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Abstract—In open abdominal image-guided liver surgery, sparse
measurements of the organ surface can be taken intraoperatively
via a laser-range scanning device or a tracked stylus with rela-
tively little impact on surgical workflow. We propose a novel non-
rigid registration method which uses sparse surface data to recon-
struct a mapping between the preoperative CT volume and the
intraoperative patient space. The mapping is generated using a
tissue mechanics model subject to boundary conditions consistent
with surgical supportive packing during liver resection therapy.
Our approach iteratively chooses parameters which define these
boundary conditions such that the deformed tissue model best fits
the intraoperative surface data. Using two liver phantoms, we gath-
ered a total of five deformation datasets with conditions compa-
rable to open surgery. The proposed nonrigid method achieved a
mean target registration error (TRE) of 3.3 mm for targets dis-
persed throughout the phantom volume, using a limited region of
surface data to drive the nonrigid registration algorithm, while
rigid registration resulted in a mean TRE of 9.5 mm. In addition,
we studied the effect of surface data extent, the inclusion of sub-
surface data, the trade-offs of using a nonlinear tissue model, ro-
bustness to rigid misalignments, and the feasibility in five clinical
datasets.

Index Terms—Deformation, image guided surgery, liver, regis-
tration.

I. INTRODUCTION

L IVER resection surgery in the open abdomen is a chal-
lenging setting for the application of image-guided

surgical techniques which have been largely limited to proce-
dures involving the cranium in the past. The difficulty is that
surgical liver presentation typically begins with mobilization
from the surrounding anatomy, followed by organ stabilization
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by packing support material underneath and around the organ.
Thus, large deformations (on the order of several centimeters)
typically occur between the preoperative (when CT imaging
was performed) and intraoperative organ states.
While intraoperative imaging has been used to document the

extent of deformation [1], and guidance solutions using intra-
operative imaging have been proposed [1]–[5], the workflow
requirements and the challenges of integrating preoperative
imaging data continue to hinder adoption. As a result, a
minimally encumbered accurate solution to efficiently align
preoperative data to the intraoperative patient state would be of
high significance.

A. Related Work

A review by Hawkes et al. [6] recognizes the limitations of
the rigid body assumption in image-guided interventions and
discusses nonrigid registration problems on various types of
data using free-form deformation models, motion models, sta-
tistical models, and biomechanical models.
One area that has had considerable investigation is the non-

rigid registration of preoperative imaging data using limited in-
traoperative data and biomechanical models within the context
of brain-shift compensation. Typically these approaches involve
using intraoperative cortical surface deformation measurements
to guide a volumetric biomechanical model [7]–[10] to produce
a full 3-D deformation field which best aligns preoperative po-
sitions to their intraoperative counterparts. Some have chosen
alternative or enhanced approaches using intraoperative ultra-
sound data [11]–[14].
Guidance for applications in the liver began with studies

focused on modeling and accounting for respiratory motion
[15]–[18]. The need for accounting for this motion within
the context of radiation therapy for abdominal organs is quite
compelling [19].
Cross-sectional imaging with CT and/or MRI is critical to

preoperative planning, used not only to assess disease extent but
also to delineate the relationships between the tumor(s) and the
vascular and biliary anatomy. Such information is essential for
the safe conduct of complete tumor resections. The use of in-
traoperative ultrasonography represents a natural extension of
these imaging techniques, allowing the acquisition of updated,
real-time information for tumor resection [3]. Thus the collec-
tion of subsurface data has been well established and integrated
into current workflow schemes. However, noise and speckle in-
herent to ultrasound will always limit contrast and image quality
when compared to CT and MR. Thus, a variety of approaches
to register preoperative image sets to vascular features using
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intraoperative 3-D ultrasound has been investigated, such as
the combination of iterative closest point (ICP) algorithms and
B-splines proposed by [20], and a framework combining land-
marks and intensity information in [4].
Similarly, an approach based on a set of assumed deformation

modes has been used to align a model to a simulated patch of in-
traoperative surface data [21]. This is perhaps the most closely
related work to the approach in this paper. The main difference
arises from the fact that in [21], free-form deformation modes
are used which are unrelated to the mechanics of the organ it-
self (e.g., rigid-body modes, uniform bending, and Gaussian
twisting along each axis). In contrast, we propose to use defor-
mation modes based on the response of a patient-specific tissue
mechanics model to the types of boundary conditions likely to
be experienced in surgery, as detailed in the following section.
In our prior work, Cash et al. [22] studied a combination of

rigid and nonrigid registrations to intraoperative surface data
that utilized a large extent of coverage and reported encour-
aging results. Using a similar rigid-followed-by-nonrigid ap-
proach Clements et al. [23] developed a deformation atlas ap-
proach similar to [10]. Other work by Dumpuri et al. empha-
sized approaches that reduced the preoperative computational
burden and were more accurate [24]. All of these approaches
used a linear elastic finite element model generated from the pa-
tient’s CT data with each investigating techniques to deploy dis-
placement boundary conditions on the organ surface in order to
minimize the remaining partial surface misfit resulting after the
rigid alignment. The boundary conditionswere determined from
signed closest point distances between the data and the model
surface, using various methods for extrapolating these condi-
tions across the entire liver surface, e.g., a surface Laplacian,
or a radial filter in the case of Dumpuri et al. [25]. While each
uses various combinations of preoperative/intraoperative com-
puting, all have the common attractive feature of correcting for
deformations without costly, awkward intraoperative imaging
equipment.

B. Contributions

In the present work, our aim is to improve accuracy by devel-
oping a new nonrigid registration approach which reconstructs
the likely physical causes of deformation, and to improve effi-
ciency by not requiring a finite element tissuemodel to be solved
in the intraoperative setting. Our proposed approach aligns a
biomechanical liver model (built from preoperative images) to
incomplete geometric data that represents sparse liver region lo-
cations gathered intraoperatively (e.g., anterior surfaces, tumor
centroids). Unlike prior methods that were extrapolative in na-
ture, our proposed approach casts the nonrigid registration as a
nonlinear optimization problem. Based on very limited surgical
organ presentation assumptions, a set of boundary conditions is
parameterized on the deformation-inducing regions of the organ
surface. Those parameters are then reconstructed via an iterative
algorithm which minimizes the error between the incomplete
geometric data and the deformed model counterpart, where pre-
cise correspondence is not known or assumed a priori.
We present the details of our proposed method in the fol-

lowing section. In Section IV, we give the results of experiments
with liver phantoms undergoing deformations consistent with a

typical surgical presentation, and demonstrate that our proposed
iterative approach yields more accurate predictions than both
rigid registration alone and our previous nonrigid method which
uses boundary condition extrapolation [24]. We also explore the
effect of incorporating small amounts of additional subsurface
data, such as could be gathered by workflow friendly intraoper-
ative imaging modalities like ultrasound. We investigate sev-
eral aspects of the proposed approach using a representative
phantom case, including the effect of perturbations in the initial
rigid registration, the effect of using a geometrically nonlinear
model, the effect of the extent of available surface data, and the
effect of varying the parameters of our algorithm. Finally, five
examples using clinical data further illustrate the feasibility of
our method.
Some of our work on this subject was presented in prelimi-

nary form in [26]. In this paper, we offer several significant con-
tributions beyond our early work including 1) generalization of
our basic approach and extensive description of the methods in-
volved in Section II, 2) numerous additional experimental inves-
tigations in liver phantoms and extensive experimental analysis
of our approach in Section IV, and 3) feasibility studies using
clinical case data.

II. METHODS

We present our nonrigid registration algorithm as a central
component in the context of a patient-specific data pipeline for
surgical navigation. Prior to the registration realization, we per-
form several data acquisition and processing steps. The proce-
dures described below were used in both the phantom experi-
ments and the clinical examples presented in Section IV.

A. Intraoperative Data Collection

Our proposed method is based on intraoperatively acquiring a
set of 3-D points corresponding to a portion of the organ surface.
For this, we use a custom-built commercial laser range scanner
(Pathfinder Technologies, Inc., Nashville, TN, USA). Intraop-
eratively, once the organ is presented, the laser range scanner
sweeps a laser line over the surface of interest and records both
shape and color information, i.e., a textured point cloud. Using
the color information from the field of view, the organ surface
can be rapidly segmented leaving only the sparse liver geomet-
rical data. Alternatively, surface points could be gathered via an
optically tracked stylus which can be swabbed over the organ
surface. Once intraoperative surface data are acquired, anatom-
ical landmarks are designated from the data (e.g., falciform lig-
ament, inferior ridges, round ligament) and a salient feature ICP
method developed in [27] is used to obtain an initial rigid reg-
istration.
With respect to additional geometric information, intraopera-

tive ultrasound is routinely used within liver resection surgery.
In addition, recently commercial guidance systems have begun
to integrate tracking information with the ultrasound to provide
references between ultrasound and preoperative images (e.g.,
Pathfinder Technologies Inc., has a tracked attachment for a
-shaped ultrasound transducer). Given that tumors are often lo-
calized with ultrasound, it is conceivable that a tracked probe
could be used to locate one or more points of interest inside
the organ, e.g., a tumor centroid or large vessel bifurcation. We
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investigate the effect of including such additional data in our
phantom experiments in Section IV.

B. Finite Element Model From Preoperative Image Set

CT image volumes are typically acquired approximately one
week prior to performance of the surgical procedure. For clin-
ical cases we use a semiautomatic method developed by Dawant
et al. [28] and Pan and Dawant [29], based on the level set
method proposed by Sethian [30], to segment the liver from
the surrounding anatomical structures in the preoperative tomo-
grams. For the phantom cases studied in Section IV, we man-
ually segmented the liver surface using Analyze (Biomedical
Imaging Resource, Mayo Clinic) due to the ease of segmenting
phantom data. Isosurfaces are generated from the liver segmen-
tations via the marching cubes algorithm [31] and smoothed via
radial basis functions (RBF) (FastRBF toolkit, FarField Tech-
nology, Christchurch, New Zealand). A tetrahedral mesh is then
generated from this surface using the customized mesh-genera-
tion software [32]. Using a nominal tetrahedron edge length of
4 mm results in a triangular surface representation with a reso-
lution such that discrepancies between the RBF and the surface
mesh are minimal.
Our linear elastic model entails the use of the standard 3-D

Navier–Cauchy equations for the displacement field

(1)

where is Young’s modulus, is Poisson’s ratio, is the 3-D
displacement vector at a point in the body, and is the applied
body force distribution. Using linear basis functions defined
on the tetrahedral elements, we perform the standard Galerkin
weighted residual method to obtain the standard linear system
of equations of the form

(2)

where is the global stiffness matrix,
is the vector of nodal

displacements, and contains the contributions of the applied
body forces and/or surface tractions at each node.
Displacement boundary conditions are applied at a subset of

the surface nodes by modifying the corresponding equations in
(2), which results in a new system of equations [33]

(3)

which is solved for the nodal displacements that satisfy static
equilibrium for the given boundary conditions.

III. PROPOSED NONRIGID REGISTRATION ALGORITHM

The goal of our proposed approach is to align the volumetric
organ model (built from the preoperative image set) with the in-
complete geometric patient data gathered intraoperatively. The
basic structure of the algorithm is depicted by the flowchart in
Fig. 1. A set of parameters described in the following sections
is used to define the rigid and nonrigid components of a trial
displacement mapping at each iteration. The algorithm initial-
izes these parameters via a rigid registration and calculates the

Fig. 1. Structure of the proposed nonrigid registration approach is depicted
in flowchart form. Parameters are updated via a nonlinear optimization routine.
In this work, we used the Levenberg–Marquardt algorithm. Required gradients
were computed via forward finite differences.

error between the model surface and the data at each iteration,
updating the guess for the parameters using a nonlinear opti-
mization routine until the surface fit is sufficiently accurate.

A. Nonrigid Deformation

The nonrigid deformation modes are selected according to an
assumed type of surgical presentation. We designate a “support
surface” region on the posterior side of the organ where con-
tact often occurs during routine mobilization of the liver from
its surrounding anatomy and subsequent “packing” of support
material underneath it to stabilize its presentation. We note that
the extent and location of the support area can be approximately
known in advanced based on a surgical plan, and that reasonably
small deviations from this plan only slightly affect the perfor-
mance of the approach, as demonstrated by the experiments de-
scribed in Section IV. The geometry of the liver itself usually
provides an intuitive way to select the support surface, which
is consistent with a typical surgical presentation. As shown in
Fig. 9 left, on most of the surface there is a defined edge or
corner where the anterior surface (which is red in Fig. 9) transi-
tions into the posterior side (which is blue). This feature is also
evident in the clinical organ shapes in Fig. 12. The entire poste-
rior side of the organ can be manually designated as the support
surface using this edge as a boundary, and this is the approach
we take for all the studies reported in this paper.
A smoothly varying displacement field for the designated

support surface is specified via a bivariate polynomial form as
follows:

(4)

where is the displacement vector for a point on the support
surface, is the average unit normal vector over the designated
support region (the area weighted average over the triangular
boundary elements), and and are tangential coordinates of
the point on the support surface (measured from the origin per-
pendicular to in two orthogonal directions). Thus, the con-
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stant coefficients define the nonrigid displacement field over
the support region. The sum over avoids redun-
dancy with the subsequent rigid transformation by excluding the
constant displacement mode, which is captured within a general
rigid-body motion.
For the surface nodes located on the support region, the cor-

responding displacements given by (4) are assigned as model
boundary conditions to obtain the system of equations (3). Thus,
solving the model produces a displacement field consistent with
the assumed support conditions.
The model response to each of the coefficients may be

precomputed and stored in matrix , where each column is a
displacement vector obtained by solving the finite element
system (3) with the right-hand side vector computed assuming

with all other coefficients are zero. Because we are
employing a linear elastic model, the principle of superposition
applies, and can subsequently be used to rapidly compute the
model solution for any combination coefficients as

(5)

where is the vector of coef-
ficients.

B. Rigid Transformation

After solving the model, a rigid-body transformation may
be applied to the deformed nodal coordinates via a homoge-
neous transformation matrix consisting a translation vector

is the translation vector and a rotation matrix
computed as the matrix exponential of a skew-sym-

metric matrix defined by a rotation vector
as follows:

If after solving themodel, the position vector of node is , then
rigid transformation produces a new position vector
. Thus, after nonrigid deformation and rigid transformation, a
vector of parameters which defines the total displacement field
can be expressed as

C. Optimization Algorithm

Our registration method is based on a nonlinear optimiza-
tion framework where the aforementioned parameter set is it-
eratively chosen to minimize an objective function defined by a
metric quantifying the fit between the deformed model and the
available data. In this study, we propose the following objective:

(6)

where is a 3 1 vector containing the Cartesian coordinates
for the location of the point in the surface data cloud, is
the location of the corresponding point on the model surface (we

discuss how correspondence is determined below), is a unit
vector normal to the model surface at . is proportional to
the total strain energy stored in the nonrigid displacement field
produced by the model solution (before the rigid transformation
is applied), and is calculated as . is a weighting
constant, so that the term is a regularization term that bal-
ances accuracy of shape matching and the distortion of the de-
formation field.
The nonlinearity in the optimization problem arises from two

sources: 1) rigid-body motion is inherently nonlinear due to the
rotational component, and 2) we allow the correspondences be-
tween the model surface points and the data to update as the
optimization progresses. At each iteration, the corresponding
model point to each data point is assumed to be the closest-point
(using the Euclidean distance) on the displaced model surface
(which is defined by the current set of parameters). Thus, the
approach implicitly solves the data-to-surface correspondence
problem simultaneously with the nonrigid registration problem.
There are many well established optimization methods suit-

able for updating the parameter set at each iteration of the al-
gorithm. In this study, we found that the Levenberg–Marquardt
procedure worked well and we implemented it for the phantom
and clinical cases in Section IV. With this method, the param-
eter update step is computed as follows:

(7)

where

is the residual vector containing each of the error terms which
are subsequently squared and summed in (6), is the
damping parameter which can be selected iteratively to achieve
optimal performance or set to a constant, and is the Jacobian
matrix of partial derivatives .
Thus, our nonrigid registration approach proceeds as shown

in Fig. 1. First, a set of initial parameters is chosen. We choose
the initial nonrigid coefficients to be zero, and we use a
rigid registration method to obtain an initial guess for the rigid
parameters , , , , , . Throughout this paper we
have initialized our algorithm using the iterative-closest-point
variant studied in [27]. However, any rigid registration method
can be used for initialization, and even a nonoptimal approx-
imate alignment may be sufficient. We study the effect of
perturbations on the initial registration in Section IV. At each
iteration, our algorithm then calculates the deformed nodal
locations from using the nonrigid coefficients and (5). The
transformation defined by the rigid parameters is then applied
to the deformed nodal coordinates to produce the final displace-
ment field for the iteration. Correspondence between the model
surface and the data is then via closest point relationships and
the residual vector function is evaluated. We compute the Jaco-
bian matrix via finite differences by evaluating the residual
vector for small changes in each parameter [33], and apply the
Levenberg–Marquardt update step to calculate the next guess
for all parameters. This process is repeated for a fixed number
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Fig. 2. (a) Phantom liver tissue in its “preoperative” undeformed state. (b) Thick support material was placed underneath the phantom. (c) Phantom liver in its
deformed “intraoperative” state, due to the presence of the extra material underneath.

of iterations (we used 10 in our experimental trials) or until the
surface fit is sufficiently accurate.

D. Incorporating Model Modifications

We note that in general, it is straightforward to adapt the pro-
posed modeling approach and optimization framework to in-
clude deformation effects from a variety of sources other than
normal displacements on the support surface, by simply pa-
rameterizing them within the elasticity model of the organ. For
example, tangential displacements on the support surface can
be parameterized in exactly the same way as the normal dis-
placements in (4). This could be useful if the expected surgical
presentation involves “unfolding” the liver or stretching it out
on the support surface before resection. In addition, distributed
tissue forces arising from gravity (due to orientation changes)
or fluid perfusion can be modeled if they are expected to play
significant role in the organ deformation.
As an example, consider including gravity as a force distri-

bution vector which is constant over the volume.When building
the finite element system in (2), the right-hand side vector is
linear in the components of , and the matrix is unaffected.
Therefore, the model response to each gravity component can
also be precomputed and stored as an additional column of the
matrix used for fast model computation in (5). Then we can
simply include the components of in the parameter vector
so that they are simultaneously selected with the coefficients
and the rigid parameters within the optimization routine. The de-
cision to include or not include a particular effect can be made
based on the anticipated surgical plan and/or the nature of the
intraoperatively acquired data, in order to balance trade-offs be-
tween concerns for computational speed, model accuracy, and
over-fitting.

E. Incorporating Intraoperative Subsurface Data

In the case where additional subsurface data is available in-
traoperatively, e.g., a tumor location from tracked ultrasound
measurements, we can modify our objective function accord-
ingly, as

(8)

where is the location of the point of interest as measured in-
traoperatively, and is the location of the corresponding model
point as predicted by the parameterized displacement field. The
point of interest would need to be specified in the preoperative

image set before this information could be included in the ob-
jective function.

IV. EXPERIMENTAL VALIDATION STUDIES

In this section, we evaluate our proposed nonrigid registration
method in a series of experiments with anthropomorphic liver
phantoms.We compare the results of themethod to ground-truth
fiducial locations throughout the phantoms as measured by CT
imaging. First, to verify that the approach is broadly applicable,
we analyze its accuracy in four cases where a phantom under-
went a set of plausible deformations ranging from small to large.
The phantom used in these four cases contained 28 fiducial tar-
gets evenly distributed throughout its volume for validation.
Then, to provide a more detailed investigation of the limita-

tions and sensitivities of the method, we describe a number of
analyses for a single additional large deformation case where the
phantom contained a denser distribution of 58 validation targets.
For this representative and data-rich case we evaluate 1) the ad-
ditional accuracy of the nonrigid registration beyond rigid regis-
tration alone and previous nonrigid registration methods, 2) the
result of incorporating subsurface data in our framework, 3) the
result of employing a nonlinear corotational approach in place
of the linear elastic model, 4) sensitivity analysis with respect to
choosing of the number of modes and the energy weighting co-
efficient, 5) robustness analysis with respect to variations in the
initial rigid alignment, 6) the result of incorrectly designating
the support surface region, and 7) the result of having various
extents of surface data coverage, from small to large.

A. Data Collection Procedure

As depicted in Fig. 2(a), a compliant liver phantom was made
using a cyrogel of water, Polyvinyl alcohol, and glycerin [34].
This recipe was refined based on our knowledge of organ mo-
tion derived from a 75 patient multi-center clinical trial with our
industrial collaborator [24] Plastic target beads (visible in CT)
were evenly dispersed inside the phantom to serve as ground-
truth fiducials in our analysis. A CT scan of the phantom was
taken to identify the initial target locations. Our finite element
model meshwas generated from this image volume representing
the “preoperative,” undeformed organ state. Next, as shown in
Fig. 2(b), the phantom was deformed by adding blocks of sup-
port material under certain parts of the posterior side of the liver,
simulating the intraoperative procedure of organ repositioning
and stabilization by packing material underneath. In this de-
formed state, we captured surface data with a laser range scanner
(LRS) to drive our nonrigid registration algorithm, and a second
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Fig. 3. Top: Post-deformation CT segmented surface is shown in blue, and
the model-predicted surface is shown in red for four deformation cases at three
stages in the registration process. The surface data used is overlaid in white on
the final result. Bottom: A histogram of TRE over the four cases using rigid reg-
istration, our previous nonrigid method [24], and the proposed nonrigid method.

CT scan was taken to identify the post-deformation target loca-
tions for validation. An initial rigid registration was acquired via
the weighted patch ICP algorithm in [27]. Then our proposed
nonrigid algorithm described in Section III was applied to de-
form the model to match the surface data.

B. Results Over a Range of Deformations

To evaluate our proposed method over a range of deforma-
tions that could be encountered in surgery, we deformed a liver
phantom in four different ways as illustrated in Fig. 3 by adding
support blocks underneath various parts of the phantom. In case
1, two support blocks were added underneath the middle of the
phantom, allowing the side lobes to droop. In case 2, a block
was placed underneath the right lobe, and in case 3 a block
was placed under the left lobe. In case 4, a block and an extra
towel were placed under the right lobe, which gave rise to a
significant rotational component in the displacement field as
well as a sharp bend in the corner of the left lobe near the
falciform ligament. We gathered simulated intraoperative sur-
face data by sampling the post-deformation CT surface, as de-
picted by the overlaid white points in the third column of Fig. 3.
Salient features patches were designated and the weighted iter-
ative closest point algorithm (wICP) studied in [27] was used to
obtain the initial rigid registration shown in the middle column
of Fig. 3. Then our proposed nonrigid algorithm described in
Section III-C was applied to fit the model surface to the LRS
data. We used for the degree of the bivariate polyno-
mial (resulting in nine nonrigid parameters in addition to the
six rigid parameters), and chose the energy weighting coeffi-
cient as with a Young’s modulus of 2100 Pa

Fig. 4. LRS data cloud is superimposed on the post-deformation CT segmented
surface in blue and the registered model surface in red. (a) The initial rigid reg-
istration using the method of [27]. (b) The proposed iterative method. (a) Rigid
Registration. (b) Proposed Nonrigid Method.

and Poisson’s ratio of 0.45 in our elastic model. (Note that since
the model contains no body forces and only Dirichlet boundary
conditions, the value of Young’s modulus does not affect the
displacement solution, only the scale of the stored energy). Over
the 25 embedded target fiducials dispersed throughout the liver,
the mean target registration error (TRE) after rigid registration
was 9.5 mm, 13.8 mm, 7.9 mm, and 8.3 mm in cases 1–4, re-
spectively. After applying our nonrigid registration algorithm,
the mean target error was reduced to 2.7 mm, 3.0 mm, 3.2 mm,
and 3.7 mm, respectively.

C. Comparison of Methods for a Representative Case

The same data collection procedure described above was ap-
plied to a liver phantom with 58 embedded target fiducials,
which was deformed by placing support blocks under both left
and right lobes as well as the front portion of the phantom, as
shown in Fig. 2(c). The extra support material caused significant
upward displacement of the supported portions of the phantom,
while the unsupported portions sagged down to the bottom of
the container. We use this large deflection case with a denser
distribution of fiducial targets to evaluate various aspects our
method in the following subsections.
In Fig. 4(b), we show the deformed model surface resulting

from our algorithm in red, with the true deformed surface gen-
erated from the second CT scan overlaid in blue. We note that
the deformed model visually matches the partial surface data as
closely as possible and also displays the same qualitative be-
havior as the true surface in the posterior region where no data
is present. The model predicts that the three supported sides are
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Fig. 5. Statistical histogram of the 58 target errors resulting from three different
methods of registration applied to our representative phantom case. Red: Results
of a rigid registration using the weighted patch ICP method of Clements et al.
[27]. Yellow: After the rigid registration, the results of a subsequent nonrigid
registration using a surface Laplacian to extrapolate boundary conditions as de-
tailed in Dumpuri et al. [24]. Light Blue: After the rigid registration, the results
of a subsequent nonrigid registration using the proposed iterative method. Dark
Blue: After the rigid registration, the results of a subsequent nonrigid registra-
tion using the proposed iterative method with one additional subsurface data
point.

displaced upward as much as the true surface and the middle
and back remain as low as the true surface. Rigid registration
using the method of [27] is shown in Fig. 4(a).
Predicted post-deformation target locations were also gen-

erated using the algorithm’s displacement mapping and com-
pared to their CT-measured post-deformation locations to as-
sess ground-truth accuracy, as shown in Fig. 6.
Fig. 5 collects the statistical information for all 58 target loca-

tions across the three different registration methods for compar-
ison. The rigid registration method of [27] is shown in red with
a mean TRE of 8.0 mm. For completeness, we also show our
previous nonrigid method in [24] in yellow is shown in yellow
with a mean TRE of 7.2 mm. Our proposed iterative method
is shown in light blue with a mean TRE of 4.0 mm. The pro-
posed method’s error distribution has less spread than the other
methods indicating better agreement over a wider geometric re-
gion is being achieved.

D. Improvement Using Subsurface Data

To investigate the effect of incorporating of subsurface data
(which could be acquired e.g., by identifying a subsurface fea-
ture using tracked ultrasound), a subsurface tumor was simu-
lated by embedding a polyester sphere soaked in barium sulfate
within the phantom as shown in the CT slices in Fig. 7. The pre-
and post-deformation locations of the simulated tumor centroid
were determined from the CT images and used as described in
Section II as additional data in the fitting process with .
Including this one additional subsurface data point improved
the mean TRE to 3.3 mm, and the resulting TRE distribution
is shown in dark blue in Fig. 5

Fig. 6. Locations of the fiducial targets are shown in the deformed phantom
volume, colored, and sized according to their respective registration errors. We
note that there is a trend toward greater error as distance from the available
surface data increases.

Fig. 7. (a) Slice from the CT image volume of the phantom liver in its unde-
formed “preoperative” state, as shown in Fig. 2(a). Embedded tumor phantom
is visible in this slice. (b) Corresponding CT slice of the phantom liver in its
“intraoperative” deformed state, as shown in Fig. 2(c). Added support material
causes a large displacement in the tumor location.

E. Robustness to Initial Registration

We also analyzed the robustness of nonlinear optimization
procedure to the initial registration input. In general, we assume
that the data input to our algorithm has already been rigidly
registered (in this paper we use the wICP algorithm in [27]) to
provide a good initial estimate of correspondence between the
model and the intraoperative surface data. To assess the role that
small initial alignment variations might play during the course
of the iterative nonlinear optimization process, a Monte Carlo
simulation was performed where the initial alignment between
the LRS point cloud and the preoperative liver model was per-
turbed in 6DOF space by a maximum total angle of 10 and
translated by up to 10 mm in each direction. In 100 simulations,
all of the final mean TRE values fell between 3.6 mm and 4.4
mm which compares similarly to the 4.0 mm mean TRE ob-
tained with the original wICP alignment.

F. Sensitivity to Weighting and Number of Modes

We investigated the sensitivity of our proposed algorithm to
changes in the formulation of the optimization problem, namely
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Fig. 8. Statistical box plots are shown illustrating the sensitivity of the results
of the algorithm to changes in the weighting coefficient and the order of
the bivariate polynomial for the support surface displacements.

Fig. 9. The “correct” and “incorrect” support surface designations tested for
our representative case.

the energy weighting coefficient and the order of the bi-
variate polynomial which defines the displacement of the sup-
port surface. The resulting statistics for the TRE is summarized
by the box plots in Fig. 8. We conclude from inspection of the
results that provides a sufficient number of support sur-
face modes (nine modes) for accurate subsurface predictions,
but increasing the number past this yields successively dimin-
ishing returns. Similarly, reducing the energy weighting coeffi-
cient will yield more accurate results up to a point.
The trade-off for decreasing is that unrealistically large de-

formation predictions are possible if the chosen mode set cannot
easily reproduce the surface data. This could be the case if the
designated support surface was wildly incorrect or if there is sig-
nificant unmodeled behavior such as swelling due to perfusion
or transverse stretching of the organ. We note that these types of
behavior could also be parameterized and included within our
framework, and the choice of modes should be refined over time
according to experience and clinical case data. To buffer this un-
certainty, provides a way to control the amount of predicted
deformation to a reasonable level. Upon collecting surface data,
it can be increased if the deformation looks unreasonable.

G. The Effect of Incorrect Support Surface Designation

One potential limitation to the proposed method is that it re-
quires an a priori assumption about what part of the organ sur-
face is directly contacted by support material. In our experience
with image-guided liver surgery, a good estimate of the actual
support surface can be easily determined from the preoperative
plan performed by the surgeon. The posterior region of the organ
as shown in blue in Fig. 9 on the left is usually easy to manually
segment by using the high surface curvature at the lobe edges
as a boundary. This posterior region serves as an appropriate
starting point for the support surface designation which can be
modified according to the surgical plan if necessary.

Fig. 10. (a) Extent of surface data used for our representative case, which pro-
duced a mean TRE of 4.0 mm. (b) Smaller extent of surface data which resulted
increased the mean TRE to 5.0 mm. (c) Minimal extent of surface data which
resulted in a mean TRE of 5.2 mm.

Even with a good estimate of the support surface, accuracy
of the nonrigid registration will no doubt be affected by the de-
gree of agreement between this assumed support region and the
actual intraoperative support region. To provide an estimate of
how much an incorrect support surface designation might affect
registration accuracy, we tested our method under a case where
the support region was quite incorrectly designated as shown in
Fig. 9. The resulting mean target registration error for the incor-
rectly designated case was 4.6 mm, compared to a mean TRE
of 4.0 mm in the correctly designated case. This result indicates
that an accurate nonrigid registration may still be obtained even
if the support surface designation is somewhat inaccurate.

H. The Effect of Data Coverage Extent

We also investigated the effect of having smaller patches of
intraoperative surface data available for registration. As shown
in Fig. 10, we tested three sizes of data coverage, the largest
of which was the dataset used in our representative case. The
resulting mean TRE for the two smaller extents [(b) and (c) in
Fig. 10] was 5.0 and 5.2 mm, respectively.

I. The Effect of Including Gravity

As we discuss in Section III-D other forces on the tissue such
as gravity are straightforward to include within our model and
registration framework. We performed an additional execution
of our registration procedure for the representative case of 4,
and we included gravity in the model and the parameter set to
be optimized as described in Section III-D. The resulting TRE
distribution was very similar to that shown in Fig. 5 obtained
without including gravity, and the mean TRE was slightly de-
creased to 3.9 mm.

J. The Effect of Model Linearization

We tested our assumption of linear elasticity by imple-
menting a second model using a nonlinear, corotational finite
element framework [35] for comparison. We enforced identical
displacement boundary conditions on the support surfaces
of both models, taken from the final registration solution for
each of the five phantom cases shown in Figs. 4 and 3. After
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Fig. 11. Deformed surface from the phantom case of Fig. 4 is shown. Colormap
over the surface illustrates the euclidean difference between the linear and non-
linear model solutions using the same set of boundary conditions. Linearization
error is less than 1 mm for the majority of the volume, with a maximum error
of 3.3 mm where element rotations are highest.

solving both models for each case, we compared the resulting
displacement fields from the two solutions. Over this set of
cases, the maximum euclidean distance between the location of
any point in the linear model solution and the location of that
same point in the nonlinear model solution was 3.3 mm, which
occurred at the tip of the lobe in the Fig. 4 case. Fig. 11 shows
the distribution of the euclidean difference between the two
model displacement solutions for this case, with a linearization
error of less than 1 mm for the vast majority of the volume.
The other four cases exhibited similar patterns with even less
linearization error.
We consider this amount of linearization error to be relatively

small when compared to the displacements exhibited in our
phantom experiments (up to 23 mm, with element rotations as
large as 30 ), suggesting that a linear model is perhaps adequate
in this context. However, we do not wish to minimize the im-
portance of nonlinearities, realizing that linearization could po-
tentially have much larger adverse effects depending on the na-
ture and scale of the deformation. Care should always be taken
to quantify, as we have done here, the expected amount of lin-
earization error for the types of organ deformation being con-
sidered, and future work towards fast, stable nonlinear model
implementations is certainly needed.
Currently, the computational trade-offs favor the linear ap-

proach for surgical guidance applications. In our phantom ex-
periments, the total computation time for convergence of the
proposed algorithm (eight iterations, 149 evaluations of the ob-
jective function) was approximately 13 s using a model with
8000 nodes and a surface point cloud containing approximately
4000 3-D data points, using a MATLAB implementation on a
standard laptop computer with a 2.67 GHz Intel Core i5 CPU.
The total number of model solves required for our registration
algorithm to converge is usually on the order of 100, so the in-
crease in computation time required to implement a nonlinear
model must be weighed against the potential loss of accuracy in
linearization.
The linearization error should also be viewed in the context of

the clinical data acquisition and registration problem, and com-
pared to other potential sources of inaccuracy. Aside from the
process of data acquisition itself, one source of potential regis-
tration inaccuracy comes from driving the registration problem

Fig. 12. Results from two clinical case studies with swab data from a tracked
stylus. The blue surfaces are the rigidly registered models. The red surfaces
show the nonrigid registration resulting from the proposed algorithm. Compared
to the rigid registration, the nonrigid registration improved the average closest
point distance between the model surface and data from 4.5 mm to 2.4 mm in
swab case 1 and from 7.4 mm to 3.0 mm in swab case 2.

with incomplete surface data having unknown or only approxi-
mate correspondence to the model surface. Another error source
is the ability of the assumed boundary condition modes to actu-
ally reproduce the correct displacement field. We estimate that
these two sources combined contribute the majority of the target
registration error.
As a case in point, we replaced the fast linear solve portion of

our algorithm (which combined deformation modes via super-
position as described in Section II) with an iteratively solved
corotational finite element framework [35]. The nonrigid reg-
istration algorithm with the nonlinear model produced a mean
TRE of 4.8 mm, compared to the mean TRE of 4.0 mm obtained
with the linear model. When the subsurface tumor data was in-
cluded, the nonlinear model produced a mean TRE of 3.4 mm,
while the linear model produced a mean TRE of 3.3 mm. Thus,
even though the nonlinear model represents the physical tissue
mechanics more accurately than the linear model, random un-
certainty and bias from other sources coincidentally caused the
registration algorithm to perform slightly worse with the non-
linear model.

K. Clinical Feasibility Study

We investigated the feasibility of our proposed framework in
five clinical cases where anonymized data was gathered by our
industrial collaborator Pathfinder Therapeutics Inc. under an In-
stitutional Review Board approved study with informed written
patient consent. In three of the cases, a 3-D laser range scan
was performed over the visible surface of the liver in the intra-
operative setting, providing a dense surface cloud. In two of the
cases, swabbed surface data collected with a tracked probe was
used, which illustrates the versatility of the proposed method to
handle sparse and noisy datasets.
For the three LRS cases, the energy weighting coefficient was

chosen as . For the two swab cases, some inac-
curacy is introduced by intermittent stylus-to-tissue contact and
local deformation due to stylus contact, so the energy weighting
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Fig. 13. Results from three clinical case studies with dense laser range scanned
surface data. The registered model surface is colored by the signed closest point
distance to the surface data. Compared to the rigid registration, the nonrigid
registration improved the average normal closest point distance between the
model surface and data from 3.1 mm to 1.8 mm in LRS case 1, from 4.3 mm to
3.0 mm in LRS case 2, and from 4.6 mm to 3.5 mm in LRS case 3.

coefficient was chosen as to avoid fitting the lim-
ited data with unreasonably large deformations.
The two swab case results are shown in Fig. 12 with the sparse

dataset overlaid on top of the registered model surface. The non-
rigid registration is compared to the results from rigid registra-
tion using the method of [27]. The three LRS cases are similarly
shown in Fig. 13, where instead of overlaying the dense surface
dataset, we show the registered surface color coded by signed
closest point distance to the data.
Table I shows the mean surface errors (the closest point

distance) for the five clinical cases, showing an improvement
in each case over rigid registration alone. We note that the
surface errors after nonrigid registration are higher than the
same surface metric for our representative phantom case (0.6
mm), which indicates that while much of the deformation
has been accounted for, there are still some aspects that our
chosen parameterization is unable to reproduce. As discussed
in Section III-D, incorporating additional parameters (such as
modes which mimic an “unfolding” of the organ) could poten-
tially capture more of the deformation, while increasing the
trade-off of potentially over-fitting the data for cases in which

TABLE I
CLINICAL SURFACE REGISTRATION ERRORS

this does not occur. Future validation work using intraoperative
imaging is needed to fully address these tradeoffs and optimize
our proposed approach for clinical deployment.

V. DISCUSSION

The distribution of TRE illustrated by the histograms in
Figs. 3 and 5 show an average improvement in TRE from 9.5
mm to 3.3 mm over the five phantom experiments when our
nonrigid registration approach is employed, and further im-
provement is shown when a single point of subsurface data was
incorporated. In the analysis of our representative large-dis-
placement phantom case with a dense distribution of fiducials,
the proposed method demonstrate robustness to variations in
initial registration, support surface designation, and the extent
of available surface data. The effect of the energy weighting
parameter and the number of support surface displacement
modes was also investigated for this dataset, and a point of
diminishing returns was shown. Our comparison of linear
and geometrically nonlinear tissue models demonstrates that
linear models are capable of providing good guidance for this
surgically realistic large-displacement case. Five cases using
clinical data suggest that the method is capable of providing a
realistic deformation mapping when driven by both sparse and
dense data acquired in the operating room.
With respect to accuracy needs in the clinical setting, our pre-

vious work has demonstrated that rigid organ-based registration
errors are on the order of 1–2 cm routinely in clinical cases
[36]. Adding to this experience, the clinical conventional expe-
rience has considered the 1 cm negative margin to be the min-
imum acceptable resection threshold (as reported by a number
of clinical studies [37]–[39]). These would suggest that perhaps
a surgeon’s intuitive spatial understanding of the lesion between
preoperative and intraoperative experience is compromised by
organ deformation. We would suggest that in order to restore
an intuitive spatial understanding to the surgeon, it would be
beneficial to reduce target errors to below 5 mm on average (an
accuracy threshold also suggested by [40]).
While much future work is needed, to our knowledge the re-

sults herein are the first to suggest that mean target registra-
tion errors less than 5 mm over the volume are possible using a
sparse-surface-data driven mechanics-based nonrigid registra-
tion method. While [22] and [24] suggest TREs less than 5 mm,
the results were achieved with significantly more boundary con-
dition information with very coarse TRE sampling in the former,
and involved deformations significantly less than the clinical
counterpart in the latter. In this paper, the method we propose
needs very little a priori boundary condition information and
is validated with a detailed spatial sampling of target error in



RUCKER et al.: A MECHANICS-BASED NONRIGID REGISTRATION METHOD FOR LIVER SURGERY USING SPARSE INTRAOPERATIVE DATA 157

experiments containing deformations that were carefully gener-
ated to mimic the clinical scenario.
We note that the proposed method could also be feasible for

laparoscopic procedures if enough surface data can be collected
laparoscopically, and research is currently being conducted to-
ward the development a device capable of laparoscopic surface
scanning based on conoscopic holography [41]. The limitations
on data collection in the laparoscopic case could be somewhat
compensated for by the fact that the organ deformation is likely
to be less extensive. We leave investigation of nonrigid regis-
tration using laparoscopically gathered data to future work.

VI. CONCLUSION

We conclude that use of the proposed iterative method for
nonrigid registration of the preoperative liver to the intraoper-
ative environment is feasible to be incorporated into a surgical
workflow with minimal encumbrance, and our experimental
analysis shows that the method significantly improves upon the
robust rigid registration currently used in commercial systems,
as well as previously investigated nonrigid methods. In addi-
tion, the method is fully realized for a sparse data acquisition
environment thus potentially allowing for wide scale adop-
tion by image-guided surgical platforms for soft-tissue organ
guidance. Future work will include further testing on clinical
datasets with validation strategies using tracked co-registered
ultrasound.
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