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             NEXT-GEN MODELS

At the turn of the 20th century, meteorol-
ogy was in its infancy, and weather forecasts 
were based on historical trends, experience, 
intuition, and guesswork. It was not until 
the development of realistic mathematical 
models of atmospheric phenomena, as well 
as advances in computation, that accurate 
weather prediction became a reality. At the 
onset of the 21st century, our approach to 
“tumor-specif c treatment” of cancer and 
personalized patient prognosis resembles 
the early days of weather forecasting. How-
ever, with proper deployment of noninva-
sive imaging and appropriate investment 
in the development and validation of math-
ematical models, momentous advances in 
forecasting an individual patient’s treatment 
outcomes are within reach. To make this vi-
sion a reality requires realistic mathematical 
models of tumor growth initialized and con-
strained by patient-specif c data.

Although much progress has been made 
building mathematical models of tumor 
growth, they have not been centered on 
clinical data. Consequently, these models 
have had limited impact on clinical practice. 

It is not enough to test the ef ect of various 
assumptions mathematically (in silico); if 
they are to be of clinical value, these models 
must make predictions based on data that 
can be readily measured in people and that 
can be readily tested (falsif ed) in the clinic.

In this Perspective, we argue that the de-
velopment of clinically relevant mathemati-
cal models of tumor growth and treatment 
response should meet a fundamental pre-
requisite: the ability to incorporate quantita-
tive, spatiotemporal data from the individu-
al patient. Advances in noninvasive imaging 
technologies make this possible. Such data 
integration into models will catalyze accep-
tance of tumor-model–based forecasting 
into clinical practice.

A MODEL IMPASSE

T ere is an extensive literature on the math-
ematical modeling of tumor growth and 
treatment response. Proposed models range 
in complexity from exponential growth of 
an avascular tumor to complex equations 
describing molecules that promote inva-
sion and angiogenesis. Although these ap-
proaches have provided insights into tumor 
biology (1–4), progress in this f eld has been 
somewhat overlooked by cancer biologists 
and clinical practitioners (5). Furthermore, 
modelers are frequently not involved in ex-
perimental design or data interpretation (6). 
In short, the measure-model feedback loop 
that is vital for model ref nement and trac-
tion has not been closed.

We suspect that a reason for the lack of 
interactions between modelers and experi-
mentalists is the way that models are con-
structed, studied, and presented. Brief y, pa-

pers reporting on mathematical modeling of 
tumors contain a theoretical section in which 
the model is described. Immediately af er 
this exposition, there is frequently a table list-
ing the model parameters (sometimes doz-
ens) and how parameter values are assigned. 
With these values assigned, the papers then 
illustrate how model simulations evolve in 
time and how various perturbations to the 
parameters lead to distinct outcomes. In 
principle, the structure of these papers is cor-
rect and should produce powerful insights 
into tumor biology. In practice, there are (at 
least) two translational weaknesses: (i) model 
parameter values are constrained from pub-
lished literature, of en from dif erent bio-
logical systems; and (ii) model predictions 
depend sensitively on these parameters, yet 
they are frequently unable to be measured in 
an actual patient. T ese limitations dampen 
enthusiasm from both the cancer biology and 
oncology communities.

T e impasse in the application of math-
ematical modeling to cancer therapy may 
be overcome by alternative frameworks. For 
example, certain patient-specif c, imaging-
based measurements obtained before and 
during therapy could be used to initialize, 
constrain, and update models of tumor 
growth. T e model predictions could then 
be directly compared with clinical outcomes 
iteratively and the patient-specif c model 
ref ned and adjusted. Rigorous testing and 
subsequent adoption of this approach will 
require greater communication between 
imaging scientists, modelers, cancer biolo-
gists, and oncologists and will be hastened 
by the recent advances in both the quality 
and quantity of data available from emerg-
ing medical imaging techniques.

QUANTITATIVE IMAGING

T ere are several quantitative, noninvasive 
imaging methods that are now capable of 
reporting on biologically relevant, comple-
mentary tumor variables or parameters. 
Magnetic resonance imaging (MRI) and 
positron emission tomography (PET) have 
matured to the point where they of er 
patient-specif c measures of tumor status 
at the physiological, cellular, and molecular 
levels. T e methods described below have 
independently proven clinical utility. It is 
therefore natural to explore their integration 
into computational models.

Tumor-cell density. T e microscopic, 
thermally induced behavior of molecules 
moving in a random pattern is referred to 
as self-dif usion or Brownian motion. T e 
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P E R S P E C T I V E

 Current mathematical models of tumor growth are limited in their clinical application be-
cause they require input data that are nearly impossible to obtain with suf  cient spatial 
resolution in patients even at a single time point—for example, extent of vascularization, 
immune inf ltrate, ratio of tumor-to-normal cells, or extracellular matrix status. Here 
we propose the use of emerging, quantitative tumor imaging methods to initialize a 
new generation of predictive models. In the near future, these models could be able to 
forecast clinical outputs, such as overall response to treatment and time to progression, 
which will provide opportunities for guided intervention and improved patient care.
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rate of dif usion in cellular tissues is de-
scribed by means of an apparent dif usion 
coef  cient (ADC), which largely depends 
on the number and separation of barriers 
that a dif using water molecule encounters. 
Dif usion-weighted MRI (DW-MRI) meth-
ods have been developed to map the ADC 
and have been shown to correlate inversely 
with tissue cellularity (7, 8). ADC measure-
ments can report on the early ef ects of cy-
totoxic therapies and have therefore been 
widely deployed in clinical trials as a surro-
gate biomarker of treatment response.

Tumor vascular characteristics. In dy-
namic contrast-enhanced MRI (DCE-
MRI), images are collected before, during, 
and af er a contrast agent is injected into a 
peripheral vein. T e signal can be analyzed 
over time with a pharmacokinetic model 

so as to estimate physiological parameters 
related to vessel perfusion and permeabil-
ity, the extravascular volume fractions, and 
the plasma volume. DCE-MRI methods are 
routinely used in clinical trials exploring 
the ef ects of antiangiogenic therapies (9).

Tumor glucose metabolism. T e PET 
radiotracer most frequently used in clini-
cal practice is f uorodeoxyglucose (FDG). 
As a glucose analog, FDG is taken up by 
tumor cells and phosphorylated to FDG-
6-phosphate. However, FDG-6-phosphate 
is not metabolized further and therefore 
remains trapped intracellularly. PET quan-
tif cation of FDG accumulation in tumors 
is a method of assessing and, in some cases, 
predicting therapeutic response by provid-
ing a surrogate for the metabolic activity of 
the tumor (10).

Tumor oxygen status. It is well known 
that hypoxia can induce changes in gene ex-
pression in tumor cells that lead to a more 
aggressive phenotype, including stimulation 
of angiogenesis, inhibition of apoptosis, and 
cell invasion. Clinical detection of hypoxia 
became available with the introduction of 
radiotracers, such as f uoromisonidazole 
and copper diacetyl-bis(N4-methylthio-
semicarbazone), as well as blood oxygen 
level–dependent MRI methods (11). To 
date, the most common uses for hypoxia 
imaging are for selecting patients who may 
benef t from therapies designed to over-
come hypoxia and for longitudinally assess-
ing reduction in hypoxia (12).

T ese are but a few examples of quantita-
tive, dynamic tumor variables or parameters 
that are currently obtained in the clinic with 

Fig. 1. Modeling cell number. ADC maps of a tumor can be superimposed on anatomical T1-weighted MR images obtained at three time points dur-
ing neoadjuvant chemotherapy. These data are fi rst transformed to an estimation of cell number. So transformed, these data enable the calculation of 
the associated proliferation (k > 0) or death (k < 0) rate. The carrying capacity θ is estimated as the total number of tumor cells that fi t within a voxel. 
Then by using the tumor cellularity measured at the second time point, the proliferation/death rate, and the logistic model of growth, one can predict 
future cellularity, which enables explicit comparison with experimental data (scatter plot). 
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noninvasive imaging. As multimodal im-
aging of tumors continues to develop and 
combined PET/MRI scanners come online 
in the clinic, availability of tumor data from 
patients is bound to expand at a fast pace. 
Yet, harnessing the predictive power of these 
data remains a challenge. T e paradigm 
described in this Perspective represents a 
realistic approach to optimizing the use of 
imaging data for predicting the response of 
tumors on an individual patient basis.

INTEGRATING IMAGING AND 

MATHEMATICAL MODELS

T ere is preliminary evidence that mathe-
matical models of tumor growth, if conceived 
stringently with translational application as a 
goal, can be driven by data from noninvasive, 
patient-specif c imaging studies.

Step 1: Cell number. Figure 1 provides an 
example of how clinically acquired, quan-
titative MRI data of an invasive ductal car-
cinoma can be incorporated into a simple 
mathematical model of tumor growth. T e 
top row of three images depicts ADC maps 
of a tumor locus superimposed on anatomi-
cal T1-weighted images obtained at three 
time points: before, af er one cycle, and at 
the conclusion of chemotherapy. T ese data 
can be transformed to an estimation of cell 
number on a voxel-by-voxel basis. T en, the 
change in tumor cellularity from the pre-
treatment to the post-one-cycle treatment is 
used to calculate proliferation or death rate 
(depending on whether this value is positive 
or negative, respectively) for each voxel via 
the logistic model of tumor growth. In both 
equations in Fig. 1, the carrying capacity θ is 

the total number of tumor cells that f t with-
in a given section of tissue. In imaging, the 
relevant length scale is the voxel, which has 
a well-def ned size; thus, assuming a reason-
able (measurable) mean tumor cell size f xes 
θ. Using the tumor cellularity (N) measured 
af er one therapeutic time point in conjunc-
tion with the proliferation/death rate (k), 
one can predict cellularity at a future time 
point—and this predicted map can then be 
directly compared with experimental data 
(13, 14).

Step 2: Incorporating cell motility. To im-
prove the previous example of imaging cor-
relating with tumor cell number, one could 
incorporate the movement of tumor cells. 
A natural extension would include the ran-
dom dif usion of tumor cells as a function of 
both space and time—an approach studied 

Fig. 2. Modeling cell number and biomechanics. Similar to Fig. 1, the top row of three images depicts color-coded ADC maps of a tumor super-
imposed on (fat-saturated) T1-weighted MR images obtained at three time points during chemotherapy. Again, the initial and intermediate data are 
transformed to an estimation of cell number that, in conjunction with a biomechanical model (set of equations), is used to estimate the proliferation 
k. Using the estimated k and the biomechanical model, one can make predictions related to future cellularity, which can then be compared directly 
with experimental data (in this case, the acquired third time point acts as a comparator).
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by Wang et al. (15) in human glioma. T ey 
used a reaction-dif usion partial dif erential 
equation that described the rate of change in 
density of glioma cancer cells as the sum of a 
motility term (random dif usion) and a pro-
liferation term (similar to the logistic model 
of Fig. 1). By analyzing serial MRI scans, the 
net proliferation and invasion rates can be 
estimated, and these rates can then be used 
to grow in silico an “untreated virtual con-
trol,” which can be compared directly with 
patient data. T e authors showed that only 
patients with a low velocity of radial expan-
sion or a low net proliferation rate survive 
longer than the median prognosis. Extend-
ing this approach for low-grade gliomas, 
Jbabdi et al. used dif usion tensor imaging 
(DTI) to allow for anisotropic movement of 
tumor cells along f ber tracts, which yielded 
improved shape and kinetic evolution of the 
brain tumors (16).

Step 3: Adding in mechanics. Tumor cell 
movement can be mechanically coupled 
to the surrounding tissue structure (17). 
As shown in Fig. 2, we express the rate of 
change of tumor cell number (NTC) at a 
particular location (x) and time (t) as the 
sum of random cell dif usion and logistic 
growth. Cell dif usion (D) is also linked to 
the nascent mechanical stress environment 
as described by the von Mises stress (σvm) 
and to an empirical coupling constant (γ). 

T e mechanical stress tensor (σ) in Fig. 2 is 
inf uenced by an expansive force originat-
ing from mass changes associated with the 
proliferation of tumor cells and an empiri-
cal coupling constant (λ). Prediction of tu-
mor cellularity at the conclusion of therapy 
is analogous to that presented in Fig. 1. 
Namely, the ADC maps obtained at three 
time points are transformed to estimates of 
cell number. Using cellularity data from the 
f rst two time points and a model, the pro-
liferation parameter (k) can be estimated. 
As in Fig. 1, these initial cell number maps, 
the model, and the extracted proliferation 
parameter are then used to predict the cell 
number and distribution found in a hu-
man breast cancer patient at the conclusion 
of therapy and compared with experimen-
tal data. A similar approach was of ered by 
Clatz et al. (18), who simulated the mechan-
ical interaction of an invading glioblastoma 
into healthy brain parenchyma, albeit with-
out considering the mechanotransductive 
ef ects on tumor growth mentioned here.

MULTISCALE IMAGING = MULTISCALE 
MODELING
Multiscale data from combined PET-MRI 
could be used to initialize mathematical 
models incorporating many realistic tumor 
properties. A simulation of one such ex-
ample is presented in Fig. 3: a coupled set 

of partial dif erential equations describing 
tumor cell proliferation, angiogenesis, and 
glucose consumption. T is system, although 
currently untested, closely resembles previ-
ous ef orts (19–21) and has been recast to 
accept data from DCE-MRI, DW-MRI, and 
FDG-PET studies to initialize the model and 
lead to patient-realistic outcomes. Equa-
tions describing the rate of change of tumor 
cells, endothelial cells, and glucose at point 
x and time t take values of the above imag-
ing data to initialize the model in order to 
predict distributions of these same param-
eters at future time points, which can then 
be directly compared with experimental 
data. T e dif usion of tumor cells (DTC) can 
be estimated by using sequential anatomical 
MRI data (15). Similarly, sequential blood 
volume maps available from DCE-MRI can 
potentially inform the dif usion of endothe-
lial cells (DEC). Once an estimate is obtained 
for DEC, chemotaxis of ECs (χEC) can be es-
timated as the value that results in a local 
blood volume increase equal to what is seen 
in vivo. MRI data can provide an estimate of 
NTC and θ. By adding a third imaging scan, 
the equation describing rate of change of 
tumor cells (Fig. 3) can be f t to sequential 
DW-MRI data in order to estimate kp,TC and 
kd,TC, which are the proliferation and death 
rates of the tumor cells, respectively. Che-
motaxis of tumor cells (χTC) can be estimat-

Fig. 3. Multimodal outputs to describe tumor and vessel dynamics. Multimodal (PET and MRI), multiparametric imaging data (estimates of glucose 
utilization, tumor cellularity, vascularity, perfusion, and tissue volume fractions) could be used to initialize and constrain a coupled set of partial-
diff erential equations describing tumor cell proliferation, angiogenesis, and glucose utilization. The far left column represents the type of data that 
would be available from routine DW-MRI (k, NTC), DCE-MRI (NEC), and FDG-PET imaging (CG). These data can then be input into the equations provided 
to predict distributions of these parameters at future time points (intermediate and fi nal outcomes). As with Figs. 1 and 2, the model outcomes can be 
directly compared with experimental data.
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ed to provide an equal tumor cell migratory/
chemotaxic response to blood volume gra-
dients as compared with literature studies of 
migratory/chemotaxic response to oxygen 
gradients. 

T e dif usion value of glucose (DG) is a 
physical constant and can be safely assumed 
from literature values. Glucose uptake by 
tumor cells (TG) can be estimated by the 
product of the number of tumor cells and 
the glucose consumption rate per tumor 
cell. Although the number of tumor cells 
can be estimated from ADC data (Fig. 1), 
glucose consumption is more dif  cult to 
capture and may have to be assigned an em-
pirical value. T e delivery of glucose to tu-
mor cells (FG) can be written as the product 
of glucose delivery to a given voxel, glucose 
in the blood, and the extraction fraction of 
glucose. Delivery is estimated from DCE-
MRI data, blood glucose concentration (CG) 
is readily accessible by a blood draw, and 
the extraction fraction can be estimated by 
the dif erence between the concentration of 
FDG in the voxel and blood glucose levels.

LINKING THE SCALES

If we take the macroscopic-scale structure 
of the tumor to be its volume, surface area, 
and gross morphological features, then the 
mesoscopic-scale structure can be taken to 
be tumor cellularity (or cell density) and 
vascularity (Fig. 1). At f ner scales, we en-
counter cellular properties such as glucose 
metabolism, proliferation, motility, or stress 
response (Figs. 2 and 3). Current, clinically 
available medical imaging methods report 
on all of these scales. [T e Cancer Imag-
ing Archive (www.cancerimagingarchive.
net) provides a range of imaging data types 
available.] Although routinely available in 
vivo medical imaging approaches do not of-
fer adequate spatial or temporal resolution 
at f ner scales (such as the gene scale) to 
completely link all scales, it may be possible 
to link data accessible from imaging to the 
genomic and histopathology data available 
from, for example, biopsies (22). In short, 
every ef ort should be made to incorporate 
all available patient-specif c data to more 
completely constrain a predictive model.

T e models presented above are in-
formed by recent work in cancer cell biol-
ogy, but ef orts are required to ensure mea-
surements and associated predictions are 
consistent with the growing understand-

ing at the microscopic level. We do not yet 
have a thorough understanding of how the 
biological properties not measured through 
imaging af ect tumor modeling. Indeed, 
there are many ongoing ef orts to under-
stand the physical and biological principles 
at the microscopic scales, perhaps most 
notably by the members of the National 
Cancer Institute–National Science Foun-
dation Physical Sciences in Oncology pro-
gram (23). However, phenomenological, 
macroscopic models have been successful in 
other disciplines in both managing practi-
cal applications and providing lampposts for 
microscopic theories. T e methodology we 
suggest could bring mathematical modeling 
to immediate clinical relevance through the 
use of phenomenological models that pre-
dict patient outcome from currently avail-
able patient measurables and thus can be 
used to improve patient care.

REFERENCES AND NOTES
 1. L. Norton, R. Simon, Growth curve of an experimental 

solid tumor following radiotherapy. J. Natl. Cancer Inst. 

58, 1735–1741 (1977). 

 2. M. Chaplain, A. Anderson, Mathematical modelling of 

tumour-induced angiogenesis: Network growth and 

structure. Cancer Treat. Res. 117, 51–75 (2004).  

 3. A. R. Anderson, M. Hassanein, K. M. Branch, J. Lu, N. A. 

Lobdell, J. Maier, D. Basanta, B. Weidow, A. Narasanna, 

C. L. Arteaga, A. B. Reynolds, V. Quaranta, L. Estrada, A. 

M. Weaver, Microenvironmental independence associ-

ated with tumor progression. Cancer Res. 69, 8797–8806 

(2009).  

 4. J. Chmielecki, J. Foo, G. R. Oxnard, K. Hutchinson, K. 

Ohashi, R. Somwar, L. Wang, K. R. Amato, M. Arcila, M. 

L. Sos, N. D. Socci, A. Viale, E. de Stanchina, M. S. Gins-

berg, R. K. Thomas, M. G. Kris, A. Inoue, M. Ladanyi, V. A. 

Miller, F. Michor, W. Pao, Optimization of dosing for EGFR-

mutant non-small cell lung cancer with evolutionary 

cancer modeling. Sci. Transl. Med. 3, 90ra59 (2011).  

 5. A. R. A. Anderson, V. Quaranta, Integrative mathematical 

oncology. Nat. Rev. Cancer 8, 227–234 (2008).  

 6. H. M. Byrne, Dissecting cancer through mathematics: 

From the cell to the animal model. Nat. Rev. Cancer 10, 

221–230 (2010).  

 7. A. W. Anderson, J. Xie, J. Pizzonia, R. A. Bronen, D. D. Spen-

cer, J. C. Gore, Eff ects of cell volume fraction changes on 

apparent diff usion in human cells. Magn. Reson. Imaging 

18, 689–695 (2000).  

 8. A. R. Padhani, G. Liu, D. M. Koh, T. L. Chenevert, H. C. 

Thoeny, T. Takahara, A. Dzik-Jurasz, B. D. Ross, M. Van 

Cauteren, D. Collins, D. A. Hammoud, G. J. Rustin, B. Taou-

li, P. L. Choyke, Diff usion-weighted magnetic resonance 

imaging as a cancer biomarker: Consensus and recom-

mendations. Neoplasia 11, 102–125 (2009). 

 9. J. P. O’Connor, A. Jackson, G. J. Parker, C. Roberts, G. C. 

Jayson, Dynamic contrast-enhanced MRI in clinical trials 

of antivascular therapies. Nat. Rev. Clin. Oncol. 9, 167–177 

(2012).  

 10. R. L. Wahl, H. Jacene, Y. Kasamon, M. A. Lodge, From 

RECIST to PERCIST: Evolving considerations for PET re-

sponse criteria in solid tumors. J. Nucl. Med. 50 (suppl. 1), 

122S–150S (2009).  

 11. A. R. Padhani, K. A. Krohn, J. S. Lewis, M. Alber, Imaging 

oxygenation of human tumours. Eur. Radiol. 17, 861–872 

(2007).  

 12. K. A. Krohn, J. M. Link, R. P. Mason, Molecular imaging of 

hypoxia. J. Nucl. Med. 49 (suppl. 2), 129S–148S (2008).  

 13. N. C. Atuegwu, D. C. Colvin, M. E. Loveless, L. Xu, J. C. 

Gore, T. E. Yankeelov, Incorporation of diff usion-weight-

ed magnetic resonance imaging data into a simple 

mathematical model of tumor growth. Phys. Med. Biol. 

57, 225–240 (2012).  

 14. B. M. Ellingson, P. S. LaViolette, S. D. Rand, M. G. Malkin, J. 

M. Connelly, W. M. Mueller, R. W. Prost, K. M. Schmainda, 

Spatially quantifying microscopic tumor invasion and 

proliferation using a voxel-wise solution to a glioma 

growth model and serial diff usion MRI. Magn. Reson. 

Med. 65, 1131–1143 (2011).  

 15. C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, 

K. Jusenius, J. M. Wardlaw, T. Cloughesy, A. M. Spence, R. 

Rockne, E. C. Alvord Jr., K. R. Swanson, Prognostic signifi -

cance of growth kinetics in newly diagnosed glioblasto-

mas revealed by combining serial imaging with a novel 

biomathematical model. Cancer Res. 69, 9133–9140 

(2009).  

 16. S. Jbabdi, E. Mandonnet, H. Duff au, L. Capelle, K. R. Swan-

son, M. Pélégrini-Issac, R. Guillevin, H. Benali, Simulation 

of anisotropic growth of low-grade gliomas using dif-

fusion tensor imaging. Magn. Reson. Med. 54, 616–624 

(2005).  

 17. I. Garg, M. I. Miga, Preliminary investigation of the inhibi-

tory eff ects of mechanical stress in tumor growth, SPIE 

Medical Imaging 2008: Visualization, Image-Guided 

Procedures, and Modeling Conference, 6918, 69182L1–

69182L11 (2008).

 18. O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. 

Warfi eld, G. Malandain, N. Ayache, Realistic simulation of 

the 3D growth of brain tumors in MR Images coupling 

diff usion with biomechanical deformation. IEEE Trans. 

Med. Imaging 24, 1334–1346 (2005).  

 19. Y. Cai, S. X. Xu, J. Wu, Q. Long, Coupled modelling of 

tumour angiogenesis, tumour growth and blood perfu-

sion. J. Theor. Biol. 279, 90–101 (2011).  

 20. P. Gerlee, A. R. A. Anderson, A hybrid cellular automaton 

model of clonal evolution in cancer: The emergence of 

the glycolytic phenotype. J. Theor. Biol. 250, 705–722 

(2008).  

 21. A. R. A. Anderson, M. A. J. Chaplain, Continuous and dis-

crete mathematical models of tumor-induced angiogen-

esis. Bull. Math. Biol. 60, 857–899 (1998).  

 22. W.-Y. Cheng, T.-H. Ou Yang, D. Anastassiou, Development 

of a prognostic model for breast cancer survival in an 

open challenge environment. Sci. Transl. Med. 5, 181ra50 

(2013).  

 23. N. Z. Kuhn, L. A. Nagahara, Integrating physical scienc-

es perspectives in cancer research. Sci. Transl. Med. 5, 

183fs14 (2013).  

Acknowledgments:  We thank M. Kardar (Massachusetts In-

stitute of Technology) for several illuminating discussions.

Citation: T. E. Yankeelov, N. Atuegwu, D. Hormuth, J. A. Weis, 

S. L. Barnes, M. I. Miga, E. C. Rericha, V. Quaranta, Clinically rel-

evant modeling of tumor growth and treatment response. Sci. 

Transl. Med. 5, 187ps9 (2013).

10.1126/scitranslmed.3005686

 o
n 

Ju
ly

 5
, 2

01
3

st
m

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://stm.sciencemag.org/

