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Abstract—This article presents a method designed to automat-
ically track cortical vessels in intra-operative microscope video
sequences. The main application of this method is the estimation
of cortical displacement that occurs during tumor resection pro-
cedures. The method works in three steps. First, models of vessels
selected in the first frame of the sequence are built. These models
are then used to track vessels across frames in the video sequence.
Finally, displacements estimated using the vessels are extrapolated
to the entire image. The method has been tested retrospectively on
images simulating large displacement, tumor resection, and par-
tial occlusion by surgical instruments and on 21 video sequences
comprising several thousand frames acquired from three patients.
Qualitative results show that the method is accurate, robust to the
appearance and disappearance of surgical instruments, and capa-
ble of dealing with large differences in images caused by resection.
Quantitative results show a mean vessel tracking error (VTE) of
2.4 pixels (0.3 or 0.6 mm, depending on the spatial resolution of
the images) and an average target registration error (TRE) of 3.3
pixels (0.4 or 0.8 mm).

Index Terms—Brain shift, image guided neurosurgery, registra-
tion, tracking, vessel.

I. INTRODUCTION

MOST image-guided surgery systems in current clini-
cal use only address the rigid body alignment of pre-

operative images to the patient in the operating room despite the
fact that substantial brain shift happens as soon as the dura is
opened [1]–[4]. The problem is even more acute for cases that
involve tumor resection. A possible solution to this problem
is to use models [4]–[6] that can predict brain shift and defor-
mation based on cortical surface data acquired intraoperatively
such as laser range scans [7]–[12] or video images [13]–[21].
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Video images acquired with cameras attached or integrated
with the operating microscope have been proposed to regis-
ter pre- and intraoperative data as early as 1997 by Nakajima
et al. [13]. This approach has been extended in [14] and [15]
by using a pair of cameras. In 2006, DeLorenzo et al. used
both sulcal and intensity features [16], [17] to register pre-
operative images with intraoperative video images. However,
these studies were carried out on data acquired just after the
opening of the dura [17] or on epileptic procedures for which
brain shift is relatively small when compared to tumor resection
surgeries [11], [12].
The objective of thework described in this article is to develop

a system that can be deployed in the Operating Room (OR)
to update preoperative images and thus provide deformation-
corrected guidance to the surgical team. To estimate surface de-
formation during surgery, a tracked laser range scanner [11], [12]
has been employed. This device simultaneously acquires 3-D
physical coordinates of the surface of a scanned object using
traditional laser triangulation techniques and a color image of
the field of view. Because the color image and the 3-D cloud
of points are registered through 2-D to 3-D texture calibration,
the 3-D coordinates of the image pixels are known. As shown
in [11] and [12], tracking the 3-D displacement of the cortical
surface can thus be achieved by registering the 2-D color images
acquired over time. This can be achieved by placing the laser
range scanner in the operating room and acquiring data during
the procedure. While feasible, this approach is difficult to use
in practice, at least in our OR setting, because it requires posi-
tioning the scanner above the resection site and acquiring the
data, which takes on the order of one minute. One possibility
is to acquire one laser range scan just after the opening of the
dura and one or more additional scans during the procedure,
typically after partial tumor resection. Substantial changes oc-
cur during surgery such that developing automatic techniques
for the registration of the 2-D static images that are acquired
at different phases of the procedure by the scanner, is challeng-
ing. As a partial solution, we have developed a semiautomatic
method that only requires selecting starting and ending points on
vessel segments that are visible in the scanner images that need
to be registered [12]. Using this method, we have shown that
it is possible to estimate the displacement of points on cortical
surfaces with submillimetric accuracy. These results were ob-
tained on images acquired from 10 patients with mean cortical
shift of about 9mm and range from 2mm to 23mm. Herein, we
describe an effort to automate the registration of the laser range
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scanner images using video streams acquired with an operating
microscope.
Operating microscopes are typically used during the proce-

dure and these are often equipped with video cameras. Clearly,
the video sequences have amuchhigher temporal resolution than
images acquired with the tracked laser range scanner. Changes
occurring between video frames are thus substantially smaller
and automatic tracking of vessels through the video sequence
may be possible. Estimating cortical shift during the procedure
could thus be done as follows: 1) acquire a 2-D image/3-D
point cloud laser scanner data set at time t0 ; 2) register the
2-D image acquired with the scanner to the first frame of a
video sequence started shortly after t0 ; 3) estimate 2-D dis-
placement/deformation occurring in the video sequence; 4) stop
the video sequence at time t1 ; 5) acquire a 2-D image/3-D point
cloud laser scanner data set shortly after time t1 ; 6) register
the 2-D image acquired with the scanner at time t1 with the
last frame in the video sequence to establish a correspondence
between laser range scanner image 1 and laser range scanner
image 2; and 7) compute 3-D displacements for each pixel in
the images using their associated 3-D coordinates.
Recently, Paul et al. [20], [21] have proposed a technique to

estimate cortical shift from video sequences but their approach
is substantially different from ours. In their approach, a pair of
microscope images is used to create a surface at time t1 . At this
time, a number of points are also localized in one of the video
images. These points are tracked in one of the sequences until
time t2 . At time t2 another pair of images is acquired and an-
other surface computed. Computation of cortical displacement
requires the registration of the two surfaces. This is an inher-
ently difficult problem because the appearance and shape of the
surfaces change throughout surgery. In their work, they use a
similarity measure to register these surfaces that relies on in-
tensity, intersurface distance, and on displacement information
provided by the tracked points. Because we use a laser range
scanner that provides us with the 3-D coordinates of the pixels
in the images it acquires, we do not need to estimate the 3-D
surface, nor do we need to register surfaces directly. The entire
problem can be handled using much simpler 2-D registrations.
The remainder of this article is organized as follows: First, the

data that have been used are described. The technique that has
been used to model and track the vessels is explained next. This
is followed by a discussion on howvessel displacement is used to
estimate displacements over the entire image. Simulated results
show the robustness of the proposed method to displacement,
partial occlusions and changes caused by the resection. Results
obtained on real images confirm the simulated results and show
overall submillimetric registration accuracy.

II. DATA

A Zeiss OPMI R©Neuro/NC4 microscope equipped with a
video camera was used to acquire the video sequences. The
frame rate of the video is 29 fps. A total of 21 sequences were
acquired from three patients (7sequences/patient) with IRB (In-
stitutional Review Board) approval. The images of patient 1
have 352 × 240 pixels, while the images of patients 2 and 3

Fig. 1. Active points along the curve.

have 768 × 576 pixels. The approximate pixel dimension in
the video images of patient 1 is 0.06 mm2 , while it is 0.01mm
for the other two patients. At those resolutions, cortical capil-
laries and small vessels can be seen in the images and used for
tracking. Between sequences acquired for a particular patient
the camera can be translated, rotated or its focus adjusted to suit
the needs of the neurosurgeon.
To show the feasibility of registering video and laser range

scanner images, one additional data set was acquired. This data
set includes a laser range scanner image and one video sequence
started 5min after the acquisition of this image.

III. METHODS

A number of methods can be used to register sequential
frames in video streams. For example, nonrigid intensity-based
algorithm has been used to estimate heart motion in video
streams [22]. However, as also reported by Paul et al. [21],
this approach is not adapted to the current problem because sur-
gical instruments appear and disappear from the field of view. To
address this issue, a feature-based method that requires finding
homologous structures in sequential frames, has been adopted
in this work. These structures are used to compute transforma-
tions that are subsequently utilized to register the entire image.
The blood vessels are the most visible structures in the video
images; hence, they are employed as tracked features.
In the approach described herein, vessel segments are identi-

fied by the user in the first frame of a video sequence. This is
done by selecting starting and ending points on these segments.
A minimum cost path finding algorithm is then used to join the
starting and ending points and segment the vessels (more details
on this approach can be found in [12]).

A. Features Used for Tracking

Once the vessels are identified, their centerlineC is sampled
to produce a number of points, whichwe call active points. In the
current version of the algorithm, this is done by downsampling
the centerlines by a factor of four, which was found to be a good
compromise between speed and accuracy. For each of the active
points, a line perpendicular to the centerline passing through the
point is computed as shown in Fig. 1.
Next, a feature matrix F (1) is associated with each point. To

create this matrix, the R, G, B, and vesselness values are ex-
tracted from the image along these perpendicular lines. Vessel-
ness, defined as in [23], is a feature computed from the Hessian
of the image obtained at different scales (here scales ranging
from 1 to 8 pixels have been used). It is commonly used to
enhance tubular structures.
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Fig. 2. Strategy used to search for homologous points in the next frame.

Because the R, G, and B values are intensity features while
vesselness is a shape feature within the [0,1] interval, the R, G, B
values are first normalized between 0 and 1, while the vesselness
value V is multiplied by 3 to avoid weighing one type of feature
over another.
The length r of the perpendicular lines on either side of the

centerline is a free parameter. Each active point ai is thus asso-
ciated with the following matrix:

Fai
=

⎡
⎢⎣

R−r R−r+1 ... Rr

G−r G−r+1 ... Gr

B−r B−r+! ... Br

3V−r 3V −r+1 ... 3Vr

⎤
⎥⎦ . (1)

B. Finding Homologous Points in Consecutive Frames

To match one frame to the other, homologous points need to
be localized. This is done as follows: First, one feature matrix,
as defined above, is associated with every pixel in the new
frame. Second, the active points and the centerlines found in
the previous frame are projected onto the new frame. Then
the similarity between 1) the feature matrix of every pixel in
the new frame along lines perpendicular to the centerlines and
passing through the active points and 2) the feature matrix of the
corresponding active point in the previous frame is computed
as

s(i, j) = 1 − 1
4(2r + 1)

c=4,d=2r+1∑
c=1,d=1

∣∣Fai
(c, d) − Fpi,j

(c, d)
∣∣
(2)

in which c and d are the row and column index of the feature
matrix, i refers to the ith point on the centerline and j is the
position on the line perpendicular to the centerline at that point
with −sr ≤ j ≤ sr , i.e., the computation is done in bands of
width 2 sr+1. Fai

is the feature matrix in the previous frame
of the ith active point and Fpi,j

is the feature matrix in the new
frame of the jth point along the perpendicular passing through
the ith active point.
The point bi with the featurematrixmost similar to the feature

matrix of the active point ai in the previous frame is selected
as the homologous point for this active point. However, if the
maximum similarity between some ai and all the pi,j is small,
it indicates that no reliable homologous point bi can be found
along the search line. When the maximum similarity falls below
a threshold for a point ai, it is deactivated and not used to
estimate the transformation that registers consecutive frames.
This process is illustrated in Fig. 2. In this figure, the dotted

line represents the projection of the centerline from the previous

TABLE I
AUTOMATIC INTRA-VIDEO TRACKING IN INTRA-OPERATIVE VIDEOS

frame to the current frame. The red dots are the active points. The
lines perpendicular to the dotted lines are the search direction
for each active point. The continuous line represents the position
of the vessel in the new frame. In the left image, all the active
points found their homologous points, which are shown as red
stars. In the right image, an object appears and covers part of
the vessel. For some active point ai, this results in

srmax
j=−sr

s(i, j) < Similarity threshold. (3)

C. Smoothing TPS

Smoothing Thin Plate Splines (TPS) are regularized TPS,
which minimize the following function:

E(T) = min
T

l∑
i=1

‖bi − T(ai)‖2

+ λ

∫ ∫ [
∂2T
∂x2 + 2

(
∂2T
∂x∂y

)
+

∂2T
∂y2

]
dxdy. (4)

Here, smoothing TPS are used to compute the transformation
that registers the active points {a1 , a2 , . . . , al} in one frame to
the corresponding points {b1 , b2 , . . . , bl} in the next frame. For
a fixed λ there exists a unique minimizer T. To solve this varia-
tional problem, QR decomposition as proposed by Wahba [24]
has been used. The parameter λ is used to control the rigid-
ity of the deformation. When λ → ∞, the transformation is
constrained the most and is almost affine. Through experimen-
tation, λ = 1 has been found to produce transformations that are
smooth, regular, and forgiving to local errors in point correspon-
dence while being able to capture the observed inter-frame de-
formations/displacements. The transformation computed with
the homologous points is then extrapolated over the entire frame.
The algorithm developed is summarized in Table I. All the re-
sults obtained have been computed with tracking one out of
every five frames in the sequence to speed up the process. This
downsampling did not affect the results.

IV. RESULTS

A. Registration of Laser Scanner and Microscope Images

Fig. 3 illustrates the feasibility of registering 2-D images ac-
quired with our laser range scanner (left panel) to a microscope
image (right panel) acquired five minutes after the scanner im-
age. These images have been registered nonrigidly using vessels
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Fig. 3. Example of registration of a 2-D laser range scanner image (left panel)
and one microscope image (right panel).

Fig. 4. Simulation of a diagonal translation of 90 pixels in the x and y directions
over 90 frames. Selected vessels are shown in yellow. Estimated vessel locations
produced by our algorithm are shown in green.

segmented semiautomatically. Yellow points have been selected
on the microscope image and projected onto the laser image
through the computed transformation.

B. Simulated Results

To show the robustness of the algorithm to various challeng-
ing situations observed in clinical images, we have generated
simulated sequences. With these, we show its robustness to
translation, occlusion, and changes due to resection.
In clinical sequences, translation is observedwhen parts of the

brain sag, causing portions of the cortical surface initially visible
through the craniotomy to disappear under the skull. To simulate
this situation, we have selected one video frame in one of the
third patient’s sequences, and we have translated it by 90 pixels
in the x and y direction over 90 frames. Fig. 4 shows four frames
in this sequence. Tracked vessels are selected in frame 410 and
shown in yellow in the top left panel of Fig. 4. The location
of the tracked vessels estimated by our algorithm on frames
440, 470, and 500 are shown in green. Blue segments shown
within the green segments are segments over which homologous
active points were not found. When active points fall outside
the image, they are deactivated and not used to compute the
transformations.

Fig. 5. Simulation of occlusions caused by surgical instruments entering and
leaving the field of view and of a cavity caused by a resection. Selected vessels
are shown in yellow on the first frame. Estimated vessel locations are shown in
green on the other frames. The blue segments indicate segments for which no
correspondence was found. The bottom right panel shows the displacement of
the white point indicated by an arrow on the upper left frame.

In addition to translation, the appearance of surgical instru-
ments in the video sequence is a potential source of tracking
error. In order to show the robustness of the approach to the
sudden appearance of objects in the field of view, one video
sequence was selected and simulated instruments were inserted
into the field of view to mask various parts of the image during
portions of the sequence.
The top left panel of Fig. 5 shows frame 410 of the third

patient. The vessels selected in frame 410 are shown in yel-
low. Tracking results are shown in green on the other frames.
One point shown in white and indicated by an arrow on the
first frame has been selected in the image to show overall dis-
placement. The bottom right panel shows the Euclidean dis-
tance of the point to its original position in consecutive frames.
The oscillations observed in this plot are due to small displace-
ments of the cortical surface caused by brain pulsatility. In these
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simulations, an object is inserted on the left side of the image at
frame 420 and disappears at frame 430, another object appears
on the right side of the image at frame 470 and disappears at
frame 480, and a third object appears in the top at frame 520 and
disappears at frame 530. In the same sequence, a cavity induced
by the resection has also been simulated. This was achieved by
placing a small cavity in an incision visible in the image and pro-
gressively growing it. To achieve this, the image was expanded
linearly within the cavity. Outside the cavity, the magnitude of
the deformation was reduced exponentially. The radius of the
cavity was increased from frame to frame. This results in images
in which tissues surrounding the cavity are both displaced and
compressed.
As was the case in the previous figure, vessel segments that

appear in blue are segments over which active points were
not found. The transformation used to register the frames was
thus computed without them. But because the remaining seg-
ments are sufficient to compute a transformation that is accurate
enough over the entire image, the computed position of the
vessel during occlusion is approximately correct. As soon as
the instrument disappears, the algorithm reacquires the vessels.
This is possible because the vesselness component of the fea-
ture matrix is defined on the first frame and fixed for the entire
sequence. When a surgical instrument appears in the field of
view, it dramatically changes the vesselness value of the pixels
it covers. Because of this, the similarity between these pixels
and the centerline pixels projected from the previous frame falls
below the threshold and no correspondence is found. As soon
as the vessels become visible, the similarity value is above the
threshold and the vessels are used. This will work well as long
as the transformation computed without the covered vessels is
a reasonable approximation over the covered regions. One also
observes that the presence of the cavity does not affect tacking
results.

C. Qualitative Results Obtained on Real Image Sequences

In this section, results obtained for selected patient sequences
are presented to illustrate the type of images included in the
study.
Fig. 6 shows several frames in one sequence acquired for

the first patient. In this sequence, a surgical instrument appears
in the field of view. The vessels selected in the first frame are
shown in yellow. Tracking results are shown in green in the other
frames. Points shown in yellow are points that are not used for
registration purposes but define targets used in the quantita-
tive study (see next section). As was the case in the simulated
images, the algorithm is capable of tracking selected vessels
despite the partial occlusion caused by the surgical instruments
and the cortical deformation caused by the resection. A close
inspection of frame 120 in Fig. 6 shows a light yellow square
on the right corner of the image. This is the logo of the Zeiss
microscope, which is occasionally projected onto the image and
causes artifacts. As discussed above, the vesselness component
of the feature matrix is evaluated on the first frame of the video
sequence and fixed for the entire sequence. This is done because
it is assumed that the shape characteristics of the vessels do not

Fig. 6. Tracking of sample frames in one video sequence for patient 1.

Fig. 7. Tracking of sample frames in one video sequence of patient 2.

change from frame to frame. The R, G, and B values, on the
other hand, are updated as the algorithm moves from one frame
to the other. This permits the adaptation of the color character-
istics to, for instance, changes in lighting conditions. Here, the
algorithm is immune to the artifact caused by the Zeiss logo
because it appears in the video gradually and the R, G, and B
values of the similarity matrix are adapted.
Fig. 7 shows several frames in one of the second patient’s

sequences. In this sequence, a relatively fast, medium amplitude
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Fig. 8. Frame-to-frame displacement of one landmark points in three se-
quences pertaining to patient 1 (sequences 1, 2, and 5).

motion was observed. Vessel segments identified on the first
frame and shown in yellow are tracked over 400 frames. Here,
the algorithm was able to track all the active points and tracking
results are shown in green. Again, the yellow points designate
the intersection of small vessels not used in the registration
process. Visual inspection shows that the yellow target points are
tracked accurately and demonstrate the accuracy of the method
over the entire frame. As was the case in the previous sequence,
a surgical instrument appears in the last sample frame without
affecting the tracking process.
To provide the reader with a sense of the interframe and total

motion observed in the sequences used herein, which is difficult
to convey with static images, Fig. 8 plots the displacement of
one voxel in each of three sequences pertaining to patient 1
(sequences 1, 2, and 5).

D. Quantitative Evaluation

To evaluate the approach quantitatively, two measures have
been used: the vessel tracking error (VTE) and the target regis-
tration error (TRE). The vessel tracking error is computed for
vessel segments tracked from frame to frame and is defined as
the average distance between the true vessel position and the
position of the vessel found by the algorithm. To compute this
error, a human operator first selects starting and ending points of
vessel segments in the first frame of the sequence. These vessel
segments are chosen such that they cover a major portion of
the image. The vessel segmentation algorithm (see [12]) con-
nects the starting and ending points to create the set of vessel
segments that are tracked. The human operator also selects the
starting and ending points for the same vessel segments in four
additional frames positioned at 25%, 50%, 75%, and 100% of
the sequence. Both the vessel segments selected by the human
operator and those produced by the algorithm on these frames
are then parameterized.N equidistant samples with N equal to
the number of active points for a segment are subsequently se-
lected on corresponding segments. This produces two sets of

TABLE II
VTE (IN PIXELS ) FOR 21 VIDEO SEQUENCES

homologous points Vi and Ui. VTE is defined as

V TE =
1
N

N∑
i=1

√
(Vi − Ui)T (Vi − Ui) (5)

i.e., it is the mean Euclidean distance between homologous
points on vessel segments. The target registration error [25] is
the registration error obtained for points that are not used to
register the frames. These are points, typically intersections of
small vessels, which are selected by the human operator in the
first frame and then in the four other frames in which the vessels
have been selected (see selected points in Figs. 6 and 7). While
selecting the target points, magnification of the images was al-
lowed. To evaluate target localization error, a few sequences
were chosen on which landmarks were selected several times.
Target localization error was subvoxel and considered to be neg-
ligible. For those points, the target registration error is defined
as follows:

TREi =
√

(T(Xi) − Yi)T (T(Xi) − Yi), (6)

Where Xi and Yi are the points selected in the first frame and
the four sampled frames, respectively.T is the transformation
obtained by concatenating all the elementary transformations
obtained from tracking each frame.
Table II lists the vessel tracking errors computed for the 21

video sequences. Sequences 1 to 7 pertain to patient 1, sequences
8 to 14 are to patient 2, and sequences 15 to 21 to patient 3. Re-
sults pertaining to patient 3 have been computed differently
than those of patients 1 and 2. Rather than parameterizing ves-
sel segments, we computed correspondence between manually
segmented and automatically localized vessel segments using
closest point distance. This metric is not sensitive to vessel
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TABLE III
TRE (IN PIXELS) FOR 21 VIDEO SEQUENCES

translation. Unfortunately, data pertaining to patient 3 became
unavailable for reprocessing due to disk failure. Based on our
observations for the other two patients, our current distance
measure adds, in average, one pixel to our previous measure.
Overall statistics have thus been reported in two groups. The
first contains patients 1 and 2, the other contains patient 3. The
tracking error for each video sequence reported in the “mean”
column is computed as the mean of the vessel tracking errors in
the four sampled frames.
Across the 14 sequences for which we compute the VTE as

described above, the mean VTE is 2.45 pixels with a standard
deviation of 0.58 pixels. With the spatial resolution of the im-
ages, this leads to ameanVTEof 0.3 (high resolution sequences)
or 0.6 (low resolution sequences) mm. The second column from
the right shows the number of vessel segments tracked in each of
the video sequences. This number varies from 11 in sequences
in which a large number of vessels are visible, e.g., sequence 3,
to 5 in sequences in which only a few vessels are visible, e.g.,
sequence 13. The number of vessel segments across sequences
for a particular subject may change, e.g., from sequence 1 to se-
quence 7. This is due to the fact that videos are taken over long
periods of time at different phases of the procedure. Because of
this, some vessels may disappear because of the resection or be
covered by cotton pads during the entire sequence; these vessels
cannot be tracked in the sequence. The last column in the table
is the number of frames in each video sequence.
In Table III, TRE is reported for all the video sequences.

As was done above, the average TRE for each video sequence
reported in the “mean” column is computed as the mean of
the target registration errors in the four sampled frames. The
overall mean (3.34 pixels), median (2.88 pixels), and standard

Fig. 9. TRE values obtained for sequence #3 when perturbing the value of the
threemain parameters used in the algorithm: profile radius (top panel), searching
radius (middle panel), and threshold (bottom panel). In each case values were
perturbed in an 80%–120% range.

deviation (1.52 pixels) of the TRE are also reported. The overall
mean TRE is thus approximately 0.4 or 0.8mm, depending on
the spatial resolution of the images. As expected, the TRE is
larger than the VTE because it is computed with points that
are not used to estimate the transformations used to register the
frames. The last column of the table shows the number of target
points that have been selected for each of the video sequences.
Again, more points have been selected on some sequences than
others because some sequences have more vessels and thus
more identifiable target points than others. As many as 15 points
have been selected for some sequences, e.g. sequence 19. The
lowest number of target points is 6 for sequence 10. For this
sequence, one also observes that the TRE is relatively large. In
this sequence, the microscope was focused on the bottom of
the cavity left after the resection. The cortical surface was thus
blurry, which affected the accuracy of the tracking algorithm.

E. Parameter Sensitivity Test

Three main parameters need to be selected in our approach:
the profile radius r, the searching threshold sr , and the similarity
threshold. These were selected heuristically on a few sequences
and then used without modification on others. To illustrate the
sensitivity of the results on the parameter values one sequence
was first selected (sequence # 3). The algorithmwas then applied
to this sequence with parameter values ranging from 80% to
120% of the original values. Parameter values were perturbed
sequentially. Fig. 9 shows the TRE values that were obtained
on the four evaluation frames used for this sequence. These
results show that, albeit some variations can be observed when
the parameters are adjusted, the results remain within a tight
range.
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V. DISCUSSION

In this paper, a method has been proposed to track brain
motion in video streams. Coupled with a laser range scanner,
this will potentially permit estimating intraoperative brain shift
automatically. The results we have presented indicate that this
method is capable of tracking vessels even when surgical instru-
ments obscure parts of the images. It is relatively simple, which
makes it fast and applicable in real time (a MATLAB imple-
mentation takes about one second per frame but the algorithm
does not need to be applied to every frame). The method has
been used on 21 video sequences comprising 11,405 frames. As
the results demonstrate, the method is able to track the features
in all of these sequences accurately. Tracking was less accurate
in one of the sequences in which the cortical surface was blurry
because the microscope was focused on deeper brain structures.
Comparison of the proposed algorithm with work by Paul

et al. [21], [22] is difficult without direct application of our
methods to their data; however, we believe that our work is
substantially different. In their work, a surface is created from
video pairs and then registered to surfaces acquired at different
times. Isolated points are tracked from frame to frame using a
Kalman filter. An advantage of this approach is that it permits
modeling the interframe motion. We circumvent the need for
surface registration by using a laser range scanner that provides
us with both a 2-D image and the 3-D coordinates of the pixels
in this image. We also rely on the entire vessel and on frame-
to-frame registration for tracking rather than on a few isolated
pixels. The fact that we register the entire frame based on the
available information allows us to compute a transformation
that is relatively accurate over occluded regions and to wait
for points to become visible again to refine the transformation
over these regions. Paul et al. report that their method is robust
to occlusion. It is difficult to compare their results with ours
because we could not ascertain from the results they report
which points were occluded and for how long.
As discussed in the background section, the goal of this work

is to use intraoperative video sequences to register laser range
scanner images obtained at somewhat distant intervals during
the procedure. To the best of our knowledge, this is the first
attempt at doing so and the method described herein is a step in
that realization but work remains. For example, while it has been
shown that tracking vessels within a continuous video stream is
achievable, tracking discontinuous sequences that are separated
by relatively long intervals may require an additional interse-
quence registration step. Because the intraoperative microscope
is currently not tracked, intersequence registration necessitates
first computing a transformation to correct for differences in
pose or magnification between sequences, which can be done
by localizing a few common points in both sequences and com-
puting a global transformation. If the last frame in a sequence
and the first frame in the next sequence are very different, for
example, if the first sequence is acquired with the cortex intact
and the next one after tumor resection, manual localization of
a few vessels visible in both sequences may be required. The
advantage of the laser range scanner is the fact that it produces
accurate cortical surfaces but it also requires an additional piece

of equipment in the operating room. While the cost of a laser
scanner is modest and acquiring an LRS image from time to
time is minimally disruptive, the integration of the process in
the clinical flow and the assessment of its impact on the surgi-
cal process remain to be done. This will require integrating the
processing of the LRS images and video images into the same
framework as well as designing the user interfaces required to
interact with the images. Indeed, even though work is underway
to adapt methods we have developed for the automatic segmen-
tation of vessels in laser scan images [26] to video images, our
experience indicates that a certain amount of user interaction
will be necessary to select which among the segmented vessels
should be used for tracking. Vessels located on top of the resec-
tion site in the preresection images would be, for instance, poor
candidates for tracking.
While challenges remain, the results presented in this article

suggest the value of intraoperative surgical microscope data.
Coupling the tracking of microscope video sequences with 3-D
laser range scan data to characterize deformation during surgery
could provide a detailed understanding of the changes in the
“active surgical” surface that are at the focus of therapy.
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