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Abstract—Image-guided intervention for soft tissue organs 

depends on the accuracy of deformable registration methods to 
achieve effective results. While registration techniques based on 
elastic theory are prevalent, no methods yet exist that can 
prospectively estimate registration uncertainty to regulate 
sources and mitigate consequences of localization error in 
deforming organs. This paper introduces registration uncertainty 
metrics based on dispersion of strain energy from boundary 
constraints to predict the proportion of target registration error 
(TRE) remaining after nonrigid elastic registration. These 
uncertainty metrics depend on the spatial distribution of 
intraoperative constraints provided to registration with relation 
to patient-specific organ geometry. Predictive linear and 
bivariate gamma models are fit and cross-validated using an 
existing dataset of 6291 simulated registration examples, plus 699 
novel simulated registrations withheld for independent 
validation. Average uncertainty and average proportion of TRE 
remaining after elastic registration are strongly correlated (r = 
0.78), with mean absolute difference in predicted TRE equivalent 
to 0.9 ± 0.6 mm (cross-validation) and 0.9 ± 0.5 mm (independent 
validation). Spatial uncertainty maps also permit localized TRE 
estimates accurate to an equivalent of 3.0 ± 3.1 mm (cross-
validation) and 1.6 ± 1.2 mm (independent validation). Additional 
clinical evaluation of vascular features yields localized TRE 
estimates accurate to 3.4 ± 3.2 mm. This work formalizes a lower 
bound for the inherent uncertainty of nonrigid elastic 
registrations given coverage of intraoperative data constraints, 
and demonstrates a relation to TRE that can be predictively 
leveraged to inform data collection and provide a measure of 
registration confidence for elastic methods. 
 

Index Terms—Accuracy, deformation, error estimation, image 
guidance, registration, target registration error, uncertainty. 
 

I. INTRODUCTION 
EGISTRATION of medical images finds application at every 
stage of clinical intervention. Fundamentally, registration 

determines a transformation that intends to most accurately 
map patient anatomy between coordinate spaces given data 
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that describe correspondence either completely, or more often 
incompletely. Multimodal fusion of preoperative diagnostic 
information, intraoperative image-guided delivery of therapy, 
and postoperative assessment of treatment response revolve 
around the ability to achieve accurate registrations of patient 
data observed at disparate time points and with various signal 
structures. The importance of registration methodologies in 
the treatment paradigm necessitates that errors be controlled, 
which can be achieved with mechanistic understanding of the 
emergence and propagation of error in the registration process. 

The landmark paper by Fitzpatrick, West, and Maurer [1] 
established rigorous theory for rigid point-based registration 
that accurately predicts average target registration error (TRE) 
from the spatial configuration of target locations and the 
measurable fiducial points used to calculate the registration. 
Fitzpatrick and West [2] soon extended this work to estimate 
the spatial distribution of TRE surrounding these fiducials at 
any location of interest. These seminal works were later 
expanded to account for the case of anisotropic [3] and 
heterogeneous [4, 5] fiducial localization errors. These 
contributions have become profoundly important in the 
domain of image-guided surgery, wherein these error 
distributions steer the placement of fiducial markers and 
provide feedback on the accuracy of intraoperative guidance 
in rigid body scenarios suitable for point-based registration. 
However, these descriptions of registration error become 
invalid in the presence of underlying soft tissue deformation, 
which cannot be explained by models of fully rigid systems.  

To achieve more accurate registrations in the presence of 
deformation, numerous registration approaches have been 
proposed, which are reviewed thoroughly in [6]. Of these, 
registration techniques based on linear elastic mechanics have 
become common for image guidance purposes where the data 
available to registration algorithms are limited [7–11]. Such 
methods that rely on physics to constrain the registration 
problem can obtain more realistic and accurate solutions 
especially in scenarios of sparse data [12, 13]. Although this 
paper will focus on the application of image-guided liver 
surgery, the same principles extend to elastic registration 
methods for other organ systems. 

Previous empirical work has shown that average TRE of 
deformable elastic methods tends to be related to the extent of 
data made available for registration [9, 14, 15]. More recently, 
it has been shown that TRE at any location in the organ is 
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correlated with distance between the target and the nearest 
data point driving the registration [11]. The objective of this 
paper is to establish a framework that explains how the spatial 
distribution of incomplete data driving a nonrigid elastic 
registration consequently affects the spatial distribution of 
TRE throughout the material domain. Similar to the 
foundational work by Fitzpatrick et al. [1, 2], this paper will 
consider both the average and the spatial distribution of error 
based on patient-specific organ shape and intraoperative 
patterns of data. Whereas rigid registration benefits from 
explicit mathematical expressions that explain error patterns 
and guide best practice, no counterpart yet exists for 
deformable registration methods. This paper aims to close this 
gap by introducing a metric for registration uncertainty based 
on the dispersal of boundary condition energy as information 
from data constraints propagates through an elastic material. 
This uncertainty metric can be computed in a fraction of a 
second from the spatial pattern of data available for 
registration and is demonstrated in this paper to be correlated 
with registration fidelity. In addition, a bivariate statistical 
model is introduced for constructing predictive spatial 
distributions of registration error from this metric. Predictive 
accuracies of the error models are tested on an extensive 
existing dataset of 6291 registrations, plus a novel dataset of 
699 additional registrations created for independent validation. 
Finally, a clinical evaluation is performed on three patients. 

The structure of this paper is organized as follows. Section 
II derives two metric variants for estimating spatially localized 
and total registration uncertainty from the spatial coverage of 
intraoperative data that can be instantly computed either 
before initiating or after completing registration. Section III 
describes the experimental framework used to evaluate the 
predictive capability of these metrics. Finally, the remaining 
sections discuss and conclude the work. 

II. A MODEL FOR ELASTIC UNCERTAINTY 

A. The Elastic Registration Problem 
Deformable registration in the context of image guidance 

aims to update a preoperative model of the organ to match an 
intraoperative deformation state described by sparsely 
measured data. Fig. 1 illustrates some examples of data that 
can be obtained for liver registration. Biomechanically elastic 
registrations usually treat the preoperative model as a 
continuum bounded by the domain ℳ ∈ ℝ! that satisfies the 
following three conditions [16]: 

I. The static equilibrium condition 
 

∇ ∙ 𝜎 + 𝐹 = 0 (1) 
 

II. The linear elastic condition 
 

𝜎 = ℂ ∶ 𝜀 (2) 
 
III. The linear strain-displacement relation 

 

𝜀 =
1
2
∇𝑢 + ∇𝑢 !  (3) 

where 𝜎 and 𝜀 are second-order stress and strain tensors, 𝑢 is 
displacement, 𝐹 is applied force, ℂ is the fourth-order material 
tensor, and  ∶  is the double tensor inner product. Under the 
condition of isotropic stiffness, these equations simplify to the 
Navier-Cauchy equations for linear elasticity [16], 
 

𝜇∇!𝑢 + 𝜆 + 𝜇 ∇ ∇ ∙ 𝑢 + 𝐹 = 0 (4) 
 
where 𝜆 and 𝜇 are the Lamé parameters. These equations 
represent a classic boundary value problem that requires 
knowledge about behavior on the boundary 𝜕ℳ before a 
specific solution over the entire domain ℳ can be solved, for 
example using the finite element method. During registration, 
intraoperative data can be measured from the organ and 
combined with anatomical knowledge to either directly or 
indirectly enforce boundary conditions over the domain of the 
organ with the goal of accurately matching deformation 
between the intraoperative anatomy and an image-derived 
preoperative model. It should be noted that while the present 
description assumes isotropic and homogeneous linear 
elasticity, the same arguments may be extended to anisotropic, 
heterogeneous, and fully nonlinear representations on the 
overarching premise of strain energy decay. 

B. Transduction of Boundary Information 
A crucial insight to be made is that any set of boundary 

conditions applied to a linear elastic domain can be 
decomposed into a superposition of a linearly independent 
basis of boundary conditions [16]. These basis functions can 
be constructed pointwise so that the boundary interface 𝜕ℳ 
consists of superposed independent point sources. This 
principle of domain decomposition is often used within the 
context of matrix condensation to facilitate real-time 
computation for in silico simulators that use finite element 
methods [17]. With this idea, consider the propagation of 
energy from any point source 𝑖 located on 𝜕ℳ. At static 
equilibrium, the strain energy 𝑈! 𝑟  stored in the domain at 
distance greater than 𝑟 from the applied load is bounded by the 
Toupin-type decay [18]: 

 
𝑈!(𝑟) ≤ 𝑈!!𝑒!!!! (5) 

 
where 𝑈!! is the total energy of perturbation and 𝑘! is a rate 
constant associated with the point source. This relationship is 
a fundamental result from the field equations of elasticity and 
describes an upper bound on the amount of energy transmitted 
from any source in the domain to the region of the domain 
beyond distance 𝑟. In (5), three assumptions are made. First, 
the material properties of ℳ are considered homogeneous so 
that the decay rate 𝑘! equals the same constant 𝑘 for any 
choice of 𝑖; however, heterogeneity can be incorporated by 
integrating the decay rate over distance [18]. Second, ℳ must 
be either convex or subject to mild concavity constraints so 
the region within distance 𝑟 from position 𝑥! of point source 𝑖 
is connected, namely the set {𝑥 ∈ℳ ∶ 𝑥 − 𝑥! ! < 𝑟} is a 
connected region [18]. Third, elastic modulus is assumed to be 
isotropic and linear; however, analogous decay relationships 
have been derived for anisotropic media [19] and nonlinear 
elasticity [20] that can be directly substituted here. 
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By this decay relationship, deformation energy at static 
equilibrium will be attenuated over space due to the spatial 
accumulation of stress and strain in response to an applied 
load. Whereas lossless transduction of energy from the 
boundary of a finite domain would be described by 𝑈! 𝑟 =
𝑈!!, this scenario can only be satisfied by rigid motion where 
the total strain energy must necessarily equal zero. Instead, 
under deformation, the distribution of strain energy decays 
exponentially with distance from the applied perturbation. 
Based on the Shannon information of this distribution, the 
uncertainty 𝑆! of information provided by this point source 
measures the reduction in boundary energy that reaches any 
location in ℳ given specified behavior from source 𝑖 on 𝜕ℳ, 
 

𝑆! 𝑟 = − ln 𝑈! 𝑟 ≥ 𝑘𝑟 − ln 𝑈!! . (6) 
 
By this metric, a lower bound on the uncertainty in energetic 
behavior given a known boundary condition increases linearly 
with distance away from that condition and logarithmically 
with the total energy of deformation imposed by the boundary 
condition. While the previous equation describes information 
theoretic as opposed to thermodynamic information, a 
thermodynamic resemblance does exist. Any mechanical 
excitation applied at the boundary contains directionally 
ordered information that randomizes, disperses, and attenuates 
as it propagates into the domain. 

Using the principle of domain decomposition through 
superposition, any configuration of loading on the domain can 
be considered as a linear combination of local point effects. 
Let 𝛼 be a vector of linear coefficients for any basis of stress 
and strain tensors 𝜎! and 𝜀!. Then, the total strain energy 𝑈!! 
for each source is 

 

𝑈!! =
1
2

𝜎! ∶ 𝜀!

 

ℳ

𝑑𝑉 (7) 

 
and the total strain energy for the full superposed state is 
 

𝑈! =
1
2

𝛼!𝜎!
!

∶ 𝛼!𝜀!
!

𝑑𝑉
 

ℳ

= 𝛼!!𝑈!!

!

. (8) 

 
Incorporating the decay relationship from (5), the superposed 
strain energy 𝑈 𝑥  that reaches any point 𝑥 ∈ℳ is 
 

𝑈 𝑥 ≤ 𝛼!!𝑈!!𝑒!!!!
!

 (9) 

 
where 𝛿! = 𝑥 − 𝑥! ! is the Euclidean distance from 𝑥 to each 
point source. This equation can be simplified by considering 
the predominant contribution from the nearest point source 𝑥! 
to 𝑥 such that 𝛿! ≤ 𝛿! for all 𝑖. The sum can then be rewritten 
as 
 

𝑈 𝑥 ≤ 𝛼!!𝑈!! + 𝛼!!𝑈!!𝛥!"
!!!

𝑒!!!! . (10) 

The term 𝛥!" = 𝑒! !!!!!  ≤ 1 and therefore using (8) it is also 
the case that 

𝑈 𝑥 ≤ 𝑈!𝑒!!" (11) 
 
where 𝛿 = min 𝑥 − 𝑥! !  is the shortest distance from 𝑥 to 
any boundary condition located at 𝑥! ∈ 𝜕ℳ and 𝑈! is the total 
strain energy added to the system regardless of any need for 
explicit domain decomposition. Compared with the tighter 
bound of (9), due to 𝛥!" the bound in (11) supposes that all 
energy sources decay only up to a distance of 𝛿! instead of to 
their actual interaction distances 𝛿!; however, the looser bound 
eliminates the need for determining 𝛼 and regains tightness 
when multiple boundary conditions are collocated at similar 
interaction distances. From (11), the energetic uncertainty of 
the deformation state now can be obtained from the positions 
of active boundary conditions in any loading configuration by 
 

𝑆(𝑥) ≥ 𝑘𝛿 − ln 𝑈! . (12) 
 

During soft tissue registration, the true set of boundary 
conditions that induces a deformed state is unknown. Instead, 
all information provided to the system originates from a set of 
intraoperative data points 𝛱 and an optional set of known 
anatomical constraints 𝛬. Typically, elastic registrations use 
data points directly as boundary conditions or as sampled 
locations against which error is minimized to reconstruct 
deformation through optimization of a deformation basis. In 
any elastic registration, the total strain energy required to 
match all constraints reaches a minimum at static equilibrium. 
To incorporate the relationship between uncertainty and data 
distribution, direct boundary conditions that globally minimize 
strain energy could be considered localized around each data 
point regardless of how the data point constraints are 
implemented, because the uncertainty of this minimum energy 
state will always be greater than any higher energy 
configuration that could otherwise be reconstructed to satisfy 
the same constraints. For a set of intraoperative data points 𝛱 
and preoperative constraints 𝛬, the constraint uncertainty 𝑆!,! 
of the internal elastic response based on direct boundary 
conditions at 𝛱 and 𝛬 becomes 
 

𝑆!,! 𝑥 ≥ 𝑘𝛿! − ln 𝑈!  (13) 
 
where 𝛿! = min 𝑥 − 𝑥! !, 𝑥 − 𝑥! !  now represents the 
shortest distance to the set of data points at 𝑥! ∈ 𝛱 or to the 
predetermined boundary conditions at 𝑥! ∈ 𝛬 already known 
to constrain the system. 
 Finally, the constraint entropy 𝐻!,! is defined to be the 
average uncertainty over ℳ given the data: 
 

𝐻!,! =
1
𝑉ℳ

𝑆!,! 𝑥
 

ℳ

𝑑𝑉 ≥
𝑘
𝑉ℳ

𝛿!
 

ℳ

𝑑𝑉 − ln 𝑈!  (14) 

 
for 𝑉ℳ the volume of the domain. 

Equations (13) and (14) are the main relationships 
introduced in this paper that measure a lower bound for the 
positional and average energetic uncertainty in registration 
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given a spatial distribution of constraints that drive the 
registration. Since the uncertainty is inversely related to the 
strength of constraint energy that reaches a particular location 
in the domain, uncertainty can be conceived as the 
susceptibility of this location to be affected by additional 
forces acting on or within the domain that influence the true 
deformation state, though are not represented by the current 
constraints of the system. These unknown forces could 
represent additional loads placed on an organ, or effective 
changes to internal stresses for example related to linear 
elastic or material assumptions compared to the behavior and 
structure of real tissue. The first term of the uncertainty metric 
relates to the spatial coverage of constraints throughout the 
domain, while the second term relates to the amount of energy 
required to match the observed deformation state. While 
computations of the rate constant 𝑘 and the strain energy 𝑈! 
require more description, these steps will be the focus of the 
following two sections. It is important to note that these 
quantities can be computed for a registration algorithm 
regardless of whether a basis for superposed boundary 
conditions has been explicitly defined as regarded in (8)–(10). 

C. Rate of Information Decay 
Under the assumptions of a homogeneous and isotropic 

material domain, the rate of information decay 𝑘 is a constant 
that depends on geometry and material parameters. In general, 
the rate constant takes the form 𝑘 = 𝛾/𝑠, where 𝑠 is a 
characteristic length and 𝛾 is a constant that has analytical 
solutions in 2-D rectangular [21] and 3-D cylindrical [22] 
coordinate systems. While 𝑠 can be determined as functions of 
width or diameter in toy coordinate systems, in the case of 
arbitrary geometry [18] the characteristic length takes the form  

 

𝑠 =
𝜇∗

𝜌𝜔!!
 (15) 

 
where 𝜇∗ = 𝜇!!/𝜇! for which 𝜇! = 2𝜇 + 3𝜆  is the largest 
and 𝜇! = 2𝜇 is the smallest eigenvalue of ℂ [16], 𝜌 is the 
material density, and 𝜔! is the lowest characteristic frequency 
of free vibration. Vibration theory lets this frequency be 
estimated from the Rayleigh quotient, which can be derived 
from setting the maximum potential energy of any static 
nonzero displacement field that satisfies (1–3) equal to the 
maximum kinetic energy of its undamped oscillation: 
 

𝜔!! =
𝜇∗ 𝜀 ∶ 𝜀 𝑑𝑉 

ℳ
𝜌 𝑢 ∙ 𝑢 𝑑𝑉 

ℳ
 . (16) 

 
If a deformation basis or a candidate set of admissible 
deformations 𝑢! and 𝜀! have been created, then the frequency 
estimate can be obtained from 𝜔!! = min 𝜔!,!! , where 𝜔!,!! 
is identical to (16) except for substituting 𝑢 = 𝑢! and 𝜀 = 𝜀!. 

For the purpose of describing the rate of energy decay, the 
characteristic length is scaled by the ratio of shear to 
longitudinal wave speed 1/𝜒 due to the observation that 
displacements applied to the boundary generate excitation that 
is not purely dilatational. In fact, it has been shown in the case 
of 𝜈 = 1/4 that the amount of power radiated by a single 

boundary condition acting in the normal direction of a semi-
infinite medium is approximately 3.7 times greater in the shear 
mode than the longitudinal mode of wave transmission [23]. 
The longitudinal wave speed 𝑐! = 𝜆 + 2𝜇 /𝜌 and the shear 
wave speed 𝑐! = 𝜇/𝜌 represent the maximum rate at which 
information can be propagated through the material in each 
mode, which gives a ratio 

𝜒 =
𝑐!
𝑐!
=

𝜆 + 2𝜇
𝜇

=
2 − 2𝜈
1 − 2𝜈

 (17) 

 
where 𝜈 is the Poisson ratio. In this way, the characteristic 
length 𝑠/𝜒 now considers the dissipation of energy through 
the dominant shear mode and leads to the rate constant 
 

𝑘 =
𝛾𝜒
𝑠
= 𝛾

2 − 2𝜈 𝜀 ∶ 𝜀 𝑑𝑉 
ℳ

1 − 2𝜈 𝑢 ∙ 𝑢 𝑑𝑉 
ℳ

. (18) 

If a set of basis or candidate deformations 𝑢! and 𝜀! are 
known, then 𝑘 = min 𝑘!  as if using the lowest estimate of 
fundamental frequency from (16). The rate factor 𝛾 is 
estimated experimentally by optimizing a root mean square 
(RMS) correlation coefficient described in section III-B. 

D. Energy of Deformation 
The final quantity needed to compute 𝑆!,! and 𝐻!,! is the 

total energy of deformation 𝑈!. Algorithmically, two variants 
of these uncertainty metrics are proposed depending on how 
𝑈! and 𝑘 are computed. These variants lead to retrospective 
metrics 𝑆! and 𝐻! that utilize measurements of deformation 
and strain energy obtained after registration has completed, 
and prospective metrics 𝑆! and 𝐻! that use alternative 
estimates computed prior to initiating registration. 

The retrospective metrics 𝑆! and 𝐻! assume the most 
reliable estimate for the energy of deformation from the total 
internal strain energy of the registration solution, 

 

𝑈! =
1
2

𝜎 ∶ 𝜀 𝑑𝑉
 

ℳ

. (19) 

 
Substitution of (18)–(19) into (13)–(14) leads to generalized 
metrics for uncertainty 𝑆! and entropy 𝐻! that can be obtained 
after the completion of any elastic registration method from 
the solved displacement, stress, and strain fields, organ 
volume, the Poisson ratio, and the distribution of constraints 
provided to the registration. Computation of these 
retrospective metrics is summarized in Algorithm I.   
 Whereas the generalized retrospective metrics can only be 
computed after registration has completed, a fully predictive 
metric that can be computed in real time during data collection 
would be invaluable for actively assisting image-guided 
surgical applications. A fully predictive metric can be 
constructed if two conditions are met: if the rate constant is 
pre-computed from a known basis of boundary conditions or 
from simulating admissible displacements to estimate the 
Rayleigh quotient in (16), and if the internal energy of 
deformation is estimated from external work. The total 
external work 𝑊 can be approximated from the mean squared 
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error between data points and a rigidly aligned model from the 
Hookean relationship 
 

𝑊 =
1
𝑁!

1
2
𝜅 𝑢!

!
!!

!!!

=
𝜅
2𝑁!

𝑢!
!

!!

!!!

 (20) 

 
where 𝑁! is the number of data points, 𝜅 is an effective spring 
constant, and 𝑢!  is the magnitude of displacement between 
data point 𝑗 and the corresponding position on a rigidly 
aligned model, for which the closest point is the most 
conservative estimate. Then the energy of deformation can 
also be approximated as 
 

ln 𝑈! ≈ ln 𝑊 = ln
1
2𝑁!

𝑢!
!

!!

!!!

+ 𝐶 (21) 

 
for 𝐶 = ln 𝜅  representing a constant shift that can be ignored 
for the purpose of establishing a correlation between 
uncertainty and registration error. Equations (13), (14), (18), 
and (21) then lead to fully predictive uncertainty metrics 𝑆! 
and 𝐻! that can be computed prior to registration from pre-
computed examples of candidate deformations as summarized 
in Algorithm II.  

In the next sections, correlations of the uncertainties 𝑆! and 
𝑆! are computed with respect to the error capacity 𝐸, which 
represents the proportion of TRE remaining after deformable 
registration relative to initial error, defined as the percentage 
 

𝐸 = 𝑇𝑅𝐸!
𝑇𝑅𝐸!

×100% (22) 

 
at each target where 𝑇𝑅𝐸! is the final target registration error 
after deformable registration and 𝑇𝑅𝐸! is the average target 
registration error after initial rigid registration of the organ. 

Furthermore, the entropy metrics 𝐻! and 𝐻! are correlated 
against 𝐸, the average error capacity across domain ℳ. For 
evaluation in this paper, elastic registrations are computed 
using the linearized iterative boundary reconstruction method 
described in [11] and all variables are defined in m-kg-s units.  

E. Spatial Distributions of Predicted TRE 
Pointwise spatial estimation of error capacity at each vertex 

of ℳ is enabled by fitting joint bivariate gamma (bigamma) 
distributions relating 𝐸 to 𝑆! and 𝐸 to 𝑆!. Bivariate gamma 
distributions excel at describing recurring attenuation of signal 
due to multipath propagation or partial obstructions, and have 
found applications modeling fading channels in 
radiofrequency analysis [24] and the relationships between 
rainfall and runoff in hydrology [25]. The shape of the gamma 
distribution is highly flexible and generalizes many common 
distributions including the chi-square, exponential, Rayleigh, 
and Maxwell distributions. If the directional components of 
TRE are independent and normally distributed in three 
dimensions as presented in [2], then the magnitude of TRE is 
by definition Maxwell-distributed and the sum of squares chi-
squared. These characteristics make the bigamma distribution 
exceptionally pertinent to the present application of describing 
the relationship between the dispersive propagation of 
boundary energy and the reduction in TRE. The bivariate 
gamma distribution used in this paper is a six-parameter 
adaptation of [26] and its formulation and parameter 
estimation are described in Appendix A. Bigamma 
distributions 𝑃 𝑆! ,𝐸 | 𝜃!  and 𝑃 𝑆!,𝐸 | 𝜃!  are computed by 
fitting distribution parameters 𝜃! and 𝜃! to data described in 
section III using the method of Appendix A. After these 
distributions are fit, the probability distribution of error 

ALGORITHM I: POST-REGISTRATION (RETROSPECTIVE) UNCERTAINTY 
Input: 𝜫 – Point cloud of intraoperatively deformed organ features 

 𝜦 – Positions of other known anatomical constraints, if any 
 𝑴 – Initial organ model rigidly registered to 𝜫,𝜦 
 𝑽𝑴 – Volume of 𝑴 
 𝒖(𝑴,𝜫,𝜦) – Displacement field of elastic reg. from 𝑴 to 𝜫,𝜦 
 𝜺(𝑴,𝜫,𝜦) – Strain field of elastic registration from 𝑴 to 𝜫,𝜦 
 𝝈(𝑴,𝜫,𝜦) – Stress field of elastic registration from 𝑴 to 𝜫,𝜦 
 𝝂 – Poisson ratio 

1: For each point in 𝑴, 
2:      Compute distance 𝜹(𝑴;𝜫,𝜦) to the nearest point in 𝜫,𝜦 
3:      𝒔𝒔𝒖 = ∑ 𝒖!!!

!!!  
4:      𝒔𝒔𝜺 = ∑ ∑ 𝜺!"!!

!!!
!
!!!  

5:      𝒔𝒆𝒅 = ∑ ∑ 𝝈!"𝜺!"!
!!!

!
!!!  (strain energy density) 

6: 𝑰𝜹 = ∫𝜹𝒅𝑽𝑴   
7: 𝑰𝒖 = ∫ 𝒔𝒔𝒖𝒅𝑽𝑴  
8: 𝑰𝜺 = ∫ 𝒔𝒔𝜺𝒅𝑽𝑴   
9: 𝑼𝟎 = (1/2)∫ 𝒔𝒆𝒅𝒅𝑽𝑴   

10: 𝝎 = 𝑰𝜺/𝑰𝒖  
11: 𝝌 = (2 − 2𝝂)/(1 − 2𝝂)   
12: 𝜸 = 1.08 (optimized from Section III-B) 
13: 𝒌 = 𝜸√𝝌𝝎  
14: 𝑺𝒓 = 𝒌𝜹 − ln(𝑼𝟎)  
15: 𝑯𝒓 = (𝒌/𝑽𝑴)𝑰𝜹− ln(𝑼𝟎)  

Output: 𝑺𝒓 – Uncertainty of constraints at each vertex of 𝑴 
 𝑯𝒓 – Entropy of constraints over 𝑴 

 

ALGORITHM II: PRE-REGISTRATION (PROSPECTIVE) UNCERTAINTY 
Input: 𝜫 – Point cloud of intraoperatively deformed organ features 

 𝜦 – Positions of other known anatomical constraints, if any 
 𝑴 – Initial organ model rigidly registered to 𝜫,𝜦 
 𝑽𝑴 – Volume of 𝑴 
 𝒖𝟏,𝒖𝟐,… ,𝒖𝒏 – Displacement fields of candidate deformations 
 𝜺𝟏, 𝜺𝟐,… , 𝜺𝒏  – Strain fields of candidate deformations 
 𝝂 – Poisson ratio 

     Pre-compute: 
1: For 𝑘 = 1 to 𝑛 
2:      For each point in 𝑴, 
3:           𝒔𝒔𝒖! = ∑ 𝒖! ,!!!

!!!  
4:           𝒔𝒔𝜺! = ∑ ∑ 𝜺! ,!"!!

!!!
!
!!!  

5:      𝑰𝒖! = ∫ 𝒔𝒔𝒖! 𝒅𝑽𝑴 
6:      𝑰𝜺! = ∫ 𝒔𝒔𝜺! 𝒅𝑽𝑴 
7: 𝝎 = min(𝑰𝜺!/𝑰𝒖!)  
8: 𝝌 = (2 − 2𝝂)/(1 − 2𝝂)   
9: 𝜸 = 6.62 (optimized from Section III-B, method-specific) 

10: 𝒌 = 𝜸√𝝌𝝎  
     Intraoperatively: 

1: For each point in 𝑴, 
2:      Compute distance 𝜹(𝑴;𝜫,𝜦) to the nearest point in 𝜫,𝜦 
3: 𝑰𝜹 = ∫𝜹𝒅𝑽𝑴   
4: For each point in 𝜫, 

5:      Compute distance 𝒅(𝜫;𝑴) to the nearest corresponding feature 
     point in 𝑴 

6: 𝑾 = 𝟏/(𝟐𝑵𝜫)∑ 𝒅!
!!!

!!!   
7: 𝑺𝒑 = 𝒌𝜹 − ln(𝑾)  
8: 𝑯𝒑 = (𝒌/𝑽𝑴)𝑰𝜹− ln(𝑾)  

Output: 𝑺𝒑 – Uncertainty of constraints at each vertex of 𝑴 
 𝑯𝒑 – Entropy of constraints over 𝑴 
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capacity is predicted at every spatial location from the 
conditional distributions 𝑃 𝐸|𝑆! , 𝜃! , 𝑃 𝐸|𝑆!, 𝜃!  and new 
values of 𝑆! and 𝑆! computed across ℳ. These pointwise 
probability distributions can be summarized into a spatial 
uncertainty map from distribution medians or confidence 
intervals. Algorithm III outlines this process for predicting 
error capacity 𝐸 from retrospective and prospective 
uncertainty metrics 𝑆! and 𝑆!. 

III. EXPERIMENTAL SIMULATIONS 

A. Data 
The proposed metrics are evaluated on a dataset of 6291 

registration scenarios (dataset A, previously reported in [11]) 
derived from three patient-specific liver geometries (Livers 1, 
2, and 3) each subjected to three unique liver deformations of 
mobilization from the left triangular ligament, no ligaments, or 
right triangular ligament (L, N and R) and mapped from the 
profile of 147 target displacements in a silicone phantom after 
it was subjected to these deformations inside a laparoscopic 
simulator. For each of the nine deformed organs, a sparse 
pattern of anterior surface data and 16 simulated ultrasound 
(US) planes were generated. These data were assembled into 
combinatorial configurations of intraoperative data for 
registration, consisting of: 

i. Anterior surface data only, n = 9; 
ii. Anterior surface data plus one US plane, n = 144; 
iii. Anterior surface data plus two US planes, n = 1080; 

iv. Anterior surface data plus three US planes, n = 5040; 
v. Anterior surface data plus all 16 US planes, n = 9; 
vi. Ground truth position of the complete surface plus the 

complete intrahepatic vessel structure, n = 9. 
A representative subset of examples from these data 
configurations is shown in Fig. 1. TRE is measured as the 
Euclidean distance between the registered and ground truth 
positions of each vertex in the volumetric liver mesh, creating 
27,218 (Liver 1), 31,044 (Liver 2), and 18,821 (Liver 3) total 
targets per registration instance. In total, over 161 million 
individual target samples are considered in this first dataset, 
from which model parameters are fitted and correlations 
between the uncertainty metrics and registration error are 
cross validated in a leave-one-out experimental design.   
 A novel dataset was also created for independent validation 
using the same data-generative method of [11]. In this case, a 
displacement field was obtained from the motion of 159 target 
positions embedded in a silicone liver phantom imaged before 
and after the phantom was placed in an open surgical 
configuration with deformation created by perihepatic packing 
placed beneath the posterior surface of the liver. This 

 
Fig. 2.  RMS Pearson correlation coefficient plotted against rate factor 𝛾 for 
retrospective and prospective information metrics 𝐻! and 𝐻!, respectively. As 
𝛾 grows large, 𝐻 depends only on the first distance term and as 𝛾 approaches 
zero, 𝐻 depends only on the second energy of deformation term. The 
existence of prominent optima suggests that both terms contribute 
complementary information towards predicting registration performance. At 
small 𝛾, the average correlation coefficient is considerably lower for 𝐻! than 
𝐻!  because the prospective formulation approximates energy of deformation 
less accurately than achievable with internal strain energy. At large 𝛾, the 
difference relates to rate constant computation, where the prospective metric 
estimates the fundamental frequency by the lowest mode response from a 
series of candidate deformations, whereas the retrospective metric computes a 
fundamental frequency from the actual activation of deformation modes in the 
system. An empirical characterization of the rate factor 𝛾 affords leniency in 
the approximations made for the prospective metric without sacrificing 
substantial predictive value relative to the complete retrospective approach. 
  

ALGORITHM III: PREDICTION OF TARGET REGISTRATION ERROR CAPACITY 
Input: 𝑺 – Constraint uncertainty at each vertex of organ model 

 𝑯 – Constraint entropy of organ model given data 
     Pre-compute: 

1: Set bivariate gamma parameters 𝜽!𝒓 and 𝜽!𝒑 (see Appendix A) 
2: Compute lookup tables 𝑷!𝑺,𝑬 | 𝜽!𝒓! and 𝑷!𝑺,𝑬 | 𝜽!𝒑! from (A3) 

     Intraoperatively: 
1: If 𝑺, 𝑯 are post-registration (retrospective) metrics: 
2:      𝑷(𝑺,𝑬) = 𝑷!𝑺,𝑬 | 𝜽!𝒓! 
3:      𝜶 = 14.1;𝜷 = 19.0 (see linear model Section III.B) 
4: Else if 𝑺, 𝑯 are pre-registration (prospective) metrics: 
5:      𝑷(𝑺,𝑬) = 𝑷!𝑺,𝑬 | 𝜽!𝒑! 
6:      𝜶 = 5.1;𝜷 = 40.0 (see linear model Section III.B) 
7: Set 𝒑 as percentile of interest (e.g. 0.5 or 0.05 and 0.95) 
8: For each value in 𝑺 
9:     Interpolate 𝑷(𝑬|𝑺) from joint distribution 𝑷(𝑺,𝑬) 

10:     𝑭(𝑬|𝑺) = ∫ 𝑷(𝑬|𝑺)!
! 𝒅𝑬 (cumulative distribution function)  

11:     𝑬𝒑 = 𝑭!𝟏(𝒑) (p-quantile function) 
12: 𝑬! = 𝜶𝑯 + 𝜷  

Output: 𝑬𝒑 – pth quantile of error capacity at each vertex of organ model 
 𝑬! – Average error capacity across organ model after registration 

 

 
Fig. 1.  Data available for registration in hepatic image guidance. Deformable registration updates the preoperative model (parenchyma – gray; portal vein – red; 
hepatic vein – blue) to match intraoperative data while predicting internal displacements as accurately as possible. (a) Organ shape from intraoperative CT 
(green) indicates the full deformed surface of the liver. (b) In the surgical setting, points on the anterior surface of the liver (black) can be measured using 
tracked tools or computer vision. (c) A tracked intraoperative ultrasound plane allows localization of intrahepatic vessels and the posterior surface of the liver. 
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displacement field was mapped using an affine and elastic 
transformation onto a novel patient-specific liver geometry 
consisting of 25,905 mesh vertices. Each vertex is treated as a 
target location for computing TRE. Intraoperative data were 
simulated combinatorially as previously described. This 
validation dataset (dataset B) represents 699 additional 
registration scenarios based on a novel liver geometry and 
novel deformation profile.  

B. Prediction of Average Error Capacity 
For each of the nine deformed organs in dataset A, Pearson 

correlation coefficients were computed between 𝐻! and 𝐸, and 
𝐻! and 𝐸 as represented by Fig. 3a. The RMS value of these 
correlation coefficients was maximized to determine the rate 
factor 𝛾 in Fig. 2, from which optima were found at 𝛾! = 1.08 
and 𝛾! = 6.62. These values were used for the rest of the 
analysis in this paper. Fig. 3a shows strong linear relationships 
that suggest registration error may be minimized in each 
instance of organ deformation by supplying a configuration of 
intraoperative data that minimizes constraint entropy. 
Furthermore, a linear regression may be used to predict the 
average amount of elastic correction achievable from a 
provided pattern of intraoperative data coverage.  

To assess general predictive capability across multiple 
deformations and organ shapes, prediction errors were cross-
validated in a leave-one-out fashion. Linear regressions were 
fit to registrations from eight of the nine deformations in 
dataset A, then predictions for 𝐸, the average error capacity, 
were made from the values of each entropy metric 𝐻! and 𝐻! 
for each registration in the left-out deformation. Table 1 shows 
the differences between the average registration errors as 
reported in [11] and the predicted average registration errors 
using 𝐻! and 𝐻!. With respect to quantitative predictive value, 
if the average rigid TRE values reported in Table I were 
known, the RMS error in predicted average TRE after elastic 
registration would be 1.1 mm for the retrospective metric 𝐻! 
and 1.2 mm for the prospective metric 𝐻! across all nine 
leave-one-out cross-validations. These values suggest that the 
proposed constraint entropy metrics predict overall 
registration performance quite accurately. This prediction 
accuracy was achieved over the range of average TRE values 
reported in [11], from 2.8 ± 0.5 mm when registering to 
complete data to 11.4 ± 2.2 mm when registering to the 
sparsest data configurations. Although the actual value of 
average rigid TRE is typically unknown, in practice a value 
could be inferred or conservatively estimated for an organ if 

 
Fig. 3.  Linear regressions between constraint entropy 𝐻! and average error capacity 𝐸!  with each point representing one registration to a specific configuration 
of intraoperative data from dataset A. (a) Correlations of 𝐻! and 𝐸! for each of the nine deformation conditions of dataset A. Axes same as (b). (b) All 6291 
registrations from dataset A and total regression line (black) plotted with the 699 registrations from the separate validation dataset B (red). Legend indicates the 
extent of intraoperative data provided to each registration. 

TABLE I 
PREDICTION OF AVERAGE REGISTRATION ERROR FROM BOUNDARY INFORMATION ENTROPY 

Deformation Mean Rigid 
TRE (mm) 

Difference in Predicted 
Average TRE (mm), 𝐻! 

Difference in Predicted 
Average TRE (mm), 𝐻! 

Difference in Predicted Average 
Error Capacity (%), 𝐻!  

Difference in Predicted Average 
Error Capacity (%), 𝐻! 

1–L 12.4 0.9 (0.7 ± 0.5) 0.8 (0.6 ± 0.5) 7.0 (5.9 ± 3.8) 6.3 (4.9 ± 4.0) 
1–N 15.3 1.5 (1.4 ± 0.7) 2.0 (1.8 ± 0.8) 10.0 (9.0 ± 4.4) 13.1 (11.9 ± 5.5) 
1–R 14.9 0.9 (0.7 ± 0.5) 1.1 (0.8 ± 0.7) 5.7 (4.5 ± 3.6) 7.3 (5.5 ± 4.8) 
2–L 10.9 0.7 (0.5 ± 0.4) 0.7 (0.5 ± 0.4) 6.2 (4.9 ± 3.8) 6.4 (5.0 ± 4.1) 
2–N 16.9 1.5 (1.3 ± 0.7) 1.0 (0.8 ± 0.5) 8.6 (7.7 ± 3.9) 5.6 (4.7 ± 3.2) 
2–R 12.5 1.0 (0.7 ± 0.7) 1.1 (0.8 ± 0.8) 8.1 (5.8 ± 5.7) 8.8 (6.1 ± 6.4) 
3–L 12.8 1.2 (1.1 ± 0.6) 1.2 (1.1 ± 0.6) 9.5 (8.5 ± 4.3) 9.6 (8.4 ± 4.7) 
3–N 13.9 0.6 (0.5 ± 0.3) 0.8 (0.6 ± 0.4) 4.0 (3.4 ± 2.1) 5.4 (4.6 ± 2.9) 
3–R 15.1 1.2 (1.1 ± 0.6) 1.6 (1.4 ± 0.8) 8.2 (7.2 ± 3.9) 10.9 (9.6 ± 5.3) 

Total — 1.1 (0.9 ± 0.6) 1.2 (0.9 ± 0.8) 7.7 (6.3 ± 4.4) 8.5 (6.7 ± 5.3) 
Validation 5.4 1.1 (0.9 ± 0.5) 0.5 (0.4 ± 0.3) 19.7 (17.6 ± 8.8) 10.2 (8.4 ± 5.9) 
Predictive errors reported as RMSE (MAE ± STD): RMSE root mean square error; MAE mean absolute error; STD standard deviation. 
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an interpretation with spatial length scale is needed. 
Differences in the predicted and actual average error capacity 
𝐸 are shown in the last two columns of Table I, with total 
RMS prediction error of 7.7% (𝐻!) and 8.5% (𝐻!) across the 
leave-one-out experiments, meaning that the metric-estimated 
percentage of TRE remaining after elastic registration was 
accurate to approximately ±8% of the underlying magnitude 
of rigid error.  

Combining all 6291 registrations from dataset A leads to 
total linear regressions between 𝐸 and 𝐻 with 95% confidence 
intervals and correlation coefficients 

𝐸 = 14.1 ± 0.3 𝐻! − 19.0 ± 1.3 ;  𝑟 = 0.78 
𝐸 = 5.1 ± 0.1 𝐻! − 40.0 ± 2.0 ;  𝑟 = 0.73 

where the difference between strength of correlation for 𝐻! 
and 𝐻! may be attributed to loss of precision when 
prospectively approximating energy of deformation and rate of 
information decay as conjectured in Fig. 2. However, Table 1 
suggests that quantitative prediction accuracies are similar 
between both metrics.  

Independent evaluation of predicted average error 
estimation was performed with validation dataset B using the 
total regressions to dataset A. Fig. 3b plots the total regression 
of 𝐻! and 𝐸 from dataset A compared to the values of 𝐻! and 
𝐸 from all registrations in dataset B, illustrating consistent 

alignment of the metric regression across disparate cases. The 
final row of Table I provides numerical results for the 
accuracy of TRE prediction from retrospective and 
prospective entropy metrics. While the length scales of 
prediction errors are in agreement between both datasets, it is 
expected that the error capacities become less stable when the 
total energy of deformation is small, such as in the case of 
validation dataset B for which the average rigid TRE was only 
5.4 mm due to smaller underlying deformations in the mapped 
displacement field. For increasingly rigid systems, 𝐸 becomes 
more sensitive and the uncertainty bound becomes degenerate 
as 𝑈! approaches zero and 𝜔! emerges from a state 
approaching zero displacement and zero strain. It is intuitive 
that a degenerate case is reached in the limit of zero 
deformation because no energetic information is introduced to 
the system. However, as shown by the alignment of predicted 
values in Fig. 3b, the validation dataset shows that the method 
for error prediction is still effective outside the specific range 
of deformation magnitudes in dataset A.  

C. Prediction of Pointwise Error Capacity 
To analyze pointwise TRE predictions, the bivariate 

distributions were fit and evaluated using a similar leave-one-
deformation-out approach from dataset A, plus independent 
validation from dataset B. After registration, the 161 million 

 
Fig. 4.  Empirical joint distributions of paired observations between error capacity 𝐸 and uncertainty 𝑆!. (a) Empirical distributions drawn from all registrations 
of each of the nine deformation conditions of dataset A, plotted on the same axes as (b); (b) The total empirical joint distribution using all targets in dataset A. 

TABLE II 
PREDICTION OF POINTWISE REGISTRATION ERROR FROM BOUNDARY INFORMATION UNCERTAINTY 

Deformation Mean Rigid 
TRE (mm) 

Difference in Median 
Predicted TRE (mm), 𝑆! 

Difference in Median 
Predicted TRE (mm), 𝑆! 

Difference in Median Predicted 
Error Capacity (%), 𝑆!  

Difference in Median Predicted 
Error Capacity (%), 𝑆! 

1–L 12.4 3.4 (2.6 ± 2.3) 3.5 (2.5 ± 2.4) 27.7 (20.8 ± 18.3) 28.3 (20.5 ± 19.5) 
1–N 15.3 5.7 (3.8 ± 4.3) 5.9 (3.8 ± 4.5) 37.3 (24.8 ± 27.9) 38.5 (25.1 ± 29.2) 
1–R 14.9 4.5 (3.3 ± 3.1) 4.6 (3.3 ± 3.2) 30.2 (22.0 ± 20.7) 30.9 (22.1 ± 21.5) 
2–L 10.9 3.4 (2.4 ± 2.4) 3.4 (2.4 ± 2.5) 30.9 (21.6 ± 22.0) 31.5 (21.7 ± 22.9) 
2–N 16.9 5.4 (3.6 ± 4.0) 5.2 (3.6 ± 3.8) 32.0 (21.3 ± 23.9) 30.7 (21.0 ± 22.4) 
2–R 12.5 4.5 (3.0 ± 3.3) 4.6 (3.1 ± 3.4) 35.6 (24.3 ± 26.0) 36.3 (24.6 ± 26.7) 
3–L 12.8 3.2 (2.4 ± 2.0) 3.2 (2.4 ± 2.0) 24.7 (19.1 ± 15.6) 24.7 (18.9 ± 15.9) 
3–N 13.9 3.5 (2.7 ± 2.3) 3.6 (2.7 ± 2.3) 25.1 (19.1 ± 16.3) 25.5 (19.4 ± 16.6) 
3–R 15.1 3.6 (2.8 ± 2.3) 3.6 (2.8 ± 2.3) 24.0 (18.4 ± 15.3) 24.1 (18.8 ± 15.1) 

Total — 4.3 (3.0 ± 3.1) 4.4 (3.0 ± 3.2) 30.7 (21.6 ± 21.9) 31.1 (21.7 ± 22.4) 
Validation 5.4 2.0 (1.6 ± 1.2) 2.0 (1.4 ± 1.4) 37.0 (29.4 ± 22.5) 36.9 (26.3 ± 25.9) 
Predictive errors reported as RMSE (MAE ± STD): RMSE root mean square error; MAE mean absolute error; STD standard deviation. 
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target samples in dataset A provide paired observations of the 
uncertainty metrics 𝑆 and error capacities 𝐸. These target 
samples are separated into nine groups respective to the 
underlying liver geometry and deformation profile. The joint 
relationships of these paired observations 𝑆 and 𝐸 are shown 
for each deformation condition in Fig. 4a. Bigamma 
probability distributions 𝑃 𝑆,𝐸  are alternately fit to all target 
samples from eight of the nine groups, and samples from the 
last group are withheld for evaluation. For evaluation, the 
median predicted values of 𝐸!.! are obtained for the withheld 
group using the conditional distribution 𝑃 𝐸 𝑆 . The predicted 
median 𝐸!.! and the actual value of 𝐸 are compared in Table II 
for predictions based on the post-registration retrospective 
metric 𝑆! and the pre-registration prospective metric 𝑆!. If the 
average rigid TRE were to be known or estimated for each 
registration, then both the prospective and retrospective 
registration uncertainty metrics could predict pointwise elastic 
TRE from the distribution median to less than 4.5 mm RMS 
error across all cross-validated samples in dataset A. However, 
the absolute difference between the predicted and actual error 
capacity at each target was approximately 30% RMS. 

All 161 million target samples from dataset A were 
combined into an empirical distribution (Fig. 4b) and 
bigamma distribution parameters 𝜃! and 𝜃! were estimated for 
𝑆! and 𝑆! metrics as reported in Appendix A. From these 
distributions, median values of 𝐸 were predicted from 𝑆! and 
𝑆! computed on dataset B and were compared against their 
corresponding measured values. Prediction errors for these 
pointwise estimates from dataset B are displayed in the final 
row of Table II and agree in magnitude with errors obtained 
from the leave-one-out study on dataset A. While the results of 
Fig. 4 and Table II are informative, Fig. 5 further exhibits 
predictive capability. Fig. 5a–c illustrate spatial distributions 
of TRE predicted from median error capacity in comparison to 
spatial distributions of TRE measured with respect to the 
ground truth deformation in Fig. 5d–e as the amount of data 
provided to the registration is incremented by adding sparse 
features from tracked intraoperative ultrasound planes.  

D. Clinical Verification 
Pointwise estimates of uncertainty and registration errors 

were evaluated in three patients undergoing image-guided 
open liver resection with tracked intraoperative ultrasound. In 
all patients, intraoperative anterior surface data points were 
collected with an optically tracked stylus. In addition, two 
ultrasound image planes of the portal and hepatic vein 
features, respectively, were acquired at distances 3.4–8.3 cm 
apart (Fig. 6a). These data were previously reported in [11] 
and were collected with approval by the institutional review 
board at Memorial Sloan Kettering Cancer Center. The error 
capacity at each feature was computed as the ratio between the 
maximum closest-point error of the feature after deformable 
elastic registration and the maximum closest-point errors of 
both features after rigid registration. For each patient, three 
elastic registrations were performed, first to the anterior 
surface data after which uncertainties and error were measured 
at both venous features, second to the anterior surface data 
plus portal vein feature with evaluation at the hepatic vein 
feature, and third to the anterior surface data plus hepatic vein 
feature with evaluation at the portal vein feature. In total, 12 
evaluations were obtained. The estimated distributions of error 
capacity were inferred from the average uncertainty computed 
across each feature through the conditional distributions 
𝑃 𝐸|𝑆! , 𝜃!  and 𝑃 𝐸|𝑆!, 𝜃! . In Fig 6b–c, the measured error 
capacity of each evaluated feature is shown plotted against its 
computed uncertainty and the empirical distribution of 𝑃 𝑆,𝐸  
from dataset A. Fig. 6d shows an example of the measured 
error from one evaluated feature with respect to the predicted 
error distributions conditional on its uncertainties. For the 
retrospective and prospective uncertainty metrics, the 
clinically measured error capacities were not significantly 
biased around their estimated distribution medians (p = 0.15, 
sign test), and 100% of samples fell within the 98% 
confidence intervals of the respective conditional distributions. 
Accounting for the initial magnitude of rigid error, the 
difference in measured error and median predicted TRE at the 
centroids of the vessel features was 4.6 mm RMS (3.4 ± 3.2 

 
Fig. 5.  Predicted TRE from median error capacity (top) and measured TRE (bottom) after elastic registration. (a,d) Error profiles of registration to surface data 
pattern (black). (b,e) Error profiles after data from one additional US plane is added to registration. (c,f) Error profiles with data from three US planes provided. 
The distributions of predicted remaining error can guide additional data collection to areas of poor expected performance for improving registration fidelity. 
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mm) for the retrospective uncertainty metric and 5.8 mm RMS 
(4.4 ± 3.9 mm) for the prospective uncertainty metric. These 
results suggest that the constraint uncertainty and error 
distributions established in simulated data agree with clinical 
expectation. 

IV. DISCUSSION 

A. Prospective Application 
This paper demonstrates that uncertainty in elastic 

registration is inherent when incomplete information is 
provided, and that an uncertainty metric that correlates with 
the proportion of TRE remaining after registration can be 
computed from the spatial coverage of data constraints. 
Registration uncertainty was found to depend on two crucial 
variables, firstly the distance from a target within an organ to 
the closest intraoperative constraint that most strongly informs 
its motion, and secondly the total amount of deformation 
described by the intraoperative data. These relationships 
substantiate a trend for data collection that aims to maximize 
registration performance: data should be collected as broadly 
as possible, with special focus placed near interventional 
targets and in regions of greatest organ deformation.  

However, practical constraints often make intraoperative 
data collection time intensive and encumbering to personnel. 
While sparse organ surface measurements can be obtained 
through digitization of tracked tool positions or computer 
vision, more thorough geometric measurements from 
intraoperative imaging often require manual or semi-automatic 
segmentation before becoming usable. These real-world 
limitations inspire a need for new approaches that inform and 
allow optimization of the data collection process. The entropy 

and uncertainty metrics proposed in this paper address this 
need in several ways. First, a monotonic decrease in total 
registration error over the domain is expected as entropy 
decreases. Subsequently, the summary number 𝐻! can be 
computed and monitored in real time during data collection to 
potentially reveal local saturation of data coverage that ceases 
to improve overall registration quality. Second, the 
effectiveness of elastic registration at any target of interest can 
be estimated based on a confidence interval or average value 
of predicted error capacity inferred from the pointwise 
registration uncertainty 𝑆. Third and foremost, as illustrated in 
Fig. 5, a spatial map of the predicted TRE distribution can be 
constructed to indicate expected regions of poor registration 
performance. These maps can suggest regions that require 
improvements to data coverage or qualify localization 
accuracy after registration has completed to mitigate guidance 
errors. Although registration to partial data fundamentally 
prevents exact prediction of TRE because a specific unknown 
underlying organ deformation must be selected from many 
potentially valid solutions, this paper contributes a means by 
which data sufficiency can be estimated in an average and 
distributional sense through correlation to measured results. 

B. Prediction Quality 
Only a small number of prior studies have aimed to 

experimentally validate TRE predicted by rigid registration 
theory. In [27], the difference between measured and 
estimated average TRE predicted by the method of [1] was 
found to be 1.3 ± 1.2 mm. In [28], pointwise measurements 
and estimates of TRE predicted by [5] were reported to be 3.1 
± 1.2 mm. The results reported in Table I and Table II indicate 
that the constraint entropy and uncertainty metrics proposed in 

 
Fig. 6.  Results from clinical evaluation. (a) Vascular features from three patients located at the hepatic vein (blue) and portal vein (red) were measured with 
tracked intraoperative ultrasound. (b) Joint distribution of retrospective uncertainty metric 𝑃(𝑆! ,𝐸) with overlaid clinical measurements of error capacity and 
computed uncertainty for each registered feature. (c) Joint distribution of prospective uncertainty metric 𝑃!𝑆! ,𝐸! with overlaid clinical feature measurements of 
error capacity and computed uncertainty. (d) Conditional distributions 𝑃(𝐸|𝑆, 𝜃) for both metrics, with measured error capacity from clinical data in solid red 
compared to the predicted distribution medians as vertical lines. 
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this work for nonrigid elastic registration are able to achieve a 
similar range of TRE prediction errors, with average error 
predictions equivalent to 0.9 ± 1.6 mm and pointwise error 
predictions equivalent to 3.0 ± 3.1 mm if baseline average 
rigid TRE could be identified or anticipated. Further, the 
clinical experiment achieved pointwise error predictions 
equivalent to 3.4 ± 3.2 mm with the retrospective constraint 
uncertainty metric. However, it should be stressed that 𝑆 and 
𝐻 are regressed to the proportion of uncorrected error that 
remains after elastic registration instead of to the final 
magnitude of TRE. This approach provides superior 
correlation that normalizes relative variation in initial error to 
indicate the proportionate capacity for error in the system after 
elastic registration terminates. Additionally, it must be 
recognized that because 𝑆 and 𝐻 are lower bounds as opposed 
to strict equalities, residual variance still remains within the 
regression models for error capacity. It is possible that 
incorporating tighter energetic bounds could further improve 
predictive quality. 

C. Relation to Rigid Body Registration 
In rigid body registration, fiducial registration error (FRE) 

represents the external alignment accuracy of fiducials after 
rigid registration. Although rigid theory has demonstrated that 
FRE and TRE are only related through distribution averages 
while individual samples are uncorrelated [29–31], the 
bigamma distribution that estimates pointwise error capacity 
from uncertainty in the deformable case does empirically 
model statistical deviation. However, care must be taken in 
both rigid and deformable TRE estimation to correctly 
interpret distributional predictions based on measured samples 
not as quantitiative certainty, but instead as quantitative 
tendency. 

Another relation between rigid FRE and deformation is the 
external work 𝑊 where alternatively 𝑊 = 𝜅 2 FRE!. Fig. 2 
shows that as 𝛾 → 0, a logarithmic transformation of the 
energy of deformation, i.e. the total energetic information 
content, is indeed correlated with the average deformable error 
capacity 𝐸. This transformation reveals that rigid FRE is 
proportional to the observed quantity of information carried in 
the deformation energy. Although the external energy measure 
𝑊 is a weaker approximation to the actual internal energy 𝑈!, 
both uncertainty bounds reflect a loss of energetic information 
depending on the total amount of observed deformation and a 
propagation distance 𝛿′. In the limiting case of perfect 
information that would minimize energetic uncertainty, either 
data must be collected everywhere so that 𝛿! → 0, or 
deformation must vanish as 𝑈! → 0 to leave behind a rigid 
body system. In the case of deformation and sparse 
measurement where 𝑈! > 0 and 𝛿! > 0, the amount of 
propagated constraint energy is restricted and prediction 
becomes possible from the Toupin upper bound for energy 
decay. While rigid body registration is a limiting case where 
no energy from the boundary is communicated into the 
domain, external error measurements with respect to rigid 
body motion still provide partial information about limits on 
internal error in the deforming case, which develop through 
energetic propagation and dispersal governed by the 
relationship between boundary conditions and elastic field 
conservation. 

D. Limitations 
In this work, a simulation framework is leveraged to allow 

for a comprehensive prediction of registration error throughout 
a variety of organ shapes and deformations with known 
ground truth. Although these deformations are derived from 
organ phantom displacement fields that only approximate real 
tissue behavior, this approach enables a more statistically 
sound avenue for evaluation that does not introduce sampling 
biases typically encountered when measuring sparse clinical 
targets. Additional verification with clinical data demonstrates 
feasibility and suggests that the proposed models for 
constraint uncertainty and error estimation are directly 
translatable to elastic image-to-patient registration. 

Although evaluation on alternative methods of elastic 
registration would be desirable, no openly available methods 
yet exist that are capable of registering geometric features to 
sparse intraoperative patient data. It should be noted that free 
form, spline-based, and deep learning image registration 
techniques do not necessarily produce mechanically elastic 
deformations that follow physical elastic conservation laws. 
While the proposed uncertainty measures are derived directly 
from the field equations of elasticity through the Toupin 
bound for energetic propagation of data constraints, no 
assumptions are made that restrict viability in applications 
with other purely elastic registration methods. Although some 
assumptions are made so that a general form can be readily 
employed, additional terms could be introduced to the 
uncertainty model to produce a more exact bound based on 
specialized implementation of data constraints, constraint 
distances, or material heterogeneity and anisotropy. 
Additionally, considering that error distributions were fit 
based on registration results using the linearized iterative 
boundary reconstruction method in [11], error inference for 
alternative methods may require reoptimization of parameters 
such as 𝜃 and 𝛾 to account for differences in accuracy between 
registration approaches. 

Finally, while it is beneficial that the datasets used for 
evaluation contain large variation in data coverage for 
characterizing behavior across a wide range of inputs, it is 
possible that sensitivity of registration to marginal changes in 
data content may not be easily detected if other sources of 
registration noise such as mesh discretization, material and 
linearity assumptions, and instrumentation errors are large in 
comparison to more limited datasets with smaller constraint 
variation. These factors make it possible that some 
customization could be needed on a method-to-method basis. 
However, this work provides a framework with which to 
evaluate susceptibility to elastic registration errors using 
energetic bounds on intraoperative data constraints, to 
optimize intraoperative data collection and achieve a 
mechanism for assessing intraoperative risk during image-
guided localization and navigation. 

V. CONCLUSION 
This paper presents a method for estimating the spatial 

distribution of elastic registration uncertainty using an 
information-theoretic approach to characterize the dissipation 
of boundary condition energy as it propagates from data 
constraints into the volume of an organ. Proposed metrics for 
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registration uncertainty can be rapidly computed for any linear 
elastic registration method. Regressions are fit and evaluated 
on over 6000 total simulated registrations consisting of over 
160 million individual targets to infer remaining TRE from 
registration uncertainty using a standard linear model and 
spatial covariation of variables through bivariate gamma 
statistics. The results illustrate that the proportion of TRE 
remaining after elastic registration can be accurately predicted 
from the spatial distribution of data provided to the 
registration.  

APPENDIX A: BIVARIATE GAMMA DISTRIBUTION 
 A six-parameter bivariate gamma distribution used in this 
work is extended from the five-parameter mixed effects model 
by G. C. Ghirtis [26] by adding one location parameter 𝑆! to 
allow translation. Suppose 𝑞, 𝑟, and 𝑠 are gamma-distributed 
random variables. Then the uncertainty 𝑆 and the error 
capacity 𝐸 are defined to be a weighted sum of the underlying 
random variables so that  
 

𝑆 = 𝜉 𝑞 + 𝑟 + 𝑆! (A1) 
 

𝐸 = 𝜂 𝑞 + 𝑠  (A2) 
 
where 𝜉 and 𝜂 are scale parameters of the distribution. Then 
the joint distribution provided shape parameters 𝑎, 𝑏, and 𝑐 is 
 

𝑃 𝑆,𝐸 | 𝜃 =
𝑒!

!!!!
! !!!

𝜆!𝜇!𝛤 𝑎 𝛤 𝑏 𝛤 𝑐
𝐼! (A3) 

 
where 𝜃 = 𝑆!, 𝜉, 𝜂, 𝑎, 𝑏, 𝑐 , 𝛤( ∙ ) is the gamma function, and 
 

𝐼! = 𝑞!!! 𝑆 − 𝑆! − 𝜉𝑞 !!! 𝐸 − 𝜂𝑞 !!!𝑒!𝑑𝑞
!

!

 (A4) 

 
for 𝑚 = min !!!!

!
, !
!

. 
From a set of paired observations 𝑆,𝐸 , parameter 

estimates 𝑆!, 𝜉, 𝜂, 𝑎, 𝑏, and 𝑐 can be obtained by the method 
of moments with 
 

𝑆! = min 𝑆
𝜉 = var 𝑆 − 𝑆! /mean 𝑆 − 𝑆!

𝜂 = var 𝐸 /mean 𝐸  

𝑎 =
mean 𝑆 − 𝑆!  mean 𝐸  cov 𝑆 − 𝑆!,𝐸

var 𝑆 − 𝑆!  var 𝐸

𝑏 = mean 𝑆 − 𝑆!
!
/var 𝑆 − 𝑆! − 𝑎

𝑐 = mean 𝐸 !/var 𝐸 − 𝑎

 (A7) 

 
as derived in [26]. These initial parameters are further 
optimized using the Nelder-Mead downhill simplex method by 
minimizing the squared Hellinger distance defined as, 
 

ℎ! 𝑃,𝑄 = 1 − 𝑃 𝑆,𝐸 𝑄 𝑆,𝐸
(!,!)

 (A8) 

 
where 𝑃 𝑆,𝐸  is given by (A3) and 𝑄 𝑆,𝐸  is an empirical 
probability distribution constructed from the set of paired 
observations. 

The optimized parameter estimates 𝜃 = 𝑆!, 𝜉, 𝜂, 𝑎, 𝑏, 𝑐  for 
𝑆! and 𝑆! from all samples in dataset A are: 
 
𝜃! = 2.5268, 0.5024, 20.2834, 1.3712, 2.8348, 0.9045  
𝜃! = 9.0537, 2.3825, 20.2154, 1.2164, 2.0696, 1.0654 . 

 
The quality of the distribution regressions are illustrated in 
Fig. 7, which shows close agreement in quantile-quantile plots 
between the cumulative distributions of 𝑃 𝑆,𝐸  and 𝑄 𝑆,𝐸  
for 𝑆! and 𝑆!.  
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