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ABSTRACT  

Clinical observations have long suggested that cancer progression is accompanied by extracellular matrix 
remodeling and concomitant increases in mechanical stiffness. Due to the strong association of mechanics and tumor 
progression, there has been considerable interest in incorporating methodologies to diagnose cancer through the use of 
mechanical stiffness imaging biomarkers, resulting in commercially available US and MR elastography products. 
Extension of this approach towards monitoring longitudinal changes in mechanical properties along a course of cancer 
therapy may provide means for assessing early response to therapy; therefore a systematic study of the elasticity 
biomarker in characterizing cancer for therapeutic monitoring is needed. The elastography method we employ, modality 
independent elastography (MIE), can be described as a model-based inverse image-analysis method that reconstructs 
elasticity images using two acquired image volumes in a pre/post state of compression. In this work, we present 
preliminary data towards validation and reproducibility assessment of our elasticity biomarker in a pre-clinical model of 
breast cancer. The goal of this study is to determine the accuracy and reproducibility of MIE and therefore the magnitude 
of changes required to determine statistical differences during therapy. Our preliminary results suggest that the MIE 
method can accurately and robustly assess mechanical properties in a pre-clinical system and provide considerable 
enthusiasm for the extension of this technique towards monitoring therapy-induced changes to breast cancer tissue 
architecture. 
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1. INTRODUCTION  

We have previously introduced a novel elastographic imaging approach capable of transcending murine-to-
human length scales while retaining similar loading environments [1]. The method, modality independent elastography 
(MIE), can be described as a highly translatable model-based inverse image-analysis method that reconstructs elasticity 
images using two acquired image volumes in a pre/post state of compression. The MIE method represents a novel 
innovative elastography technique which is automated, simple, amenable to clinical workflow, and able to be 
implemented consistently across length scales from murine to human. The underlying hypothesis of this work is that 
elastographic imaging can accurately and reliably monitor therapy-induced changes to breast cancer tissue architecture 
and as a result become an important therapeutic design tool and prognosticator.  

Well-known empirical evidence supports distinct links between the disruption of the normal structural 
architecture and load-bearing nature of tissue and uncontrolled growth in cancer [2-6]. Elucidation of the 
mechanobiological basis supporting the association between tumor growth and mechanics continues, with mechanical 
behavior of the extracellular matrix having been shown to affect growth, differentiation, and motility [7-11]. A strong 
correlation exists between tissue stiffness and cancer aggressiveness. For example, it has been conclusively 
demonstrated that accumulation of mechanical stress through increased substrate matrix stiffness inhibits the growth and 
motility of cancer cells. This response occurs in an aggressiveness dependant manner, with more aggressive cancer cells 
invading extracellular matrix more effectively than their less aggressive counterparts [12-14]. Processes associated with 
invadopodia formation, cell contractility, and focal adhesions have been linked to this aggressive behavior, which is 
affected by the mechanical nature of the extracellular matrix [15, 16]. 
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The emerging elastographic imaging method that we employ shows potential to accurately and reliably monitor 
tumor progression and therapy-induced changes to breast cancer tissue architecture in both the pre-clinical and clinical 
settings, and as a result could possibly become an important therapeutic design tool and indicator of response to therapy. 
Therefore, reliable assessments of the errors associated with this method are critical. In this work, we present 
preliminary data towards a systematic study of the modality independent elastography (MIE) biomarker towards 
characterizing cancer mechanical properties for therapeutic monitoring. The goal of this study is to determine the 
accuracy and reproducibility of MIE and therefore the magnitude of changes required to declare statistical differences 
during therapy. Preliminary results suggest that the MIE method can accurately and robustly assess mechanical 
properties in a pre-clinical cancer system and provides considerable enthusiasm for the extension of this technique 
towards monitoring therapy-induced changes to breast cancer tissue architecture and modulation of the tumor 
progression/extracellular matrix mechanobiology axis. 

2. METHODS 

2.1 MIE approach 

The MIE method is an automated image analysis technique that analyzes two anatomical image volumes under 
differing states of application of mechanical compression. A demons non-rigid registration framework [17] is used to 
register the post-compression image volume to the pre-compression image volume. Boundary conditions used to drive 
the biomechanical finite element model during MIE reconstruction are then automatically extracted from the non-rigid 
registration deformation field.  Biomechanical computer models under a Hookean linear elastic assumption are then used 
to iteratively compress the pre-compression image volume until it matches the acquired post-compression image volume, 
using an image volume zone-based image correlation coefficient metric. Mechanical property distributions are iteratively 
reconstructed through the use of a conjugate gradient method with a Polak-Ribière update [18] and an adjoint-based 
gradient evaluation [19]. Following reconstruction, the output metric is a spatial distribution of mechanical properties. 
Further details regarding the MIE computational methodology can be found in previous work by our group [20, 21].  

Here, MIE is used in a complementary role to traditional magnetic resonance imaging, therefore a priori MR 
signal intensity information from the T2 weighted anatomical MR image volume is used to group tissues of interest for 
property reconstruction. A k-means clustering algorithm with the application of a Markov random field spatial constraint 
is used to classify separate tissues of interest based on MR signal intensity information. As the Markov random field 
models the spatial interactions within the image volume, this imposes spatial continuity to the clustering step and 
produces more robust results than traditional k-means clustering alone. Following tissue classification, regions for 
subsequent mechanical property reconstruction are identified through geometrical sub-clustering of the identified tissue 
classes, where the number and size of geometrical sub-clusters (regions) defines the reconstruction resolution. Figure 1 
shows the output of the individual processing steps for a murine MIE dataset, from anatomical MR images to 
reconstructed elasticity ratios. 

Similar to the work by McGarry et al. [22], here, prior information is used as a ‘soft’ constraint, with a 
weighted penalty function applied to the calculated gradient, which is used to drive iterative updates to the spatial 
elasticity during reconstruction, that enforces similar mechanical properties in regions belonging to similar tissue classes. 
This constraint acts to penalize large deviations within a tissue type via identified spatial priors. This soft prior constraint 
is enforced using Eqs. 1 and 2: 
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provides guidance on the magnitude of changes required to declare significant statistical differences in tissue elasticity 
assessed by MIE during therapy. Future work will involve a robust statistical analysis of the repeatability index through 
analysis of more quantitative reproducibility assessment data. 
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