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ABSTRACT 
 
Using computational models, images acquired pre-operatively can be updated to account for intraoperative brain shift in 
image-guided surgical (IGS) systems. An optically tracked textured laser range scanner (tLRS) furnishes the 3D 
coordinates of cortical surface points (3D point clouds) over the surgical field of view and provides a correspondence 15 
between these and the pre-operative MR image. However, integration of the acquired tLRS data into a clinically 
acceptable system compatible throughout the clinical workflow of tumor resection has been challenging. This is because 
acquiring the tLRS data requires moving the scanner in and out of the surgical field, thus limiting the number of 
acquisitions. Large differences between acquisitions caused by tumor resection and tissue manipulation make it difficult 
to establish correspondence and estimate brain motion. An alternative to the tLRS is to use temporally dense feature-rich 20 
stereo surgical video data provided by the operating microscope. This allows for quick digitization of the cortical surface 
in 3D and can help continuously update the IGS system. In order to understand the tradeoffs between these approaches 
as input to an IGS system, we compare the accuracy of the 3D point clouds extracted from the stereo video system of the 
surgical microscope and the tLRS for phantom objects in this paper. We show that the stereovision system of the 
surgical microscope achieves accuracy in the 0.46-1.5mm range on our phantom objects and is a viable alternative to the 25 
tLRS for neurosurgical applications. 
 
Keywords: image-guided neurosurgery, stereovision, laser range scanner, intraoperative imaging, surgical microscope, 
accuracy, brain shift 
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1. INTRODUCTION 
In brain tumor surgery, brain tissue deformations, commonly referred to as brain shift or cortical 
displacements/deformations, can produce inaccuracies of 1-2.5cm in the preoperative plan and within image-guided 
surgical (IGS) systems [1-2]. Furthermore, the changing resection cavity and tumor removal compound the inaccuracies 35 
caused by brain shift. These issues hinder the process of establishing accurate correspondence between the physical state 
of the patient and their images during neurosurgery. This causes intraoperative real-time inaccuracies in IGS systems. 
Several forms of intraoperative imaging have been used to account for intraoperative inaccuracies to improve IGS 
systems in neurosurgery. These intraoperative modalities include magnetic resonance imaging, ultrasound, laser range 
scanner and stereovision systems. In this paper, we primarily focus on the textured laser range scanner (tLRS) and stereo 40 
camera systems. 

The optically tracked tLRS can provide intraoperative digitized cortical surfaces at various stages (post-duratomy, mid-
resection, and post-resection) of the neurosurgery. These digitized surfaces or point clouds have sub-millimetric 
accuracy. These point clouds have been used in accounting for brain deformations and they have been used for driving a 
patient-specific biomechanical brain model to update the IGS system [3-7]. Furthermore, the tLRS holds color 45 
information for each digitized point originating from the digital image of the field of view. This attribute has been used 
to develop a methodology for matching vessels preoperatively and postoperatively on the obtained surfaces. The 
deformation measurements between the two surfaces states have been used to drive our guidance update pipeline for the 
IGS system [8]. While the tLRS provides valuable intraoperative information, the measurements are temporally too 
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sparse for computing intermediate updates for all cases. Indeed, establishing correspondences between digitized surfaces 50 
extracted at different time points in the surgical procedure can be difficult especially in the presence of large tumor 
resections. These conditions induce substantial cortical displacement and the consistent visibility of salient features such 
as vessels may not be available for correspondence. In addition, the positioning and acquisition of intraoperative data 
using the tLRS takes on the order of 1 minute, which can be disruptive to the surgical workflow. Along with the tLRS, 
monocular video from the surgical microscope has been probed as a possible solution for acquiring temporally dense 55 
data [9, 25]. This approach does not find 3D coordinates of points in the surgical field of view and is effective for short 
continuous sequences only. 

A surgical microscope is routinely used to perform brain tumor surgery and it can be used as a continuous intraoperative 
data source by augmenting the microscope with two cameras or a stereo camera system. Equipped with stereovision 
concepts of calibration and reconstruction from the field of computer vision, video streams from the stereo camera 60 
system can be used to produce a textured point cloud at every pair of frames of the video stream. As a result, temporally 
dense 3D measurements of the cortical surface could be available for driving the updates to the IGS system. Early work 
involved the manual initialization of the seed points in the left and right camera images acquired by the stereo camera 
system to extract a point cloud through surface growing [10-12]. Two different stereovision systems, both attached 
externally to the surgical microscope, have been developed in [13-14] and [15]. 65 

The stereo camera system designed for brain shift compensation in [13-14] has a few disadvantages. The cameras are 
attached externally to the microscope optics and the assistant ocular arm is rendered unusable when the cameras are 
powered on. Often, the assistant ocular arm of the microscope is used by the neurosurgeon as a teaching tool. This limits 
the acquisition of temporally dense cortical surface measurements, which is the key purpose of using the surgical 
microscope. An update of the system in [13-14] was made in [16-17], where the external stereo camera system is able to 70 
determine 3D coordinates for 1000 uniformly spaced points on the stereo-pair images. This is followed by an 
interpolation stage, which helps in establishing the 3D surface of the surgical field of view (FOV). This process 
approximately takes 40 seconds per stereo-pair image frames, and yields an average error of 1.2mm. The external stereo 
camera system developed as part of [15] used the interesting approach of combining intensity information in a game 
theoretic approach to perform stereo camera calibration and reconstruction of 3D points from the FOV. However, this 75 
nontraditional approach makes it difficult to ascertain its accuracy for the produced 3D point clouds against traditional 
computer vision methods developed for stereovision. In addition, the system in [15] was tested on patients undergoing 
neocortical epilepsy surgery. This surgical procedure requires opening of the dura for the placement of intracranial 
electrodes on the cortical surface but requires no resection. The method in [15] also relies on manually delineated sulcal 
features on the cortical surface for extracting 3D surfaces or point clouds. This limitation is compounded by the runtime 80 
execution of the algorithm, which is on the order of 20 minutes.  

In this paper, we seek to eliminate the workflow disadvantages and design issues innate to the developed intraoperative 
stereovision systems in [13-14, 16-17] and [15]. The proposed stereovision platform will be internal to the operating 
surgical microscope and will provide 3D digitization of points in the cameras’ FOV in near real-time. Since the cameras 
are internal, the modifications and disruptions to the surgical workflow are minimal. The tLRS has been reliably used for 85 
updating the IGS system but lacks dense temporal resolution. For the stereovision intraoperative imaging system to be a 
viable alternative, an accuracy comparison between the points digitized by both systems is essential. The 3D point 
clouds extracted on realistic CAD phantoms of known dimensions from the tLRS and stereovision system will form the 
basis of this comparison. The main objective of this paper is to understand the tradeoffs between these two intraoperative 
approaches as input to an IGS system. Knowing the accuracy of the stereovision system can aid in the exploration of 90 
other real-time surgical guidance approaches to improve the utility of IGS systems. These include real-time surgical 
instrument tracking, cortical surface tracking, and image-to-physical registration within the surgical microscope 
environment. To the best of our knowledge, 3D digitized points from an internal stereovision platform native to the 
surgical microscope has not been compared against a laser range scanner for neurosurgical applications. 

 95 

2. DATA ACQUISITION 

The tLRS (Pathfinder Therapeutics, Inc., Nashville TN, USA) is capable of generating 500,000 points with a resolution 
of 0.15-0.2mm at the approximate range used during neurosurgery. The tLRS used in carrying out this comparison study 
is shown in Figure 1. These digitized points are of the form (x, y, z, rgb) and form a colored point cloud. This tLRS has 
been used at Vanderbilt University Medical Center (VUMC) to acquire intraoperative cortical surfaces to drive the IGS 100 
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