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ABSTRACT

This paper proposes a new method designed to track
operative microscope video images recorded during tumor
resection neurosurgery. Two steps are involved in this
method. The first uses feature vectors constructed from color
information of video images and shape information of
selected vessels to find homologous points in consecutive
frames. The second uses smoothing thin-plate splines (TPS)
to interpolate the transformation computed with the vessels
over the entire image. This approach only requires several
pairs of starting and ending points selected on segments of
vessels in the first frame of a video sequence. Then, the
proposed method tracks the identified vessels automatically,
rapidly, and robustly, even when surgical instruments
obscure parts of the image frames.

Index Terms— Brain shift, registration, tracking, vessel,
image guided neurosurgery

1. INTRODUCTION

Most image-guided surgery systems in current clinical use
only address the rigid body alignment of pre-operative
images to the patient in the operating room despite the fact
that substantial brain shift happens as soon as the dura is
opened. The problem is even more acute for cases that
involve tumor resection. A possible solution to this problem
is to use models that can predict brain shift and deformation
based on data acquired intra-operatively such as ultrasound
or video images [1][2].

Video images, attached or integrated with the operating
microscope, have been proposed to register pre- and intra-
operative data as early as 1997 by Nakajima et al. [3]. This
approach was extended by Sun et al. who used a pair of
cameras [4]. They demonstrate their ability to track the
shape of the cortical surface after the opening of the dura on
two neurosurgical cases. Skrinjar et al. used a similar
approach [5]. More recently, Delorenzo et al. have used a
pair of stereo images and they register pre-operative images
with intra-operative video images using a combination of
sulcal and intensity features [6][7]. They propose a method
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by which registration and camera calibration is performed
simultaneously. In this work, sulcal grooves were segmented
by hand. But, the work described above was carried out on
data acquired just after the opening of dura [4] or on
procedures such as epileptic surgery for which brain shift is
relatively small as compared to tumor resection surgeries
[6][7].

Over the last several years, we have begun to develop
methods that will permit real-time tacking of brain shift
[2][8]1[9] during tumor resection cases. The approach we
have proposed relies on a tracked laser range scanner. This
scanner permits both acquiring the physical coordinates of
surface points (e.g., cortical surface), and a correlated digital
image of these surfaces. Through calibration, the 3D
physical coordinates of pixels in the images are known.
Tracking the 3D displacement of the surfaces can thus be
achieved by registering the 2D images. Although acquiring
data with the laser range scanner is minimally intrusive it
cannot be done continuously. Indeed, it requires positioning
the scanner above the resection and scanning it, which takes
about one minute. The procedure we currently follow is to
acquire one scan just after the opening of the dura and one
or several scans during the procedure as the tumor is
removed. We have developed a semi-automatic method that
only requires selecting starting and ending points on vessel
segments that are visible in the images that need to be
registered. But, automating the method further is challenging
because the resection of the tumor drastically alters the
appearance of the cortical surfaces. Here, we propose to use
videos recorded through the operating microscope to track
surface deformation. The overall procedure we propose to
use is as follows: (a) acquire 3D/2D data with the laser range
scanner at time ty and t; (the time interval between t, and t,
can be large), (b) acquire a video stream through the
microscope from t,to t; and track frames within that stream,
and (c) register the first and last frame of the video stream to
the 2D images acquired with the scanner at time ty and ti,
respectively.

In this paper, we present the method we have developed
to track vessels in the video stream as well as preliminary
results we have obtained on two clinical cases.
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2. DATA ACQUISITION

In this study, we use a Zeiss OPMI®Neuro/NC4 microscope
integrated with a video camera to acquire the videos. Seven
video sequences were recorded from two patients who
underwent surgery at Vanderbilt with their informed consent
and IRB approval for a total of 14 sequences. The

approximate pixel dimension in the video images is .01 mm”.

At that resolution, cortical capillaries and small vessels can
be seen in the images and used for tracking.

3. METHOD

A number of methods can be used to register sequential
frames in video streams. In the past, we have used non-rigid
intensity-based algorithm to estimate heart motion in video
streams [10]. This approach is not adapted to our current
problem because surgical instruments appear and disappear
from the field of view. To address this problem, we have
opted for a feature-based method. This requires finding
homologous structures in sequential frames. These structures
are then used to compute transformations, which are
subsequently utilized to register the entire images. Because
the most visible structures in our video images are the blood
vessels, we have used them as features.

Our current approach requires the user to identify a
certain number of vessel segments in the first frame of the
video stream. This is done by selecting starting and ending
points on these segments. A minimum cost path finding
algorithm is then used to join the starting and ending points
and segment the vessels (more details on this approach can
be found in [2]).

3.1. Features used for tracking

Once the vessels are identified, their centerline is sampled to
produce a number of active points. In the current version of
our algorithm, we have simply taken one out of every four
points along the vessel centerlines to generate these active
points. This was found to be a good compromise between
speed and accuracy. For each of the active points, a line
perpendicular to the centerline passing through the point is
computed as shown in Figure 1.

X e

Figure 1. Active points along the curve.

Next, a feature matrix F is associated with each point.
To create this matrix, the R, G, B, and vesselness values are
extracted from the image along the perpendicular lines. The
length r of the perpendicular lines on either side of the
centerline is a free parameter. Each active point is thus
associated with the following matrix:
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R, R, .. R
G, G, .. G

F, =

B, B,, .. B
W, 3, . 3V

Vesselness, defined as in [11], is a multi-scale filter
based on the Hessian of the image that can be used to
enhance tubular structures. Pixels, which pertain to tubular-
like structures that are bright on a dark background, have a
larger vesselness value than other pixels. Here we have used
scales ranging from 1 to 8 pixels to compute vesselness.
Because the R, G, and B values are intensity features while
vesselness is a shape feature, we multiply the vesselness
value by 3 in the feature matrix to avoid weighing one type
of feature over the other.

3.2. Finding homologous points in consecutive frames

To match one frame to the other, homologous points need to
be localized. This is done as follows. First, one feature
matrix is associated with every pixel in the new frame.
Second, the active points and the centerlines found in the
previous frame are projected onto the new frame. Then the
similarity between (a) the feature matrix of every pixel in the
new frame along lines perpendicular to the centerlines and
passing through the active points and (b) the feature matrix
of the corresponding active point in the previous frame is
computed as:

c=4,d=2r+1

s =),

c=ld=1

F,(c.d)-F, (c.d), [1]

in which 7 refers to the i, point on the centerline and j is the
position on the line perpendicular to the centerline at that
point with -5, < j < s,, i.e., the computation is done in band
of width 2*s,+1. Fai is the feature matrix in the previous

frame of the i, active point and Fpij is the feature matrix in

the new frame of the j, point along the perpendicular
passing through the i,, active point.

The point b; with the feature matrix most similar to the
feature matrix of the active point a; in the previous frame is
selected as the homologous point for this active point.

Figure 2. Search for homologous points in the next frame.

This process is illustrated in Figure 2. In this figure, the
dotted line represents the projection of the centerline from
the previous frame to the current frame. The lines
perpendicular to the dotted lines are the search direction for



each active point. The continuous line represents the
position of the vessel in the new frame.

3.3. Smoothing TPS

Smoothing Thin Plate Spines (TPS) are regularized TPS,
which minimize the following functional

E(f)=min [b, - f(a)

2
+

f L Of . S
| { 7 +2(8x8y)+ 5 }dxdy,

Here, smoothing TPS are used to compute the
transformation that registers the active points {a;, ay,...,a;}
in one frame to the corresponding points {b,,b,...,b,} in the
next frame. For a fixed A there exists a unique minimizer f.
To solve this variational problem, we have used the QR
decomposition proposed by Wahba [12].

The parameter 4 is used to control the rigidity of the
deformation. When 4 — oo, the transformation is constrained
the most and is almost affine. Our experiments show that 4 =
1 is a good value to capture the deformation between
consecutive frames. When frames are missing, the value of 1
needs to be reduced to capture larger deformations that
occur over longer time intervals. Because we aim at
developing an automatic method capable of tracking videos
over long time periods, even when frames are missing, we
have implemented a scheme to automatically adjust the
rigidity of the transformation. To do this, we compute the
mean displacement D, between homologous points in
consecutive frames for each curve. If max (D) > D,, we
assume that a large shift occurred, most probably because
frames are missing. To permit larger adjustments in this
situation, the tracking range is increased from s, to 2s, and
the value of A is reduced to 0.5. The transformation
computed with the homologous points is then extrapolated
over the entire frame. The algorithm we have developed is
summarized in table 1.

Table 1. Automatic frame tracking in intra-operative videos.

Step 1. Select features in the first frame k£ = 1.
Step 2. Downsample the selected curves into active points «;
For each active point, compute Fai.

Set parameter values s, = 75, 4 =1.
Step 3. In frame k + 1, search homologous point b, for each active
point a;.
Step 4. If the maximal average shift is larger than D,=50, set A =0.5,
and s, =/50. Repeat steps 3 and then go to step 5.
Else go to step 5.
Step 5. Calculate transformation 7} that registers points a,’s to b;’s.
Step 6. Use Ty to deform the entire frame. k& = k+1.
If & is not the last frame n, go to step 2.
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4. EXPERIMENTS

Figure 3 shows several frames in one of the video sequences
we have used to test our system. In this sequence, a
relatively fast, medium amplitude motion could be observed
between frames. This is illustrated in Figure 4, which plots
the x and y coordinates of one visible landmark from frame
to frame. Vessel segments identified on the first frame are
shown in green and are tracked over 220 frames. The yellow
points designate the intersection of small vessels not used in
the registration process. As can be observed from the images,
the yellow target points are tracked accurately and
demonstrate the accuracy of our method over the entire
frame.

Frame 120

Frame 220

Figure 3. Tracking in sample frames from the video of patientl.
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Figure 4. x and y position of one visible landmark from frame to
frame shows the magnitude and frequency of movement
observed in the video sequence.

Figure 5 shows a more challenging example. Here, a
surgical instrument appears in the field of view. As can be
seen in the sequence, the method we have developed is not
affected by this instrument. Even though the vessels cannot
be tracked accurately when the instrument is visible, the



algorithm is capable of re-acquiring it as soon as the
instrument disappears. Again, the yellow dots show that the
registration is accurate over the entire frame.

Frame 220

ol
me

Frame 260 Frame 300

Figure 5. Tracking results in sample frames from the video of
patient2.

5. DISCUSSION

In this paper, we propose a method to track brain
motion in video streams. Coupled with a laser range scanner,
this will permit estimating intra-operative brain shift.
Preliminary results indicate that this method is capable of
tracking vessels even when surgical instruments obscure
parts of the images. It is relatively simple, which makes it
fast and applicable in real time (a MATLAB implementation
takes about 1sec./frame but the algorithm does not need to
be applied to every frame). We have tested the method on 14
video sequences ranging from 300 to 1000 frames and our
method was able to track the frames in 12 of these sequences.
In one of the sequences for which the algorithm did not work,
cotton pads obscured a large portion of the image for a long
period of time. In the second sequence, visible vessels were
very small and the algorithm lost some of them. We are
currently acquiring a series of long video sequences and are
in the process of validating our algorithm on these.
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