of only the 
portal vein or only the hepatic vein, and each plane was 
separated by at least 3 cm. The distances between ultrasound 
plane features were 3.4 cm in the first patient (Case A), 8.3 cm 
in the second patient (Case B), and 6.5 cm in the third patient 
(Case C).  

In the analysis, ultrasound plane features were used 
alternately as validation targets or sources of registration data. 
Rigid registration, deformable registration based on surface 
data, and deformable registration based on surface data 
augmented by the vessel contour, centerline, and posterior 
features visible in the tracked iUS plane were compared. To 
measure registration error, the average feature error is defined 
as the average distance between the iUS vessel contour points 
and the closest points on the registered vessel model. This 
metric is chosen because corresponding target points cannot 
be determined between the iUS image plane and the 
preoperative CT volume with high certainty. The feature 
errors from the three clinical cases are shown graphically in 
Fig. 8 and tabulated in Table III. Overall, the average feature 
error of the six validation targets improved 67% over rigid 
registration and 56% over deformable surface registration 
when incorporating data from the independent iUS plane. 
These substantial improvements were obtained under real 
sources of clinical noise, including tracking error, calibration 
error, physiological changes to the hepatic vasculature, and 
deformation induced by the tracked stylus and transducer. 

 
Fig. 8.  Registered liver models (white surface) to surface data (black points) and features from tracked iUS (white points) for three clinical cases of image-
guided open liver surgery (A – top; B – middle; C – bottom). Hepatic and portal vein vessel branches are shown in blue and red, respectively. (a) Rigid 
registration to surface data. (b) Deformable registration to surface data. (c) Deformable registration to surface data and the portal vein. (d) Deformable 
registration to surface data and the hepatic vein. (e) Deformable registration to surface data and the portal and hepatic veins. 

TABLE III 
     FEATURE ERRORS (MM) FOR CLINICAL CASES      

Registered Data Case A Portal 
Feature Error 

Case A Hepatic 
Feature Error 

Case B Portal 
Feature Error 

Case B Hepatic 
Feature Error 

Case C Portal 
Feature Error 

Case C Hepatic 
Feature Error 

Rigid 10.8 ± 3.9 (17.0) 14.3 ± 1.8 (16.5) 4.1 ± 1.4 (7.2) 9.8 ± 1.5 (13.2) 5.4 ± 2.6 (10.0) 3.5 ± 2.0 (7.7) 
Surface (S) 9.7 ± 3.6 (15.8) 12.0 ± 2.2 (15.1) 3.1 ± 1.7 (7.9) 3.2 ± 2.2 (9.9) 5.2 ± 3.5 (11.0) 3.1 ± 2.1 (8.0) 
S + Portal 1.3 ± 0.9 (3.6) 2.9 ± 1.9 (6.2) 0.9 ± 0.6 (2.5) 1.3 ± 1.0 (4.2) 1.0 ± 0.8 (2.9) 3.0 ± 2.3 (9.1) 

S + Hepatic 3.5 ± 3.1 (10.6) 0.8 ± 0.5 (1.9) 1.6 ± 1.3 (5.2) 1.1 ± 0.7 (3.1) 3.6 ± 2.5 (8.1) 0.8 ± 0.7 (0.3) 
S + Portal + Hepatic 1.3 ± 0.9 (3.4) 0.7 ± 0.4 (1.5) 0.8 ± 0.5 (2.2) 1.2 ± 0.8 (3.8) 1.1 ± 0.7 (2.8) 0.9 ± 0.7 (0.4) 

 A summary of feature registration errors for portal and hepatic contours from tracked iUS planes in clinical cases A (left), B (center), and C (right). Rows 
show the feature errors for rigid registration, deformable registration based on surface data (S), and deformable registrations with additional subsurface data. 
Maximum values of the closest point feature distance are shown in parentheses. Values in italics mark residual error of the features used for registration. 
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While noise sources were not specifically addressed in 
simulation studies, these preliminary clinical results suggest 
that the reconstruction method can perform remarkably well in 
realistic situations. 

IV. DISCUSSION 
The results show that in challenging configurations of organ 

deformation and data coverage, large improvements can be 
made to registration accuracy by incorporating sparse features 
from tracked intraoperative ultrasound. Although feature 
errors reported for the clinical data are lower than the best 
TRE values from simulated data, it must be emphasized that 
these error metrics are not directly comparable. Because single 
corresponding target points cannot be exactly determined from 
the iUS planes, the clinical metric requires the error of iUS 
feature points to be projected onto the registered vessel model. 
This projected feature error has the effect of underestimating 
the true TRE. Additionally, feature errors from the clinical 
experiments are sampled at a single location in the liver 
whereas the simulated TRE metric averages the error over 
every vertex in the meshed domain. The simulated TRE values 
presented in Table II account for whole organ registration 
error, representing a more difficult test configuration that 
rewards accurate predictions of deformation beyond the 
immediate region of data collection. 

In the context of boundary value reconstruction, rich data 
can be derived from iUS to produce informative subsurface 
feature constraints that capture information about organ 
deformation normally inaccessible by surface digitization 
tools. However, in the context of clinical workflow, tracked 
iUS can be difficult to implement and interpret, necessitating a 
judicious balance between maximizing interventional benefit 
and minimizing intraoperative disturbance. This work shows 
that a variety of anatomical features visible in a small number 
of tracked iUS planes of the liver can significantly improve 
the accuracy of registration throughout the entire organ. 

Regarding benchmarks for intraoperative data collection 
and computation time, surface points and tracked iUS planes 
can be collected and processed within 60 seconds. While rigid 
registration can be performed at frame rate, the reconstructive 
component of the clinical registrations completed in 37.6 ± 5.4 
seconds. These registrations were performed on a single thread 
of a 4.0 GHz Intel Core i7 CPU. Although the total 
intraoperative computational burden is already low, 
parallelizing the model-data error and gradient computations 
shown in Table 1 could further reduce the computation time. 
Despite manual iUS feature designation limiting continuous 
real-time potential, we have shown that it is possible to 
perform intermittent high quality registrations by estimating 
the deformation state vector 𝜷. In the future, further 
accelerations can be made as computational efficiency 
continues to improve and automatic iUS vessel segmentation 
and surface acquisition methods become more advanced. 

Another factor that affects the computational complexity is 
the resolution with which spatial variations in the boundary 
load can be reconstructed. A sufficiently large number of 

control points k can improve the reconstructive capacity and 
potentially lead to more accurate registrations. However, 
excessive k introduces additional degrees of freedom to the 
reconstructive basis that can lead to prohibitive computation 
cost and degrade the conditioning of the inverse problem to 
the point where the solution is inadequately determined by 
intraoperative data constraints. This relationship between 
TRE, the model resolution k, and the amount of data coverage 
is shown in Fig. 9. Though the best value of k that minimizes 
TRE depends on the amount of intraoperative data, the 
shallow minima suggest low sensitivity. The value k = 45 
offers a good tradeoff between these considerations for the 
typical size of a human liver, intraoperative time constraints, 
and the amount of data that can be collected to resolve the 
reconstruction to a level of accuracy that meets clinical need. 

With regard to limitations, while the simulated data show 
that adding the first, second, and third iUS planes to the 
deformable surface registration incrementally improves TRE 
across the mesh, the average TRE values from Table II include 
all potential combinations of simulated iUS plane positions. 
The relative value of each plane was not considered in relation 
to the redundancy of nearby data and the profile of 
intraoperative deformation, causing the average TRE values to 
be higher than the best achievable. In registrations to the 
ground truth deformation 1–L, the smallest average TRE with 
a single iUS plane was 4.9 ± 3.0 mm and the smallest average 
TRE with three iUS planes was 3.9 ± 2.5 mm. With 5 mm 
representing the clinical goal for accuracy at half the 
recommended oncological margin, the ability to overcome this 
threshold over the entire liver volume is possible with very 
sparse iUS coverage. While outside the scope of this paper, it 
may be possible to strategically plan favorable configurations 
of tracked iUS data collection in targeted regions to reliably 
decrease TRE with a predictive registration assessment 

 
Fig. 9.  Plot of average TRE values for registrations from simulated data 1–L 
across the number of control points k and the extent of intraoperative data 
available for registration. Lines were interpolated from six evaluation points 
with a cubic spline. The optimal value of k that minimizes TRE based on 
intraoperative data coverage, marked by the dotted red line, depends on a 
tradeoff between reconstructive model resolution and the ability to sufficiently 
constrain the degrees of freedom in the model. 
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framework for data sufficiency. Even so, the results from 
Table II show that registering 16 distributed iUS planes can 
easily exceed the benchmark of 5 mm average TRE. As a 
general guide for positioning iUS planes in sparser coverage, 
it can be inferred from Fig. 6 that even spacing can be an 
effective strategy for improving registration accuracy so as to 
reduce the overall target-data distance shown in Fig. 5d. In the 
clinical experiments, while validation is less comprehensive, 
similarly compelling local improvements to subsurface 
accuracy are shown when iUS features can be used to augment 
surface data during registration. While these preliminary 
results are promising, more extensive clinical validation is 
eventually needed to demonstrate the ability of the algorithm 
to accurately reconstruct deformation responses of real tissue. 

V. CONCLUSION 
In this paper, a linearized iterative boundary reconstruction 

method for compensating intraoperative deformation of the 
liver using sparse surface and subsurface data is proposed. 
Information from tracked iUS was incorporated into the 
registration methodology and its impact was characterized 
with an expansive simulated dataset. Feasibility was also 
demonstrated in three clinical cases. Findings show that 
incorporating information from sparse intraoperative 
ultrasound can make significant improvements to registration 
accuracy for hepatic image guidance, and that strategic 
combinations of sparse data might have the potential to 
outperform seemingly more dense configurations of data. 
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