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Automatic Generation of Boundary Conditions Using
Demons Nonrigid Image Registration for Use in 3-D

Modality-Independent Elastography
Thomas S. Pheiffer∗, Jao J. Ou, Rowena E. Ong, and Michael I. Miga

Abstract—Modality-independent elastography (MIE) is a
method of elastography that reconstructs the elastic properties
of tissue using images acquired under different loading conditions
and a biomechanical model. Boundary conditions are a critical in-
put to the algorithm and are often determined by time-consuming
point correspondence methods requiring manual user input. This
study presents a novel method of automatically generating bound-
ary conditions by nonrigidly registering two image sets with a
demons diffusion-based registration algorithm. The use of this
method was successfully performed in silico using magnetic res-
onance and X-ray-computed tomography image data with known
boundary conditions. These preliminary results produced bound-
ary conditions with an accuracy of up to 80% compared to the
known conditions. Demons-based boundary conditions were uti-
lized within a 3-D MIE reconstruction to determine an elasticity
contrast ratio between tumor and normal tissue. Two phantom
experiments were then conducted to further test the accuracy of
the demons boundary conditions and the MIE reconstruction aris-
ing from the use of these conditions. Preliminary results show a
reasonable characterization of the material properties on this first
attempt and a significant improvement in the automation level and
viability of the method.

Index Terms—Boundary conditions, elastography, finite element
methods, image registration.

I. INTRODUCTION

AN IMAGING methodology that utilizes the mechanical
properties of tissue is known as elastography. Elastog-

raphy employs a combination of image processing and mea-
surements of the physical deformation of the tissue to create a
representation of the mechanical strength of structures inside an
organ [1], [2]. The overall principle behind elastography for use
in cancer imaging is that regional changes in tissue architecture
resulting from the manifestation of disease result in detectable
changes in mechanical properties. For example, breast cancers
have been widely recognized in the medical community as much
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firmer to the touch than the surrounding soft tissue. The biolog-
ical basis for this effect is due to changes in tissue composition,
such as varied expression of collagen and greater numbers of
fibroblasts [3], [4]. The exploitation of a contrast mechanism
based on elastic properties may have considerable potential to
characterize disease states.

Several kinds of elastography exist, such as ultrasound elas-
tography (USE) and magnetic resonance elastography (MRE)
which have already shown promise in diagnosing solid lesions
in breast tissue and other physiological locations. The first in-
troduction of USE demonstrated that images from A-line ul-
trasound could provide axial strain estimates [5]. Elastography
has also been applied within the MR imaging domain, whereby
motion-sensitized gradient sequences were used to visualize and
quantify strain wave propagation in media [6]. A relatively new
method known as modality-independent elastography (MIE)
has recently shown potential for supplementing other imaging
modalities such as MR and CT for detection of solid tumors in
soft tissue [7]. MIE has the benefit of being flexible with regard
to its inputs, and unlike USE and MRE, it is not reliant on a
particular imaging modality. MIE involves imaging a tissue of
interest before and after compression, and then applying a finite
element (FE) soft-tissue model within a nonlinear optimization
framework in order to determine the elastic properties of the
tissue. The group of Shi and Liu also has used FE biomechan-
ical models to estimate material properties of the heart using
a priori information [8]. A requirement of the MIE method is
that appropriate boundary conditions be designated for use in
the biomechanical model. Generation of accurate boundary con-
ditions is problematic because soft-tissue organs are nonrigid
structures, which invalidates the use of standard rigid registra-
tion techniques. Techniques that have addressed this issue in the
past have required a significant amount of user interaction. The
goal of this study is to develop and validate a method of gen-
erating boundary conditions automatically by registering organ
surfaces before and after mechanical loading. While breast-like
phantoms are used as a demonstration of the method, the inten-
tion is to make a more broadly applicable method that may be
applied to other organs, such as the brain, liver, or lung.

The previous gold standard in generating boundary conditions
for MIE has been feature-based registration methods [9]. Con-
ventionally, this entails employing point correspondence meth-
ods facilitated by attached fiducials and assisted by thin-plate
spline (TPS) interpolation [10] to create boundary conditions
that nonrigidly map the predeformed organ surface to the post-
deformed organ surface. This registration process requires the
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tedious task of applying and subsequently localizing numer-
ous surface markers within the image space, determining point
correspondence, creating a TPS interpolation, and finally calcu-
lating a set of Dirichlet boundary conditions for use in the MIE
method. Initial attempts to reduce the complexity and level of
user interaction have focused on the use of two energy minimiza-
tion techniques [11]. These techniques relied upon partial dif-
ferential equation (PDE) solutions of Laplace’s equation or the
diffusion equation, respectively, across the surface of the organ
geometry in the pre- and postdeformed states. Like-valued iso-
contours from the solutions on each surface (i.e., predeformed
and postdeformed) act as “virtual” fiducials to assist in cor-
respondence using a symmetric closest point approach [12].
Dirichlet boundary conditions are generated after the assigned
correspondence is determined and this completes the required
input for the MIE algorithm. Both methodologies required con-
ditions to be manually specified to various regions of the mesh.
While the results presented by Ong et al. [11] indicated better
performance via the Laplacian method, the diffusion method did
not require the difficult task of assigning a boundary condition
to the chest wall in both pre- and postdeformed mesh domains.
These methods, as well as the TPS method, will be compared
to the intensity-based approach in this paper.

While the aforementioned PDE-based methods represented
an improvement in automation over the TPS method for gen-
erating boundary conditions for the MIE algorithm, the ideal
boundary condition method would be both fully automated and
require no fiducials. There is precedent for using nonrigid im-
age registration to generate boundary conditions for FE tissue
volume models, as presented by Tanner et al. [13]. There is
a wide variety of nonrigid registration algorithms based on
intensity, such as the B-spline registrations of [14] or var-
ious diffusive flow methods [15], [16]. This study presents
an approach for automatically generating boundary conditions
through the use of a nonrigid image registration algorithm called
demons diffusion. The demons method was chosen based on its
popularity and ease of implementation. The demons method
was first proposed by Thirion [17] and is well understood
to have a strong mathematical foundation as in the works of
Pennec et al. [18], Cachier et al. [19], and Modersitzki [20].
The basic premise presented by Thirion [17] is to use an optical
flow model governed by the idea of Maxwell’s demons to drive
the registration. In this model, the intensity of a moving object
is considered to be constant with time, which implies that some
level of correspondence can be achieved between deformed and
undeformed images, as long as the intensity profiles are very
similar. The object boundaries in one image are characterized
as semipermeable membranes, and the other image is allowed
to diffuse through these membranes based upon the optical flow
equation

D(X) · ∇f(X) = −(m(X) − f(X)) (1)

where f(X) is the fixed target image, m(X) is the source image
being deformed for the registration, and D(X) is the displace-
ment field mapping the source to the target image through an
instantaneous optical flow. Thirion reformulated equation (1) to

an algorithmic iterative form as follows:

DN(X) = DN−1(X) − (m(X + DN−1(X)) − f(X))∇f(X)
‖∇f‖2 + (m(X + DN−1(X)) − f(X))2

(2)
The displacement field obtained from (2) is smoothed with a
Gaussian filter between each iteration in order to regularize the
registration. The popularity of the demons algorithm has also
helped it remain an active area of research. Vercauteren et al. re-
cently introduced symmetric diffeomorphic demons [21]–[23],
and improvements to the registration regularization continue to
be made by Cahill et al. [24], Mansi et al. [25], and other groups.
In this paper, the demons algorithm was used to perform im-
age matching of pre- and post-deformation images and tested
against a controlled in silico simulation with known boundary
conditions. The generated boundary conditions were also used
to perform an MIE elasticity reconstruction to evaluate its ef-
fectiveness in determining the elasticity contrast of a previously
characterized system. The simulation study was followed by
two phantom experiments to further stress the abilities of this
new approach.

II. METHODOLOGY

A. Automatic Generation of Boundary Conditions

As described in the previous work, the MIE algorithm is
comprised of three major components: 1) a biomechanical FE
model of soft-tissue deformation based on material proper-
ties; 2) a similarity metric with which to compare images; and
3) an optimization routine to update the material properties in
the model [26].

The process of generating an elasticity reconstruction begins
with the acquisition of an image of the organ. A mechanical
load is then applied to the tissue, and the organ is imaged again.
These pre- and post-deformation images comprise the primary
input to the MIE algorithm and are referred to as the source
and target images, respectively. The organ boundary is then seg-
mented manually in the predeformed source image, and its sur-
face geometry is extracted using the marching cubes algorithm,
which allows an FE mesh of tetrahedrons to be created from
the surface information. The mesh is partitioned into “regions”
to which elasticity properties are assigned, which defines the
resolution of the elastographic reconstruction. The biomechan-
ical model used for the reconstruction is a linear elastic model,
which holds that the strain experienced is proportional to the ap-
plied stress. We further assume that the materials of the FE mesh
within a given region are isotropic and nearly incompressible
in nature. Although tissue is known to have somewhat complex
mechanical behavior, the system may be approximated as linear
elastic with sufficiently small strains (all strains in this work
are less than 15%). In work not presented here, it was found
that a Poisson’s ratio of 0.485 was optimal for use in MIE, and
was used for all of the following experiments. The other critical
material property in the model is Young’s modulus E, which is
solved for by the MIE framework. The ability of the biomechan-
ical model to accurately deform the mesh of the candidate tissue
volume is dependent on the accuracy of its boundary conditions.
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Once boundary conditions have been designated, the model is
run and the FEM displacement solution for all the nodes in the
mesh is obtained. The displacements are then used to deform the
original pre-deformation image, which is then compared with
the known post-deformation target image to generate an image
similarity measurement. A nonlinear optimization framework is
used to update the material properties of the mesh based on the
modeled deformation. The optimization is the minimization of
the objective function

ψ = |STRUE − SEST |2 (3)

where STRUE is the similarity value achieved when comparing
the target image to itself and SEST is the similarity between the
target and model-deformed source images. Differentiating (3)
with respect to the elasticity distribution and setting the resulting
expression equal to zero give a series of nonlinear equations that
are solved using the Levenberg–Marquardt method:

[JT J + αI]{ΔE} = [JT ]{STRUE − SEST} (4)

where J is the Jacobian matrix whose size is determined by the
number of material property regions, ΔE is the vector of updates
to the material property distribution defined by the regions, and
α is an empirical regularization parameter determined by the
methods of Joachimowicz et al. [27]. Modulus values in the
mesh are updated by ΔE until an error tolerance on the relative
objective function error evaluation is reached, at which point the
reconstructed elastographic image is created from the current
distribution of E values in the mesh regions.

The implementation of the demons algorithm used in this
study to generate boundary conditions for the aforementioned
model was based on the Insight Toolkit [28], [29], and was
derived from the original demons registration presented by
Thirion. This included the use of simple Gaussian smoothing
of the deformation field as the regularization of the registration.
It should be noted that there is a multitude of regularization
schemes in the literature, including those that imitate linear
elasticity [30], or elastic-like vector filters [31], which could
potentially improve the results presented here. The two param-
eters of the registration were the number of iterations (single-
resolution registrations) and the standard deviation of the Gaus-
sian smoothing kernel. The number of iterations required was
chosen separately for each dataset such that the updates to the
deformation field were observed to become very small by the
end of the registration. In results not presented here, a brief
sensitivity analysis was performed on the sigma value for the
registration of the simulations, and it was found that over a range
of 0 to 3 voxels for sigma, that 1.5 resulted in the most accu-
rate deformation field. As the smoothing became stronger than
1.5, we noticed that the error became greater around the area
of the depressions, as the kernel began to excessively smooth
the depression displacements. Therefore, this number was used
in all of the reported experiments. When the registration is exe-
cuted, it produces displacements at the centroid of every voxel.
The displacement vectors are then interpolated onto the nodal
coordinates of the FE mesh using a cubic 3-D interpolation.
The displacements that are assigned to boundary nodes are thus

designated as Type-I boundary conditions for the biomechanical
model.

B. Simulations

In order to evaluate the demons method of generating bound-
ary conditions for MIE as described earlier, a controlled ex-
periment was conducted by obtaining a CT and an MR image
volume of human breast tissue and registering them to target
images created by simulated mechanical loads. The two im-
age sets (CT and MR) of normal tumor-free human breast tissue
were obtained from the UC-Davis Department of Radiology and
the Vanderbilt University Institute of Imaging Science, respec-
tively, for use in this study. The surface of each tissue volume
was segmented from the surrounding structures in the images
with ANALYZE 8.1 (Mayo Clinic, Rochester, MN) and the re-
sulting segmentation was used to create a 3-D FE mesh using
a tetrahedral mesh generation algorithm [32]. For both the CT
set and the MR set, a 2-cm spherical tumor was synthetically
implanted in the center of the respective mesh and assigned an
elasticity value six times higher than the surrounding material,
which is consistent with breast cancer elasticity contrasts in the
literature [33]. This contrast ratio of 6:1 was thus considered to
be the goal for reconstruction in both cases.

Each FE mesh was deformed by applying a depression to
one side of the tissue volume. The displacements predicted by
the model were then used to deform the CT and MR source
images to provide simulated target images. Using the pre- and
postdeformed image volumes, the demons registration could be
executed and compared to the known displacements responsible
for the simulated tissue deformations. In addition, the surface
displacements could be used to test the accuracy and fidelity
of the 3-D MIE reconstructions conducted with demons-based
boundary conditions. The registration for both simulations uti-
lized 2500 iterations with a σ of 1.5 voxels.

C. Phantom Experiment 1

After demonstrating the efficacy of the demons method in
this highly controlled in silico simulation study, the next step
was to apply the same tests to real-world data with realistic
amounts of noise and uncertainty. To this end, phantom images
were acquired to evaluate the ability of the demons method to
produce accurate boundary conditions when compared to the
current gold standard method.

As described in [11], the phantom used in this study (here-
after referred to as Phantom 1) was created from an 8% w/v
solution of polyvinyl alcohol (Flinn Scientific, Batavia, IL) in
an anthropomorphic breast mold. To provide intrinsic fiducial
markers, 34 1-mm stainless steel beads were distributed over
the phantom directly under its surface. It should be noted that
except for the beads, there was little to provide intensity hetero-
geneity within this phantom. A mechanical load was applied to
the phantom in a custom-built acrylic chamber via a neoprene
sphygmomanometer air bladder (W.A. Baum, Copiague, NY)
positioned on the side of the phantom.

The phantom was subjected to three levels of compression
by inflation of the air bladder: no compression, inflation with
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50% of the maximum bladder pressure, and full inflation of
the bladder. At each state of compression, CT images were ac-
quired with dimensions 512 × 512 × 174 and 0.54 × 0.54 × 1
mm voxel size. The images were then segmented and triangular
meshes were created from the surface geometry of the phantom.
From the surface meshes, the fiducial bead centroid positions
were localized and then used in a TPS interpolation to provide
the gold standard boundary conditions for two scenarios: 1)
deforming from the uncompressed state to the 50% compres-
sion state; and 2) deforming from the uncompressed state to
the 100% compression state. In generating the TPS boundary
conditions, 33 of the beads were used in calculating the inter-
polation, while the last fiducial was used to evaluate the target
registration error (TRE). In an effort to evaluate the error over
the entire surface, the TPS registration was conducted 34 times,
each time using a different fiducial for the TRE calculation. The
final TRE for the TPS gold standard was the average of these
repetitions. The demons method was then used independently
to generate boundary conditions mapping from the pre- to the
post-deformed surface of the phantom for the two scenarios,
and compared to the control TPS result, as well as the previ-
ous semiautomated methods (Laplace equation and diffusion
methods). The registration in both scenarios utilized 120,000
iterations and σ of 1.5 voxels.

D. Phantom Experiment 2

Following the evaluation of the performance of the demons
method in generating boundary conditions in the aforemen-
tioned phantom study, a second phantom experiment was de-
signed to test the performance of demons-based boundary con-
ditions in the context of a full MIE reconstruction. Two more
phantoms (hereafter referred to as Phantom 2 and Phantom 3)
were constructed of polyvinyl alcohol cryogel to test the accu-
racy of the reconstruction when validated with material testing
data. As described by Ou [34], the two new phantoms were cre-
ated in a manner similar to the first phantom. However, these
phantoms each included a 25-mm diameter phantom tumor com-
posed of a stiffer gel than the bulk gel. Barium sulfate was
mixed with the tumor gel and was randomly added in streams
to the bulk gel to provide contrast for the CT images. Similar to
the first phantom study, polytetrafluoroethylene spherical beads
(McMaster-Carr, Atlanta, GA) with a 1.6-mm diameter were
distributed just under the surface of the phantoms in order to
facilitate a TPS interpolation to act as the gold standard bound-
ary conditions. Phantom 2 received 35 beads, while Phantom 3
received 32 beads. The TRE for the TPS registration was calcu-
lated as before. To provide validation for MIE reconstructions
in Phantoms 2 and 3, independent mechanical tests were per-
formed on samples of the two gel elasticity constituents of the
phantom. A sample from each gel (tumor and normal) was set
aside for this testing during fabrication. Each was subjected to
compression testing using an ElectroForce 3100 material tester
(Bose, Eden Prairie, MN). The instrument was programmed to
provide fixed displacements to the cryogels when the samples
were mounted on a platform over a 22.5 N load cell. Each sam-
ple was subjected to five cycles of a load rate of 0.15 mm/s

and then held for 300 s for strains of 2%, 5%, 10%, and 15%
in compliance with small deformation theory. Average elastic
modulus values for the two gels were obtained from the slope
of the stress–strain curves of the steady-state loading phases.

The phantoms were imaged in the previously described air
bladder chamber using a CT scanner (Philips Medical, Bothell,
WA). The Phantom 2 CT images (pre- and post-deformation)
were reconstructed with dimensions of 512 × 512 × 143 and
voxel spacing of 0.27 × 0.27 × 0.8 mm, while the Phantom
3 CT images were reconstructed with dimensions of 512 ×
512 × 139 and voxel spacing of 0.26 × 0.26 × 0.8 mm. The
predeformed source image surfaces were then used to create
tetrahedral meshes. The Phantom 2 mesh was constructed of
30, 900 nodes and 166,509 elements, while the Phantom 3 mesh
was constructed of 33,930 nodes and 183,609 elements. The
TPS boundary conditions were generated using the implanted
beads as control points for a TPS interpolation between the
pre- and post-deformation surfaces for each phantom set. The
PDE-based and demons methods were then utilized to indepen-
dently generate boundary conditions for the two phantoms. The
demons registration was set to run for 30,000 iterations with a
σ of 1.5 voxels.

The accuracy of the demons-based boundary conditions was
evaluated by comparing the gold standard TRE of the TPS
method, the TRE of the PDE-based methods, and the TRE of the
points when used in the demons method. The appropriateness of
demons-based boundary conditions was then tested by employ-
ing them in an MIE reconstruction comparing elastic modulus
values to independent measurements. To constrain the problem,
only two regions of material properties were designated in the
mesh: the tumor and the bulk normal gel. A priori knowledge
of the location of the tumor was also used by segmenting the
tumor margins from the normal gel beforehand in order to as-
sign the material types to their corresponding elements in the
FE model. The results of the MIE reconstruction using demons-
based boundary conditions were also compared to the results
of the reconstruction when using TPS boundary conditions and
those derived from the PDE methods. Poisson’s ratio used in
the model for both experiments was 0.485 to approximate an
incompressible tissue-mimicking material.

III. RESULTS

A. Simulations

The CT and MR image source images were acquired and
then deformed with the set of known boundary conditions as
shown in Fig. 1. The deformations applied in both cases were
approximately Gaussian in distribution across the depressions.
The maximum displacement experienced by the CT set was
approximately 13 mm, whereas the maximum experienced by
the MR set was approximately 12 mm.

The demons method was then used to register the source im-
ages to their respective target images and automatically generate
boundary conditions for the source meshes. The TRE calculated
from the boundary nodes was then calculated, and is visualized
in Fig. 2.
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Fig. 1. Representative slices from the two datasets used for the simulations.
Slices (a) and (b) show the pre- and postdeformed CT sets, whereas slices (c)
and (d) show the pre- and postdeformed MR sets, respectively.

Fig. 2. TRE distribution (in mm) across the surfaces of (a) the CT mesh and
(b) the MR mesh for the demons-based boundary conditions compared to the
known conditions.

The light surfaces of the mesh correspond to areas that ex-
perienced greater error when compared to the known boundary
conditions. Averaging over all the nodes on the boundary, the CT
set experienced a mean error of 0.6 mm ±0.3 mm with a max-
imum error of 1.5 mm, which represents an average difference
of about 17% between the magnitude of the TRE vectors and
the magnitudes of the known displacement vectors. The MR set
experienced a mean error of 0.5 mm ± 0.3 mm with a maximum
error of 1.9 mm, which represents a mean difference of about
23%. The demons-based boundary conditions were then utilized
in an MIE reconstruction in an attempt to recapture the known
6:1 contrast in the simulations. The tumor-to-normal elasticity
contrast calculated by the MIE algorithm was 3.63:1 for the CT
set, and was 5.46:1 for the MR set. The results of the boundary
condition accuracy and the resulting contrast ratios are shown

in Table I, as well as a comparison with the results of the three
other boundary condition methods.

Fig. 3 illustrates the relationship between elasticity contrast
ratios (tumor-to-normal) and the associated objective function
values in the MIE optimization routine. The minima in the ob-
jective function space correspond to elasticity contrast values
which resulted in an optimally deformed image. Shown in the
figure are the objective function values of the deformations using
the known boundary conditions (as the control) and the demons
boundary conditions.

B. Phantom Experiment 1

In the first phantom experiment, CT images of Phantom 1
were acquired at no compression, 50% compression, and 100%
compression and segmented from the compression chamber.
The demons method was used to generate Type-I boundary con-
ditions to map from the uncompressed state to the 50% state,
and another set of boundary conditions to map from the un-
compressed state to the 100% state. The implanted beads on
the surface of the phantom were used to calculate the TRE of
this surface registration in both cases. The average TRE for
50% compression when using the demons boundary conditions
was approximately 3.3 mm ±1.32 mm, with a maximum TRE
of 6.1 mm. The average TRE for 100% compression was ap-
proximately 6.8 mm ±3.2 mm, which a maximum of 14.2 mm.
The Phantom 1 results are directly compared in Table II to
the gold standard TPS result and the results of the previous
semi-automated methods, as well as to analogous results from
Phantom 2 and Phantom 3.

C. Phantom Experiment 2

In the second phantom experiment, CT images of Phantom 2
and Phantom 3 were acquired and segmented from the compres-
sion chamber for pre- and post-depression. Phantom 2 is shown
in Fig. 4 as an example. The embedded tumor in Phantom 2
was about 12 mm from the surface. The tumor in Phantom 3
was located further from the site of depression, at about 26 mm
from the surface. Qualitatively, the streams of barium sulfate
which were distributed throughout the gel provided an increase
in the image texture of these phantom images over the Phantom
1 images, which lacked this texture enhancement.

The demons method was applied to both phantoms to acquire
Type-I boundary conditions for each mesh. The TRE of the
demons-based conditions was evaluated by comparing to the
known point correspondence of the implanted surface beads.
The average demons-based TRE for Phantom 2 was calculated
to be approximately 1.6 mm ±1.0 mm, with a maximum expe-
rienced TRE of 4.9 mm. For Phantom 3, the average TRE was
1.9 mm ±1.2 mm, with a maximum TRE of 4.3 mm. These
values are directly compared in Table II to the performance of
the gold standard TPS interpolation method and two previous
semiautomated methods, as well as the Phantom 1 results. As
the results showed that the PDE-based methods were not notably
more accurate for Phantoms 2 and 3 than the TPS or demons
methods, only the demons method and TPS method were used in
MIE reconstructions for comparison. The material testing data
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TABLE I
COMPARISON OF BOUNDARY CONDITION MAPPING ERROR AND MIE RECONSTRUCTION RESULTS BETWEEN THE FOUR METHODS FOR THE SIMULATIONS

Fig. 3. Objective function maps for (a) the CT simulation and (b) the MR
simulation. The objective function value calculated by the optimization frame-
work is plotted on the ordinate axis against selected elasticity contrast ratios
(tumor-to-normal) as affected by the boundary conditions. Shown are the objec-
tive maps of the demons case (solid lines) and the known boundary conditions
as the control (dashed lines). The ordinate is scaled in both cases.

resulted in an average contrast ratio of 4.10:1 for the gels. The
demons-based boundary conditions were then used in an MIE
reconstruction for each phantom. The tumor-to-normal elastic-
ity contrast for Phantom 2 was calculated by the MIE algorithm
to be 4.70:1.

The elasticity contrast for Phantom 3 was calculated to be
2.46:1. In Table III, these values are compared to the contrast
ratios that were calculated by MIE using the gold standard TPS
boundary conditions, and to the material testing data as valida-
tion for the accuracy of the MIE method.

Fig. 5 illustrates the relationship between elasticity contrast
ratios (tumor-to-normal) and the associated objective function
values in the MIE optimization routine. Shown in the figure are
the objective function values of the deformations using the TPS
boundary conditions (as the control) and the demons boundary
conditions.

IV. DISCUSSION

A. Simulations

The demons-based boundary conditions resulted in deformed
meshes for the simulation experiment which were qualitatively
very close in appearance to the known target meshes for both
the CT and MR datasets. Quantitatively, the average difference
between the demons conditions and the known conditions was
about 20% for both sets, which was an encouraging indication
of the ability of the demons methods to automatically provide
boundary conditions that would have adequate accuracy for use
in MIE. In Fig. 2, it can be seen that the largest errors were
spread across the regions of high curvature around the tip of the
tissue volume and in the dip of the artificial depression for the
CT set, while in the MR set the errors were mostly localized to
the depression area.

The accuracy of the demons-based boundary conditions for
the simulations was compared to the results of past methods in
Table I. Unsurprisingly, the TPS method remained the most
accurate of the four methods when considering the average
boundary condition error. The demons method performed about
as well as the Laplace method, and clearly outperformed the
diffusion method for the CT set in terms of the average error.
However, the demons method performed favorably compared
to all of the other methods in terms of maximum TRE for that
set, as its maximum error was well below those of the other
methods. In terms of average surface TRE, the demons method
was also comparable to the PDE-based method for the MR set
as well. However, with the exception of the TPS method, the
demons boundary conditions again compared favorably against
the other methods in terms of the maximum error experienced
on the boundary.

The results of the boundary condition accuracy experiment
were encouraging and indicated that demons-based boundary
conditions were a feasible solution to the MIE boundary con-
dition problem. The results of the MIE reconstruction for the
CT and MR simulation sets were shown in Table I and com-
pared to the results of reconstructions that utilized boundary
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TABLE II
COMPARISON OF BOUNDARY CONDITION MAPPING ERROR BETWEEN THE FOUR METHODS FOR THE TWO PHANTOM EXPERIMENTS

Fig. 4. Representative (a) source and (b) target geometry of the anthropomor-
phic phantoms, with center slices. Phantom tumors as shown here were present
in Phantoms 2 and 3 only.

TABLE III
MIE-RECONSTRUCTED ELASTICITY CONTRAST RATIOS FOR PHANTOMS 2 AND

3 AND GEL MATERIAL TESTING DATA

conditions generated from the other three methods. Unsurpris-
ingly, the table shows that the TPS boundary conditions, which
were the most accurate of the four, resulted in elasticity con-
trast ratios for both sets that were closer to the known ra-
tio of 6:1 than any of the other boundary conditions. For the
application of the demons registration-based boundary condi-
tions to the CT dataset, the elasticity reconstruction with spatial
a priori knowledge of the tumor converged to a contrast ratio
of 3.63:1. Similarly, the MR data resulted in a contrast ratio
of 5.46:1. Compared to the known designated material contrast
of 6:1, there is clearly a discrepancy in these reconstruction
behaviors that needs to be investigated. The difference, partic-
ularly between the different modalities of input data, is likely
due to a combination of factors including mesh geometry and
image quality. In addition, the distance of the tumor from the
area of greatest displacement likely affects the accuracy of the
reconstruction since the displacements of nodes are expected
to decrease the further they are located away from the depres-

sion. These simulations did not investigate the effect of tumor
distance on the reconstruction. Notably, the diffusion method
resulted in a much higher contrast ratio for the CT set than
the demons method, while the Laplace method resulted in a
contrast ratio that was closer to 6:1 but was an underestimation
rather than an overestimation of the true value. The ability of the
demons-based conditions to provide a contrast that was more
accurate than the diffusion method for the CT simulation was
encouraging. Even more suggestive was the behavior of the MR
reconstruction. The Laplace and diffusion boundary conditions
introduced instabilities into the MIE algorithm, which resulted
in contrast estimates that were unreasonably higher than the true
value. The demons-based conditions allowed the algorithm to
provide a contrast estimate that was closer to the known value.

Introducing the inexact demons boundary conditions to the
model had a noticeable effect on the objective function profile,
as shown in Fig. 3, by shifting the minimum objective function
value to a different optimal elastic contrast ratio for both the CT
and the MR simulation. The shift was much more pronounced
for the CT simulation, for which the new optimal objective
function value corresponded to a contrast ratio of about 3.80:1
instead of 6:1 as predicted by the known boundary conditions.
Additionally, the convexity of the function was altered signif-
icantly, with very little variation in the objective function for
contrast ratios in the immediate vicinity of the global minimum.
The MR simulation also experienced a shift in the optimal ob-
jective function when demons boundary conditions were used
instead of the known conditions, with a new optimal contrast
of about 5.50:1. This represented only a slight decrease from
the desired 6:1 prediction. The objective function values arise
from the image similarity metric, which again suggests that the
difference in objective maps between the two simulations is
influenced by the image texture characteristics. It is also clear
that the addition of inaccuracies within the boundary conditions
alters the nature of the objective function by injecting local min-
ima and undesirable variations, which may necessitate a filtering
approach to ensure global minima are found.

B. Phantom Experiment 1

While the efficacy of the automated demons method was
shown by the simulations to be comparable to the semi-
automated Laplace method and somewhat better than the
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Fig. 5. Objective function maps for (a) Phantom 2 and (b) Phantom 3. The
objective function value calculated by the optimization framework is plotted
on the ordinate axis against selected elasticity contrast ratios (tumor-to-normal)
as affected by the boundary conditions. Shown are the objective maps of the
demons case (solid lines) and the known boundary conditions as the control
(dashed lines). The ordinate is scaled in both cases.

diffusion method, the simulations were in several ways per-
formed under optimal conditions. The image volumes qualita-
tively had a great deal of heterogeneity and texture on which
the demons registration could act, and with which the MIE op-
timization routine could use to help accurately update material
property assignments. There was also an absolute truth with
which to compare, in the form of known boundary conditions.
The first phantom experiment sought to provide additional chal-
lenge to the demons method in its ability to generate reasonably
accurate boundary conditions.

In the first phantom experiment, the results of the demons
method were compared to the results of the three other meth-
ods in Table II for the two compression states applied to
Phantom 1. The table shows that the demons algorithm per-
formed about as well in relation to the other PDE methods as it
did in the simulation experiment. Note that Phantom 1 had very
little image heterogeneity and would indicate that with a lack
of image intensity contrast that the demons-based registration

is at least no worse than that achieved by the PDE methods.
The gold standard TPS method gave the lowest error. As seen in
Table II, the errors given by all of the methods increased when
a larger deformation was applied to Phantom 1. The demons
boundary conditions became slightly worse in relation to the
other methods at the increased level of compression, which sug-
gests that the number of iterations used by the demons algorithm
may need to be increased to accommodate larger differences be-
tween pre- and post-deformation images, or that the algorithm
may be somewhat more sensitive to the lack of image intensity
heterogeneity.

In moving from simulation data to “real-world” phantom data,
the errors experienced by all four of the methods increased sig-
nificantly. The Phantom 1 image data were different from the
simulation data in several key respects. For example, the target
image volume of Phantom 1 represents a completely new ac-
quisition, whereas in the simulation work, postdeformed image
sets were generated from the predeformed set. This discrepancy
in target image acquisition introduces some uncertainty to the
determination of source-to-target correspondence. Another ma-
jor change from the simulation experiment was the markedly
smaller presence of texture in the images due to the homogene-
ity of the gel. More specifically, the TRE performance varied
among the Phantom 1, Phantoms 2 and 3, and simulation re-
sults which are listed, respectively, in terms of increasing image
texture. Qualitatively observing the results across Tables I and
II, the trend of decreasing TRE with increasing texture for the
demons-based approach can be observed.

C. Phantom Experiment 2

It was shown in the first phantom experiment that the demons
method could produce reasonably accurate boundary conditions
compared to the semiautomated Laplace and diffusion meth-
ods. The second phantom experiment introduced another set of
real-world data, but the images from this experiment had more
texture in the form of barium sulfate as a contrast agent, which
was intended to allow the demons registration to provide more
accurate boundary conditions as needed by the MIE algorithm.
In addition, the presence of the stiff tumor allowed for a test of
the MIE algorithm’s ability to distinguish elasticity contrast in a
phantom while using demons-based boundary conditions. This
experiment was thus the first in which demons-based boundary
conditions were used in an MIE reconstruction for which the
true boundary conditions were not absolutely known.

The surface errors calculated from the fiducial point corre-
spondence for the TPS, Laplace, diffusion, and demons methods
were compared in Table II for Phantom 2 and Phantom 3. Un-
surprisingly, the TPS method performed better with respect to
mean accuracy. Notably, the maximum error experienced by the
demons method was less than that of the TPS method, which
was similar to the result of the CT simulation study. The two
PDE-based methods presented error which was similar in scope
to their Phantom 1 results. Overall, the demons method per-
formed considerably better on these two phantom sets than it
did on Phantom 1, and notably outperformed the Laplacian and
diffusion methods. This is most likely due to the increase in
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image texture which can be qualitatively observed from visual
inspection of the images. Given that clinical images tend to
have even more image texture and geometric heterogeneity than
found in these phantom images, further investigation into the
efficacy of the demons method seems merited.

The utilization of the demons boundary conditions in MIE
reconstructions in the second phantom experiment successfully
resulted in realistic tumor-to-normal modulus contrast ratios for
both phantoms. Due to the observation that the demons method
resulted in boundary conditions with comparable (and some-
times superior) accuracy to the Laplace and diffusion methods,
only the TPS and demons boundary conditions were utilized in
these reconstructions. The results for the TPS- and demons-
based MIE reconstructions were compared to each other in
Table III as well as to the material tester results. As the ta-
ble shows, the elasticity contrast ratios for each phantom when
using TPS boundary conditions were reconstructed to values
with 14–40% difference from the material testing data average.
The reconstructions using demons boundary conditions resulted
in contrast ratios which were very similar to those of the TPS-
based reconstructions, with only a slight drop in contrast. This
suggests that the demons boundary conditions were sufficiently
accurate for the MIE algorithm to provide a reasonable estimate
of the actual gel contrast.

Compared to the control TPS boundary conditions, the
demons conditions had a noticeable effect by shifting the min-
imum objective function value to a different optimal elastic
contrast ratio for both phantoms, as shown in Fig. 4. Addition-
ally, the convexity of the function was altered slightly for each.
The global minimum of the Phantom 2 objective function was
located at an approximate contrast ratio of 4.20:1, which was
more similar to the material testing average of 4.10:1 than the
case in which TPS boundary conditions were used. The actual
contrast ratio to which the MIE reconstruction converged was
4.70:1, which was located on the slope of a local minimum. This
behavior was most likely a result of the regularization parame-
ters used in the Levenberg–Marquardt optimization. In the case
of Phantom 3, the global minimum was about 2.50:1, which
was the approximate value to which the algorithm converged.
In this case, the global minimum decreased slightly when using
demons instead of TPS conditions.

Observations of Figs. 3 and 5 indicate the change in algorithm
performance with respect to simulation and physical data. While
the nature of a simulation-to-real transition may be responsible
for the increased error in reconstruction, there are several other
likely factors involved. Overconstraint of the problem is a pos-
sible candidate with the incorporation of the spatial prior. The
MIE method works by sampling similarity regionally, i.e., the
method breaks up evaluation into many similarity zones (usu-
ally over 100) distributed spatially over the domain. The method
tries to improve the similarity among all the zones with the use
of only two parameters in this case (the elasticity of the back-
ground and tumor). This constraint within this type of problem
can lead to this type of oscillatory behavior. Another possible
reason is the inaccuracy in boundary condition determination
due to the dramatic difference in image heterogeneity between
simulation and real data. This is supported by the change in TRE.

Related to this, it is interesting to note the difference between CT
and MR reconstruction for the simulation work associated with
Fig. 3 and in light of Table I. The first observation can be made
by comparing the control objective function map across CT and
MR simulation sets in Fig. 3. Both simulation sets had a contrast
ratio of 6:1, with the only difference being the level of inten-
sity heterogeneity, and potential different tissue-volume/tumor
geometries/locations. The CT control had a shallower mini-
mum which may affect the reconstruction. When adding to this
observation, the objective function maps associated with the
demon-based boundary condition it would seem that the CT re-
construction may perform better due to its convexity; but when
observing how the minimum has been shifted, and the shape of
the control that has no error in boundary conditions, it can be
seen that in fact the MR demons-based objective function maps
more closely to its control which is reflected in the elasticity
contrast ratio.

V. CONCLUSION

The simulations and phantom experiments conducted in this
study indicate that while TPS interpolation remains the most
accurate method used, thus far in MIE for generating bound-
ary conditions, the demons method shows promise in situations
where fiducial point correspondence data may not be available.
In addition, when transitioning from simulation to real data, the
discrepancy in performance between TPS and the demons-based
boundary condition mapping becomes less (at least in cases
where image intensity contrast within the domain is available).
Furthermore, while the higher accuracy of the TPS method is
desirable, the much higher level of manual user interaction and
numerous fiducials needed for the method make clear the de-
sire for alternative methods of boundary condition generation.
The demons method proposed represents a fully automated ap-
proach.

While the results are encouraging, the challenge of predicting
(prior to workflow initiation) how well a pre–post-deformation
image set will fare prior to execution of the demons registration
and MIE optimization routine still remains. Since the demons
registration algorithm possesses diffusive behavior based upon
intensity contours as described in [17], it is obvious that the im-
ages require a certain level of texture and intensity heterogeneity
in order to provide these membranes a meaningful registration.
This is one of the likely causes of the varying performance of
the demons method in generating accurate boundary conditions
among the experiments presented in this paper. In work not pre-
sented here, our group observed similar error performance when
using a more recent diffeomorphic log-domain version of the
demons registration algorithm. While the registration error was
virtually the same as the original demons implementation, it is
possible that with noisier images, the diffeomorphic nature of
the more recent demons may help minimize phenomena such
as collapsed mesh elements due to overlapping displacements.
Development of a feasibility metric which can predict the suc-
cess of applying the MIE algorithm to a given image set is a
needed next step for the project.
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In addition to a threshold criterion to evaluate the potential for
a successful reconstruction, the need to generate more realistic
phantoms with controllable stiffness properties is also necessary.
The breast has a complex image signature even within CT and
the reproduction of those patterns coupled with controllable
elasticity properties is very challenging. While obstacles remain,
the results presented here demonstrate the potential of treating
elastographic reconstructions using nonrigid image registration
approaches and that the possibility of full automation is also
within reach.
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